Academic Formalities

@ Quiz 1 = 10 marks, Quiz 2 = 10, Final = 40 marks.
@ Programming assignments: Six. Total 40 marks.
@ Extra marks

CS6868 - Concurrent Programmlng e During the lecture time - individuals can get additional 5 marks.
Introduction e How? - Ask a good question, answer a chosen question, make a
good point! Take 0.5 marks each. Max one mark per day per
person.
V. Krishna Nandivada @ Attendance requirement — as per institute norms. Non compliance
will lead to ‘W’ grade.
IIT Madras o If you come to the class after 5 minutes - don't.

e Proxy attendance - is not a help; actually a disservice.
@ Plagiarism - A good word to know. A bad act to own.
e Students Welfare and Disciplinary committee.

Contact (Anytime) :

Instructor: Krishna, Email: nvk@cse.iitm.ac.in, Office: BSB 352.
TA: Aman, Saurabh, Anchu:{amannoug,saurabhk,anchu}@cse,
Office: PACE Lab.
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Course outline Lecture schedule

A rough outline (we may not strictly stick to this).

@ Introduction

@ Introduction " .
, @ Critical sections
@ Abstractions
. © Java concurrency features
@ Memory Consistency models 0 D determi d atormicit
o Design Patterns Oata :\a;ll(;es (de ermma;:y and atomicity)
@ Languages: OpenMP, MPI, CUDA © OpenMP concurrency features

© Synchronization (barriers, clocks, rendezvous, semaphores)

@ Mutual exclusion/Critical sections variations (h/w and s/w
solutions), atomics, single, isolated

© Recursive task parallelism

© Deadlocks and livelocks

@ MPI concurrency features

@ Efficiency in parallel programs.
@ Patterns for multicore systems.

@ Optimizing parallel programs
Books:
@ The Art of Multiprocessor Programming by Maurice Herlihy and
Nir Shavit
@ OpenMP application Program interface (language reference)
© The Complete Reference Java

© MPI - the complete reference by Marc Snir, Steve W. Otto, Stev
Huss-Lederman, David W. Walker, Jack Dongarra X
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Why Multicores?

Moore s Law The number of transistors on integrated c1rcu1t ChlpS (1971 2016)
ical regularity that the er of trans S egrated bles

> u,-xm c pr oducts - are

20,000,000,000

10,000,000,000 ot
5,000,000,000 5 T oes 8 3 1

1,000,000,000
500,000,000

100,000,000
50,000,000

10,000,000
5,000,000

Transistor count

1,000,000 thdane
500,000 LSt sy

100,000 —— s ~ )
50,000 -

10,000 ™S,
5,000 060

1,000

P PP XSS D
PSS HFSSS
FEEEEE S S S S S

Year of introduction

i%ﬁFocus on increasing the number of computing cores.
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So what'’s the big deal?

@ In the old world - processor speed used double every 1.5 years.

@ Implication: increase the complexity of the program, wait for 1.5
years - same performance.

@ New world: Unless there is concurrency in the program: you
cannot speedup.

@ Even if there is concurrency: parallelisation and synchronization
do not come for free.

@ Q: Say | get 8 parallel cores - will | get 8x speedup?
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What, When Multicores? Why not Multiprocessors

@ What A multi-core processor is composed of two or more
independent cores. Composition involves the interconnect,
memory, caches.

@ When IBM POWERA4, the world’s first dual-core processor,
released in 2001.

@ Why not Multi-processors

e An application can be "threaded” across multiple cores, but not
across multi-CPUs — communication across multiple CPUs is fairly
expensive.

e Some of the resources can be shared. For example, on Intel Core
Duo: L2 cache is shared across cores, thereby reducing further
power consumption.

o Less expensive: A single CPU board with a dual-core CPU Vs a
dual board with 2 CPUs.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 )

Challenges Involved

Harnessing parallelism

e How to map parallel activities to different cores? How to distribute
data?

Locality: Data and threads
Minimizing the communication overhead

Exploring fine grain parallelism (SIMDization), coarse grain
parallelism (SPMDization).

@ Dynamic code profiling and optimizations.
Unpredictable performance Why?
Programmability issues.
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Programmability issues

@ With hardware becoming increasingly multi-core, software
developed without attention to parallel processing capabilities of
the hardware will typically under-utilize the hardware - Example?

@ When software is designed to operate in a multi-threaded or
multi-processed manner, how the threads are mapped to the
cores becomes an important issue - Why?

@ Software that is critically dependent on multi-threading is always
based on assumptions regarding the thread-safety of the function
calls - Why?

@ Multi-threading of software is generally very important to
applications that involve human interactivity.

@ Understanding different levels of parallelism.
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Race freedom is enough?

void deposit (int amt) {

int withdraw (int amt) {

acquire (m) ; int t = read.balance();
balance = balance+amt; acquire (m) ;
release (m); if (t <= amt) {

} balance = 0;

int read._balance () { } else {
int t; balance = balance-amt;
acquire (m) ; t = amt;
t = balance; }

}

release (m) ;
return t;

release (m) ;
return t;

// Initial balance = 10.
fork withdraw(10); ;
fork deposit(10); ;

// Thread 1
// Thread 2

Example taken from Flanagan and Qadeer TLDI 2003.
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A simple example: thread safety (more details later)

function int Withdraw (int amount) {
if (balance > amount) {
balance = balance - amount;
return SUCCESS;

}
return FATL;

@ Say balance = 100.
@ Two parallel threads executing Withdraw(80)

@ At the end of the execution, it may so happen that both of the
withdrawals are successful. Further balance can still be 20!
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Parallelism types

Instruction level parallelism.
@ Parallelism at the machine-instruction level.

@ The processor can re-order, pipeline instructions, split them into
microinstructions, do aggressive branch prediction, etc.

@ Instruction-level parallelism enabled rapid increases in processor
speeds over the last 20 years.

Thread level parallelism.

@ This is parallelism on a more coarser scale.

@ Server can serve each client in a separate thread (Web server,
database server)

@ A computer game can do Al, graphics, and physics in three
separate threads

@ Single-core superscalar processors cannot fully exploit TLP.
Multicores are the way out to exploit the TLP.
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What type of applications benefit from Multi-cores?

@ Nearly All'!

@ Database servers

@ Web servers (Web commerce)

@ Compilers

@ Multimedia applications

@ Scientific applications, CAD/CAM

@ In general, applications with Thread-level parallelism (as opposed
to instruction-level parallelism)

@ To build applications that benefit from Multi-cores, we have to
understand multi-cores, on how they differ from unicore machines.
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@ Traditional Von Neumann Architecture, all traditional computations.
@ a single processor, a uniprocessor, executes a single instruction

stream, to operate on data stored in a single memory.
@ Pipelined execution allowed.
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Flynn’s Taxonomy.

Categorization of computers based on number of instruction and data
streams’.

@ SISD: Single instruction Single Data - x86: sequential computer
which exploits no parallelism in instruction or data streams.

@ SIMD: Single instruction Multiple Data - Vector machines: A
computer which exploits multiple data streams against a single
instruction stream.

@ MISD: Multiple instruction Single Data - Space Shuttle - Multiple
instructions operate on a single data stream.

@ MIMD: Multiple instruction Multiple Data - Bluegene, Cell - Multiple
autonomous processors simultaneously executing different
instructions on different data.

TFlynn, M. (1972). “Some Computer Organizations and Their
Effectiveness”. IEEE Trans. Comput. C-21: 948.
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SIMD

SIMD | Instruction Pool |

Pl
e
—,,_
L Pyl

for (int 1=0;i<16;++1i) A[i] = B[i] + C[1i]

Data Pool

@ Fetching / Write a bulk of data is efficient than single units of data.
@ A compiler level optimization to generate SIMD instructions.
@ Not all algorithm can be vectorized - for instance, parsing.
@ increases power consumption and chip area.

@ Detecting SIMD patterns is non-trivial.
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MISD MIMD
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@ Many processors that function asynchronously.
@ Task replication for fault tolerance. @ Memory can be shared (less scalable) or distributed (memory
@ Not used in practise. No known commercial system. consistency issues). _ _ _ *
@ Most of the modern parallel architectures fall into this category.
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Different types of MIMD systems - homogeneous Different types of MIMD systems - heterogeneous

ENreel

CORE B COREB CORE B/

@ Mixture of different cores e.g.

e a computational unit could be a general-purpose processor (GPP),
@ a special-purpose processor (i.e. digital signal processor (DSP)

CORE A CORE A

@ Homogeneous multi-core systems include only identical cores. e agraphics processing unit (GPU)),
. . . . @ a co-processor, or custom acceleration logic
@ Just as with single-processor systems, cores in multi-core o Each core mav be optimized for different roles
systems may implement architectures like superscalar, VLIW, y P '

@ Clusters are often heterogeneous; future supercomputers most

r pr in IMD, or multithreading. (S
vector processing, SIMD, or multithreading will be heterogeneous systems. Examples: Grids, lab clusters. %%
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Heterogeneous multi-cores
Homogeneous CPU multi-cores Pros:

Pros:

@ Easier programming
environment

@ Massive parallelism today

@ Specialization of hardware for
different tasks.

@ Easier migration of existing Cons:
code @ Developer productivity -
Cons: requires special training.
@ Lack of specialization of @ Portability - e.g. software
hardware to different tasks written for GPUs may not run
@ Fewer cores per server today on CPUs.
(Typically less than 100) @ Organization - multiple GPUs

and CPUs in a grid need their
work allocated and balancegd
and event-based systems €

need to be supported.
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Programmability issues

@ With hardware becoming increasingly multi-core, software
developed without attention to parallel processing capabilities of
the hardware will typically under-utilize the hardware - Example?

@ When software is designed to operate in a multi-threaded or
multi-processed manner, how the threads are mapped to the
cores becomes an important issue - Why?

@ Software that is critically dependent on multi-threading is always
based on assumptions regarding the thread-safety of the function
calls - Why?

@ Multi-threading of software is generally very important to
applications that involve human interactivity.

@ Understanding different levels of parallelism.
@ Debugging parallel programs.
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Challenges Involved (revisited)

@ Harnessing parallelism

e How to map parallel activities to different cores? How to distribute
data?

@ Locality: Data and threads. What is the challenge?
@ Minimizing the communication overhead

@ Exploring fine grain parallelism (SIMDization), coarse grain
parallelism (SPMDization).

@ Assist threads
@ Dynamic code profiling and optimizations.
@ Programmability issues.
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Starting model

@ Multiple threads

@ Single shared memory

@ Objects live in memory

@ Unpredictable asynchronous delays
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Primality testing

@ Challenge

e Print first 1010 primes
or See the slides from the ppt.
Print primes from 1 to 10'°

@ Given

e Ten-processor/Ten-core multiprocessor
@ One thread per processor/core

@ Goal
e Get ten-fold speedup (or close)
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Speedups in Parallel Programs Amdahl’s Law

@ Say a serial Program P takes T units of time. i . Tonnt- T 1o
@ Serial fraction y = -~ —fuaion

@ Q: How much time will the best parallel version P’ take (when run Tioral(1)
on N number of cores)? % units? @ Fraction of time spent in parallelizable part = (1 — )
(1 - '}’) X Ttotal(l)

@ Linear speedups is almost unrealizable, especially for increasing ¥ %X Trorar(1)

number of compute elements. Tioa(N) = m; + N
T, =T 4T, T parallel code

total setup compute finalization 1—y

@ Tsenp and Thinaiizarion MAy NOt run concurrently - represent the - (7+ T) % Tioral(1)

execution time for the non-parallelizable parts of code. Speedup S(N) = ngm(l)
@ Best hope : Teompue €an be fully parallelized. — 11:
° Ttolal(N) = Tserup + W + Thinatization - -+« -+ - - (1) ~ gﬂr " ) ...Amdahl’s Law
@ Speedup S(N) = ;’,’7,’8/)) In practice? @ Max speedup is inversely proportional to the serial fraction of the
@ Chief factor in performance improvement : Serial fraction of the code.

code.
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Implications of Amdahl’s law Implications of Amdahl’s law

@ As we increase the number of parallel compute units, the speed
up need not increase - an upper limit on the usefulness of adding
more parallel execution units.

Assume: Ten processors. Goal: 10 fold speedup. @ For a given program maximum speedup nearly remains a
Serial fraction | Parallel fraction | Speedup = —'— constant. o .
_ . (r+%) @ Say a parallel program spends only 10% of time in parallelizable
40 % 60 % 2.17 code. If the code is fully parallelized, as we aggressively increase
20 % 80 % 3.57 the number of cores, the speedup will be capped by (~) 1.11x.
(1.)8 ; 2(1) of’ g?g @ Say a parallel program spends only 10% of time in parallelizable
° ° y code. Q: How much time would you spend to parallelize it?
@ Amdahl’s law helps to set realistic expectations for performance
gains from the parallelization exercise.
@ Mythical Man-month - Essays on Software Engineering. Frederi
Brooks. |
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Peaking via Amdahl’s law Limitations of Amdahl’s law

Amdahl’s Law

20,00

//""" @ An over approximation : In reality many factors affect the
18.00 7

/ Parallel Portion parallelization and even fully parallelizable code does not result in
7 — ?gﬁ linear speed ups.

14,00 — 0% @ Overheads exist in parallel task
L creations/termination/synchronization.

] 10.00 / @ Does not say anything about the impact of cache - may result in
& much more or far less improvements.
v @ Dependence of the serial code on the parallelizable code - can the
£:00 g parallelization in result in faster execution of the serial code?
— @ Amdahl’s law assumes that the problem size remains the same
2.00 — after parallelization: When we buy a more powerful machine, do
we play only old games or new more powerful games?

16.00

0.00 4 b C r d d =
L

T T T S T - o

— ™ [Te] 3

2048
40
8192
16384
32768
6553

Mumber of Processors
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Discussion: Amdahl’s Law

@ When we increase the number of cores - the problem size is also
increased in practise.

@ Also, naturally we use more and more complex algorithms,
increased amount of details etc.

@ Given a fixed problem, increasing the number of cores will hit the
limits of Amdahl’s law. However, if the problem grows along with
the increase in the number of processors - Amdahl’s law would be
pessimistic

@ Q: Say a program P has been improved to P’ (increase the
problem size) - how to keep the running time same? How many
parallel compute elements do we need?
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Comparison Amdhal’s law and Gustafson’s law

@ Say we have program that takes 100s. The serial part takes 90s
and the parallelizable part takes 10s.

@ If we parallelize the parallel part (over 10 compute elements) the
total time taken = 90 + {3 = 91s.

Amdahl’s law: Gustafson’s law:
'}/: 0.9 YVcaled - % =0.99
Speedup ~ 55 = 1.1 Speedup(10) =10+ (1 —10) x0.99 = 1.1

@ Speedups indicated by both Gustafson’s Law and Amdahl’s law
are same.

@ Gustafson’s Law gives a better understanding for problems with
varying sizes.
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Gustafson’s Law

@ Invert the parameters in Eq(1):
Ttolal ( 1) - Tsetup +N x Tcompute (N ) + Tﬁnalization --------- (2)

. . Tsetup+T finatization
@ Scaled serial fraction Ycaea = %

o Ttolal(l) = Yscaled X Ttotal(N) +N X (1 - %caled) X Ttotal(N)

@ S(N)=N+(1—=N) X Yscaled «+-+-+--- (Gustafson’s Law)

@ We are increasing the problem size. If we increase the number of
parallel compute units - execution time may remain same
(provided Yscaieq remains constant).

@ It means that speedup is linear in N. Is it contradictory to Amdahl’s
law?

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 34/25

Bottlenecks in Parallel applications

@ Serial part of the code (Amdahl’s law).

@ Traditional programs running on Von-Neumann Architectures -
memory latency.

@ The “memory wall” is the growing disparity of speed between CPU
and memory outside the CPU chip.

@ In the context of multi-core systems, the role of memory wall?
@ Communication latency plays a far major role.

@ Communication = remote task creation, sending data,
synchronization etc.
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Moral Means of Communication

Tasks/Threads/Processes need to communicate with each other for
the program to make progress.

@ Remote procedure calls.
@ Shared memory.

@ Message Passing.

@ Synchronization.

Making good use of our multiple processors (cores) means
@ Finding ways to effectively parallelize our code
@ Minimize sequential parts

@ Reduce idle time in which threads wait without compromising on

correctness. . . ,
@ Examples: Files, Signals, Socket, Message queue, pipe,

semaphore, shared memory, asynchronous message passing,
memory mapped file.
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Remote Procedure Calls Shared memory

A subroutine or procedure to execute in another address space A large common RAM shared and simultaneously accessed by the
(core/processor), with no explicit coding. multiple cores.

@ Typically, RPC is an synchronous event. While the server is
processing the call the client is blocked.

@ Easy to program, especially in reliable environments.
@ Compared to local calls, a remote procedure may fail. Why?
@ How to handle failure?

@ By using RPC, programmers of distributed applications avoid the
details of the interface with the network.

@ The transport independence of RPC isolates the application from
the physical and logical elements of the data communications
mechanism and allows the application to use a variety of
transports.

@ Examples: C, Java RMI, CORBA.

@ Read yourself.
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Note: Communication inside a task via memory is not generally
referred to as ‘shared memory’.

@ Easy to visualize for the programmer.

@ Communication can be fast.

@ (Partitioned) Global Address Space.

@ Scalable, especially for small number of cores.
@ Not easily scalable for large number of cores.

@ Cache coherence issues - Say a core updates its local cache -
how to reflect the changes in the shared memory such that data
access is not inconsistent.

@ #pragma omp flush [a, b, c] : A synchronization point
where memory consistency is enforced.

@ #pragma omp parallel private (a)
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Message passing

@ Allows communication between processes (threads) using specific
message-passing system calls.

@ All shared data is communicated through messages
@ Physical memory not necessarily shared
@ Allows for asynchronous events

@ Does not require programmer to write in terms of loop-level
parallelism

@ scalable to distributed systems

@ A more general model of programming, extremely flexible
@ Considered difficult to write

@ Difficult to incrementally increase parallelism

@ Traditionally - no implicitly shared data (allowed in MPI 2.0)
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