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One-Sided Communication 

•  The basic idea of one-sided communication models is to 
decouple data movement with process synchronization 
♦  Should be able to move data without requiring that the remote 

process synchronize 
♦  Each process exposes a part of its memory to other processes 
♦  Other processes can directly read from or write to this memory 
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Comparing One-sided and 
Two-sided Programming 
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Advantages of RMA 
Operations 

•  Can do multiple data transfers with a single 
synchronization operation 
♦  like BSP model 

•  Bypass tag matching 
♦  effectively precomputed as part of remote offset 

•  Some irregular communication patterns can be 
more economically expressed 

•  Can be significantly faster than send/receive 
on systems with hardware support for remote 
memory access, such as shared memory 
systems 

5 
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Irregular Communication 
Patterns with RMA 

•  If communication pattern is not known a 
priori, but the data locations are known, 
the send-receive model requires an extra 
step to determine how many sends-
receives to issue 

•  RMA, however, can handle it easily 
because only the origin or target process 
needs to issue the put or get call 

•  This makes dynamic communication 
easier to code in RMA 
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What we need to know in 
MPI RMA 

• How to create remote accessible 
memory? 

• Reading, Writing and Updating 
remote memory 

• Data Synchronization 
• Memory Model 
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Creating Public Memory 

•  Any memory created by a process is, by default, 
only locally accessible 
♦  X = malloc(100); 

•  Once the memory is created, the user has to make 
an explicit MPI call to declare a memory region as 
remotely accessible 
♦  MPI terminology for remotely accessible memory is a 

“window” 
♦  A group of processes collectively create a “window object” 

•  Once a memory region is declared as remotely 
accessible, all processes in the window object can 
read/write data to this memory without explicitly 
synchronizing with the target process 
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Remote Memory Access 
Windows and Window Objects 
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Basic RMA Functions for 
Communication  

•  MPI_Win_create exposes local memory to RMA operation 
by other processes in a communicator 
♦  Collective operation  
♦  Creates window object 

•  MPI_Win_free deallocates window object 

•  MPI_Put moves data from local memory to remote 
memory 

•  MPI_Get retrieves data from remote memory into local 
memory 

•  MPI_Accumulate updates remote memory using local 
values 

•  Data movement operations are non-blocking 
•  Subsequent synchronization on window object 

needed to ensure operation is complete 
10 
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Window Creation Models 

•  Four models exist 
♦ MPI_WIN_CREATE 

•  You already have an allocated buffer that you 
would like to make remotely accessible 

♦ MPI_WIN_ALLOCATE 
•  You want to create a buffer and directly make it 

remotely accessible 
♦ MPI_WIN_CREATE_DYNAMIC 

•  You don’t have a buffer yet, but will have one in 
the future 

♦ MPI_WIN_ALLOCATE_SHARED 
•  You want multiple processes on the same node 

share a buffer 
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MPI_WIN_CREATE 

•  Expose a region of memory in an RMA window 
♦  Only data exposed in a window can be accessed with RMA 

ops. 
•  Arguments: 

♦  base  - pointer to local data to expose 
♦  size  - size of local data in bytes (nonnegative integer) 
♦  disp_unit - local unit size for displacements, in bytes 

(positive integer) 
♦  info  - info argument (handle) 
♦  comm  - communicator (handle) 
♦  win  – window object (handle) 

int MPI_Win_create(void *base, MPI_Aint size, !
" "int disp_unit, MPI_Info info, !
" "MPI_Comm comm, MPI_Win *win) !
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Example with MPI_WIN_CREATE 
int main(int argc, char ** argv) 
{ 
    int *a;    MPI_Win win; 
 
    MPI_Init(&argc, &argv); 
 
    /* create private memory */ 
    MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a); 
    /* use private memory like you normally would */ 
    a[0] = 1;  a[1] = 2; 
 
    /* collectively declare memory as remotely accessible */ 
    MPI_Win_create(a, 1000*sizeof(int), sizeof(int),  
    MPI_INFO_NULL, MPI_COMM_WORLD, &win); 

 
  /* Array ‘a’ is now accessibly by all processes in 

     * MPI_COMM_WORLD */ 
 
  MPI_Win_free(&win); 

    MPI_Free_mem(a); 
  MPI_Finalize(); return 0; 

} 
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MPI_WIN_ALLOCATE 

•  Create a remotely accessible memory region in an RMA 
window 
♦  Only data exposed in a window can be accessed with RMA ops. 

•  Arguments: 
♦  size  - size of local data in bytes (nonnegative integer) 
♦  disp_unit- local unit size for displacements, in bytes (positive 

integer) 
♦  info  - info argument (handle) 
♦  comm  - communicator (handle) 
♦  baseptr  - pointer to exposed local data 
♦  win  – window object (handle) 

int MPI_Win_allocate(MPI_Aint size, int disp_unit, !
" "MPI_Info info, !
" "MPI_Comm comm, void *baseptr, MPI_Win *win) !
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Example with 
MPI_WIN_ALLOCATE 

int main(int argc, char ** argv) 
{ 
    int *a;    MPI_Win win; 
 
    MPI_Init(&argc, &argv); 
 
    /* collectively create remote accessible memory in a window */ 
    MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL, 
                     MPI_COMM_WORLD, &a, &win); 
 
  /* Array ‘a’ is now accessible from all processes in 

     * MPI_COMM_WORLD */ 
 
    MPI_Win_free(&win); 
 
      MPI_Finalize(); return 0; 
} 
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MPI_WIN_CREATE_DYNAMIC 

•  Create an RMA window, to which data can later be 
attached 
♦  Only data exposed in a window can be accessed with RMA ops 

•  Initially “empty” 
♦  Application can dynamically attach/detach memory to this 

window by calling MPI_Win_attach/detach 
♦  Application can access data on this window only after a 

memory region has been attached 
•  Window origin is MPI_BOTTOM 

♦  Displacements are segment addresses relative to 
MPI_BOTTOM 

♦  Must tell others the displacement after calling attach 

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, !
" " " " " " " "MPI_Win *win) !
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Example with MPI_WIN_CREATE_DYNAMIC 
int main(int argc, char ** argv) 
{ 
    int *a;    MPI_Win win; 
 
    MPI_Init(&argc, &argv); 
    MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win); 
 
    /* create private memory */ 
    a = (int *) malloc(1000 * sizeof(int)); 
    /* use private memory like you normally would */ 
    a[0] = 1;  a[1] = 2; 
 
    /* locally declare memory as remotely accessible */ 
    MPI_Win_attach(win, a, 1000*sizeof(int)); 
 
  /* Array ‘a’ is now accessible from all processes */ 

 
    /* undeclare remotely accessible memory */ 
    MPI_Win_detach(win, a);  free(a); 
    MPI_Win_free(&win); 
 
    MPI_Finalize(); return 0; 
} 
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Data movement 

• MPI provides ability to read, write 
and atomically modify data in 
remotely accessible memory 
regions 
♦ MPI_GET 
♦ MPI_PUT 
♦ MPI_ACCUMULATE 
♦ MPI_GET_ACCUMULATE 
♦ MPI_COMPARE_AND_SWAP 
♦ MPI_FETCH_AND_OP 
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Data movement: Put 

• Move data from origin, to target 
• Separate data description triples for 

origin and target 

Origin 

MPI_Put(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_dtype, MPI_Win win) 

Target 
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Data movement: Get 

• Move data to origin, from target 

MPI_Get(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_dtype, MPI_Win win) 
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Atomic Data Aggregation: Accumulate 

•  Element-wise atomic update operation, similar to a put 
♦  Reduces origin and target data into target buffer using op 

argument as combiner 
♦  Predefined ops only, no user-defined operations 

•  Different data layouts 
between target/origin OK 
♦  Basic type elements  

must match 

•  Op = MPI_REPLACE 
♦  Implements f(a,b)=b 
♦  Element-wise atomic PUT 

MPI_Accumulate(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, int target_rank, 
 MPI_Aint target_disp, int target_count, 
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win) 

+=#
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Atomic Data Aggregation: Get Accumulate 

•  Element-wise atomic read-modify-write 
♦  Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE, 

MPI_NO_OP, … 
♦  Predefined ops only 

•  Result stored in target buffer 
•  Original data stored in result buf 
•  Different data layouts between 

target/origin OK 
♦  Basic type elements must match 

•  Element-wise atomic get with  
MPI_NO_OP 

•  Element-wise atomic swap with MPI_REPLACE 

MPI_Get_accumulate(void *origin_addr, int origin_count, 
 MPI_Datatype origin_dtype, void *result_addr, 
 int result_count, MPI_Datatype result_dtype, 
 int target_rank, MPI_Aint target_disp, 
 int target_count, MPI_Datatype target_dype, 
 MPI_Op op, MPI_Win win) 

+=#

Origin Target 
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Atomic Data Aggregation: CAS and FOP 

•  FOP: Simpler version of MPI_Get_accumulate 
♦  All buffers share a single predefined datatype 
♦  No count argument (it’s always 1) 
♦  Simpler interface allows hardware optimization 

•  CAS: Atomic swap if target value is equal to 
compare value 

MPI_Compare_and_swap(void *origin_addr, void *compare_addr, 
 void *result_addr, MPI_Datatype dtype, int target_rank, 
 MPI_Aint target_disp, MPI_Win win) 

MPI_Fetch_and_op(void *origin_addr, void *result_addr, 
 MPI_Datatype dtype, int target_rank, 
 MPI_Aint target_disp, MPI_Op op, MPI_Win win) 
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Ordering of Operations in 
MPI RMA 

•  No guaranteed ordering for Put/Get operations 
•  Result of concurrent Puts to the same location 

undefined 
•  Result of Get concurrent Put/Accumulate undefined 

♦  Can be garbage in both cases 
•  Result of concurrent accumulate operations to the 

same location are defined according to the order in 
which the occurred 
♦  Atomic put: Accumulate with op = MPI_REPLACE 
♦  Atomic get: Get_accumulate with op = MPI_NO_OP 

•  Accumulate operations from a given process are 
ordered by default 
♦  User can tell the MPI implementation that ordering is not 

required as optimization hint 
♦  You can ask for only the needed orderings, e.g., RAW 

(read-after-write), WAR, RAR, or WAW 
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RMA Synchronization Models 
•  RMA data access model 

♦  When is a process allowed to read/write remotely accessible 
memory? 

♦  When is data written by process X is available for process Y to read? 
♦  RMA synchronization models define these semantics 

•  Three synchronization models provided by MPI: 
♦  Fence (active target) 
♦  Post-start-complete-wait (generalized active target) 
♦  Lock/Unlock (passive target) 

•  Data accesses occur within “epochs” 
♦  Access epochs: contain a set of operations issued by an origin 

process 
♦  Exposure epochs: enable remote processes to access and/or update 

a target’s window 
♦  Epochs define ordering and completion semantics 
♦  Synchronization models provide mechanisms for establishing epochs 

•  E.g., starting, ending, and synchronizing epochs 



V. Krishna Nandivada
Active target: - data moved from one proc to other. Both participate.
                         - Similar to message passing, but the target node only 
                            participates in synchronization.
                         - target window is accessed only within exposure epoch.

Passive target: - Only the origin process participates.
                           - target process does not participate explictly.
                           - no concept of exposure epoch.

V. Krishna Nandivada
Active and Passive targets
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Fence: Active Target 
Synchronization 

•  Collective synchronization 
model 

•  Starts and ends access and 
exposure epochs on all 
processes in the window 

•  All processes in group of “win” 
do an MPI_WIN_FENCE to open 
an epoch 

•  Everyone can issue PUT/GET 
operations to read/write data 

•  Everyone does an 
MPI_WIN_FENCE to close the 
epoch 

•  All operations complete at the 
second fence synchronization 

Fence 

Fence 

MPI_Win_fence(int assert, MPI_Win win) 

P0 P1 P2 
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PSCW: Generalized Active 
Target Synchronization 

•  Like FENCE, but origin and target 
specify who they communicate 
with 

•  Target: Exposure epoch 
♦  Opened with MPI_Win_post 
♦  Closed by MPI_Win_wait 

•  Origin: Access epoch 
♦  Opened by MPI_Win_start 
♦  Closed by MPI_Win_complete 

•  All synchronization operations may 
block, to enforce P-S/C-W ordering 
♦  Processes can be both origins and 

targets 

Start 

Complete 

Post 

Wait 

Target Origin 

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win) 
MPI_Win_complete/wait(MPI_Win win) 



V. Krishna Nandivada
The synchronization between post and start ensures 
                                    - the put call of the origin process does not start until 
                                      the target process exposes the window (with the post call); 

The target process will expose the window 
                                    - only after preceding local accesses to the window have
                                    completed. 

The synchronization between complete and wait ensures that 
                                     - the put call of the origin process completes before 
                                       the window is unexposed (with the wait call). 

The target process will execute following local accesses to the target window 
                                       only after the wait returned. 

V. Krishna Nandivada
Post/Start — Complete/Wait
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Using Active Target 
Synchronization 

•  Active target RMA works well for many BSP-
style program 
♦  Halo exchange 
♦  Dense linear algebra 

•  How might you write the dense matrix-vector 
multiply using 
♦  MPI_Get: Instead of Allgather 
♦  MPI_Put: Instead of send/receive 

•  Do you think using Get instead of Allgather is 
a good choice at scale?  Why or why not?  How 
would use use a performance model to argue 
your choice? 



V. Krishna Nandivada
Passive synchronization

V. Krishna Nandivada
o- Using MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
                           - lock_type: MPI_LOCK_EXCLUSIVE or MPI_LOCK_SHARED
                           - rank: of the target (??)
                           - assert - keep it to 0.

                           - Starts  an  RMA access epoch.

o- MPI_Win_unlock (int rank, MPI_Win win)
                           - completes  an  RMA  access epoch started by a call to
                              MPI_Win_lock.
	                            



V. Krishna Nandivada
while(!converged(A)){ 
  update(A); 
  MPI_Win_fence(0, win); 
  for(i=0; i < toneighbors; i++) 
    MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i], 
                         todisp[i], 1, totype[i], win); 
  MPI_Win_fence(0, win); 
  } 



V. Krishna Nandivada
while(!converged(A)){ 
  update(A); 
  MPI_Win_post(fromgroup, 0, win); 
  MPI_Win_start(togroup, 0, win); // may wait for post
  for(i=0; i < toneighbors; i++) 
    MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i], 
                         todisp[i], 1, totype[i], win); 
  MPI_Win_complete(win); 
  MPI_Win_wait(win);  // blocks for complete.
  } 





V. Krishna Nandivada
o- Semantics of RMA communication. 
                   - Public view and private view.


o- Do not access local locations during update.

V. Krishna Nandivada
Etc.
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Resources

V. Krishna Nandivada
http://mpi-forum.org/docs/mpi-2.0


