
CS6868 - Concurrent Programming
Java Concurrency

V. Krishna Nandivada

IIT Madras

*

Java Threads Vs Processes

Typically each instance of JVM creates a single process.
Each process creates one or more threads.

Main thread creates the others.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 2 / 28

*

Java Threads

Each Java thread is an object - instance of the Java Thread class.
An application that creates an instance of Thread must provide
the code that will run in that thread.

implement Runnable interface.
Provide an implementation of the run method.

or
extend Thread class
Provide an overridden implementation of the run method.

Adv/Disadv??
(Hint) Java allows single inheritance.
Extending thread class ⇒ cannot extend any other class.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 3 / 28

*

What can a thread do?

Start executing the thread body specified in the run method.
Sleep - Thread.sleep(..)
Wait for child threads to finish: ch.join()
Communicate with other threads.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 4 / 28

*

Communication via synchronized methods

synchronized statements and methods. Making a methods
synchronized has two effects:

It is not possible for two invocations of synchronized methods on
the same object to interleave.
When a synchronized method exits, it automatically establishes a
happens-before relationship with any subsequent invocation of a
synchronized method for the same object.

Guarantees that changes to the state of the object are visible to all
threads.

Constructors cannot be synchronized. Why? Only the object
creating threads should call the constructor.
synchronized methods ensure that there is no thread interference.
Q: Too many synchronized methods. Disadv?

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 5 / 28

*

How do synchronized methods/statements work?

Each object has an associated intrinsic lock.
When a thread invokes a synchronized method,

automatically acquires the intrinsic lock for that method’s object
releases the lock when the method returns (normal or via
exception).

What if a thread invokes a synchronized method recursively?

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 6 / 28

*

Updating shared variables

Java guarantees that following actions would be atomic.
Reads and writes are atomic for reference variables and for most
primitive variables (all types except long and double).
Reads and writes are atomic for all variables declared volatile
(including long and double variables).
Any write to a volatile variable establishes a happens-before
relationship with subsequent reads of that same variable.
We can also declare a variable (of some types) as atomic.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 7 / 28

*

Atomic variables

The java.util.concurrent.atomic package defines
classes supporting atomic operations on single variables.
All classes of get and set operations.
Like volatile variables’ write operation, the set operation has
an happens-before relation with the corresponding get operation.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 8 / 28

*

Atomic variables - Example

import java.util.concurrent.atomic.AtomicInteger;

class AtomicCounter {
private AtomicInteger c = new AtomicInteger(0);

// guarantees thread non-interference.
public void increment() {

c.incrementAndGet();
}
public void decrement() {

c.decrementAndGet();
}
public int value() {

return c.get();
}

}

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 9 / 28

*

Atomic variables (contd)

Supported classes:
AtomicBoolean AtomicInteger AtomicIntegerArray
. . . AtomicLong AtomicLongArray
. . . LongAccumulator LongAdder

All support: boolean compareAndSet(expectedValue,
updateValue)

CAS operation: How to use it to realize synchronization?
Building blocks for implementing ‘non-blocking’ data structures.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 10 / 28

*

Happens before relation

Sequential order: Each action in a thread happens-before every
action in that thread that comes later in the program’s order.
Unlock → Lock: An unlock (synchronized block or method exit) of
a monitor happens-before every subsequent lock (synchronized
block or method entry) of that same monitor.
Volatile writes: A write to a volatile field happens-before every
subsequent read of that same field. Writes and reads of volatile
fields have similar memory consistency effects as entering and
exiting monitors, but do not entail mutual exclusion locking.
A call to start on a thread happens-before any action in the started
thread.
All actions in a thread happen-before any other thread
successfully returns from a join on that thread.

Happens-before relation is transitive.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 11 / 28

*

Deadlock, Livelock and Starvation

Deadlock: two or more threads are blocked forever, waiting for
each other.
Starvation: a thread is unable to gain regular access to shared
resources and is unable to make progress.
Livelock: threads are not blocked, but are not making any
progress.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 12 / 28

*

Guarded blocks

A way to coordinate with others.
A guarded block

polls a condition that has to be true to proceed.
other threads set that condition

public void guardedEntry(){
while (!flag) ;

// flag is set. Inefficient.
}

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 13 / 28

*

Guarded blocks (contd)

public synchronized void guardedEntry() {
// Check once and "wait"
while(!flag) { // Loop is needed.

try {
wait();

} catch (InterruptedException e) {}
}
// flag is set. Efficient.

}

Q: Why synchronized?
notify vs notifyAll

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 14 / 28

*

Immutable Objects

An object is considered immutable if its state cannot change after
it is constructed.
Helps write reliable code.
cannot be corrupted by thread interference or observed in an
inconsistent state.
Creating many immutable objects Vs updating existing objects.

Cost of object creation, GC
Code needed to protect mutable objects from corruption.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 15 / 28

*

Example

public class SynchronizedRGB {
private int red; // between 0 - 255.
private int green; // between 0 - 255.
private int blue; // between 0 - 255.
private String name;

public synchronized void set(int r, int g, int b,
String n) {..}

public synchronized int getRGB() {
return ((red << 16) | (green << 8) | blue);

}
public synchronized String getName() { return name; }
public synchronized void invert() {

red=255-red; green=255-green; blue=255-blue;
name="Inverse of " + name;

} }

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 16 / 28

*

Example (contd)

...
SynchronizedRGB color =

new SynchronizedRGB(0, 0, 0, "Black");

int myColorInt = color.getRGB(); //Statement 1
String myColorName = color.getName(); //Statement 2

What if another threads updates the color object after Statement 1?

synchronized (color) {
int myColorInt = color.getRGB();
String myColorName = color.getName();

}

Such issues do not arise with immutable objects

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 17 / 28

*

Mutable to Immutable

General guidelines:
Don’t provide ‘setter’ methods.
Make all fields final and private.
Don’t allow subclasses to override methods or provide ‘setter’
methods.

declare the class as final.
make constructor final and provide a factory method.

If the instance fields include references to mutable objects, don’t
allow those objects to be changed:

Don’t provide methods that modify the mutable objects.
Don’t share references to the mutable objects. Copy and share if
required.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 18 / 28

*

Mutable to Immutable (Example)

final public class ImmutableRGB {
final private int red; // between 0 - 255.
final private int green; // between 0 - 255.
final private int blue; // between 0 - 255.
final private String name;

public /*synchronized*/ int getRGB() {
return ((red << 16) | (green << 8) | blue); }

public /*synchronized*/ String getName()
{ return name; }

public /*synchronized*/ ImmutableRGB invert() {
return new ImmutableRGB(255 - red,

255 - green, 255 - blue,
"Inverse of " + name);

} }

No synchronized methods required!
V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 19 / 28

*

Deadlocks in Locks

public class Deadlock {
class Friend {
private final String name;
public Friend(String name){this.name = name; }
public String getName() {return this.name; }
public synchronized void bow(Friend bower) {
System.out.format("%s: %s" +" has bowed to me!",

this.name, bower.getName());
bower.bowBack(this); }
public synchronized void bowBack(Friend bower) {
System.out.format("%s:%s"+" has bowed back!",
this.name, bower.getName()); } }

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 20 / 28

*

Deadlocks in Locks (contd)

public static void main(String[] args) {
final Friend alpha = new Friend("Alpha");
final Friend beta = new Friend("Beta");
new Thread(new Runnable() {

public void run() { alpha.bow(beta); }
}).start();
new Thread(new Runnable() {

public void run() { beta.bow(alpha); }
}).start();

} }

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 21 / 28

*

Avoid deadlocks in Locks

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Random;

public class Safelock {
static class Friend {

private final String name;
private final Lock lock = new ReentrantLock();

public Friend(String name) { this.name=name;}

public String getName() { return this.name;}

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 22 / 28

*

Avoid deadlocks in Locks (cont.)

public boolean impendingBow(Friend bower) {
Boolean myLock = false;
Boolean yourLock = false;
try {

myLock = lock.tryLock();
yourLock = bower.lock.tryLock();

} finally {
if (! (myLock && yourLock)) {

if (myLock) {
lock.unlock();

}
if (yourLock) {

bower.lock.unlock();
} } }

return myLock && yourLock;
}

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 23 / 28

*

Avoid deadlocks in Locks (cont.)

public void bow(Friend bower) {
if (impendingBow(bower)) {

try {
System.out.format("%s: %s has"

+ " bowed to me!",
this.name, bower.getName());

bower.bowBack(this);
} finally {

lock.unlock();
bower.lock.unlock(); }

} else {
System.out.format("%s: %s started"

+ " to bow to me, but saw that"
+ " I was already bowing to him.",
this.name, bower.getName());

} }

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 24 / 28

*

Avoid deadlocks in Locks (cont.)

public void bowBack(Friend bower) {
System.out.format("%s: %s has" +

" bowed back to me!%n",
this.name, bower.getName());

}
}

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 25 / 28

*

Avoid deadlocks in Locks (cont.)

class BowLoop implements Runnable {
private Friend bower;
private Friend bowee;

public BowLoop(Friend bower, Friend bowee) {
this.bower = bower; this.bowee = bowee;}

public void run() {
Random random = new Random();
for (;;) {

try {
Thread.sleep(random.nextInt(10));

} catch (InterruptedException e) {}
bowee.bow(bower);

} } }

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 26 / 28

*

Avoid deadlocks in Locks (cont.)

public static void main(String[] args) {
final Friend alpha = new Friend("Alpha");
final Friend beta = new Friend("Beta");
new Thread(new BowLoop(alpha, beta)).start();
new Thread(new BowLoop(beta, alpha)).start();

}
}

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 27 / 28

*

Not covered

Executors.
Threadpools
Fork/Join framework
Concurrent Collections.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 28 / 28

*

References

Java online resources
Oracle man pages.

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 29 / 28

*

¡++¿

V.Krishna Nandivada (IIT Madras) CS6868 - Jan 2018 29 / 28

