
Lecture 34: One-sided
Communication in MPI

William Gropp
www.cs.illinois.edu/~wgropp

2

Thanks to

• This material based on the SC14
Tutorial presented by
♦ Pavan Balaji
♦ William Gropp
♦ Torsten Hoefler
♦ Rajeev Thakur

3

One-Sided Communication

•  The basic idea of one-sided communication models is to
decouple data movement with process synchronization
♦  Should be able to move data without requiring that the remote

process synchronize
♦  Each process exposes a part of its memory to other processes
♦  Other processes can directly read from or write to this memory

Process 1 Process 2 Process 3

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Process 0

Private
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Public
Memory
Region

Global
Address
Space

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

Private
Memory
Region

4

Comparing One-sided and
Two-sided Programming

Process 0 Process 1

SEND(data)

RECV(data)

D
E
L
A
Y

Even the
sending
process

is
delayed

Process 0 Process 1

PUT(data) D
E
L
A
Y

Delay in
process 1
does not

affect
process 0

GET(data)

5

Advantages of RMA
Operations

•  Can do multiple data transfers with a single
synchronization operation
♦  like BSP model

•  Bypass tag matching
♦  effectively precomputed as part of remote offset

•  Some irregular communication patterns can be
more economically expressed

•  Can be significantly faster than send/receive
on systems with hardware support for remote
memory access, such as shared memory
systems

5

6

Irregular Communication
Patterns with RMA

•  If communication pattern is not known a
priori, but the data locations are known,
the send-receive model requires an extra
step to determine how many sends-
receives to issue

•  RMA, however, can handle it easily
because only the origin or target process
needs to issue the put or get call

•  This makes dynamic communication
easier to code in RMA

7

What we need to know in
MPI RMA

• How to create remote accessible
memory?

• Reading, Writing and Updating
remote memory

• Data Synchronization
• Memory Model

8

Creating Public Memory

•  Any memory created by a process is, by default,
only locally accessible
♦  X = malloc(100);

•  Once the memory is created, the user has to make
an explicit MPI call to declare a memory region as
remotely accessible
♦  MPI terminology for remotely accessible memory is a

“window”
♦  A group of processes collectively create a “window object”

•  Once a memory region is declared as remotely
accessible, all processes in the window object can
read/write data to this memory without explicitly
synchronizing with the target process

9

Remote Memory Access
Windows and Window Objects

9

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

10

Basic RMA Functions for
Communication

•  MPI_Win_create exposes local memory to RMA operation
by other processes in a communicator
♦  Collective operation
♦  Creates window object

•  MPI_Win_free deallocates window object

•  MPI_Put moves data from local memory to remote
memory

•  MPI_Get retrieves data from remote memory into local
memory

•  MPI_Accumulate updates remote memory using local
values

•  Data movement operations are non-blocking
•  Subsequent synchronization on window object

needed to ensure operation is complete
10

11

Window Creation Models

•  Four models exist
♦ MPI_WIN_CREATE

•  You already have an allocated buffer that you
would like to make remotely accessible

♦ MPI_WIN_ALLOCATE
•  You want to create a buffer and directly make it

remotely accessible
♦ MPI_WIN_CREATE_DYNAMIC

•  You don’t have a buffer yet, but will have one in
the future

♦ MPI_WIN_ALLOCATE_SHARED
•  You want multiple processes on the same node

share a buffer

12

MPI_WIN_CREATE

•  Expose a region of memory in an RMA window
♦  Only data exposed in a window can be accessed with RMA

ops.
•  Arguments:

♦  base - pointer to local data to expose
♦  size - size of local data in bytes (nonnegative integer)
♦  disp_unit - local unit size for displacements, in bytes

(positive integer)
♦  info - info argument (handle)
♦  comm - communicator (handle)
♦  win – window object (handle)

int MPI_Win_create(void *base, MPI_Aint size, !
" "int disp_unit, MPI_Info info, !
" "MPI_Comm comm, MPI_Win *win) !

13

Example with MPI_WIN_CREATE
int main(int argc, char ** argv)
{
 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 /* create private memory */
 MPI_Alloc_mem(1000*sizeof(int), MPI_INFO_NULL, &a);
 /* use private memory like you normally would */
 a[0] = 1; a[1] = 2;

 /* collectively declare memory as remotely accessible */
 MPI_Win_create(a, 1000*sizeof(int), sizeof(int),
 MPI_INFO_NULL, MPI_COMM_WORLD, &win);

 /* Array ‘a’ is now accessibly by all processes in

 * MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Free_mem(a);
 MPI_Finalize(); return 0;

}

14

MPI_WIN_ALLOCATE

•  Create a remotely accessible memory region in an RMA
window
♦  Only data exposed in a window can be accessed with RMA ops.

•  Arguments:
♦  size - size of local data in bytes (nonnegative integer)
♦  disp_unit- local unit size for displacements, in bytes (positive

integer)
♦  info - info argument (handle)
♦  comm - communicator (handle)
♦  baseptr - pointer to exposed local data
♦  win – window object (handle)

int MPI_Win_allocate(MPI_Aint size, int disp_unit, !
" "MPI_Info info, !
" "MPI_Comm comm, void *baseptr, MPI_Win *win) !

15

Example with
MPI_WIN_ALLOCATE

int main(int argc, char ** argv)
{
 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);

 /* collectively create remote accessible memory in a window */
 MPI_Win_allocate(1000*sizeof(int), sizeof(int), MPI_INFO_NULL,
 MPI_COMM_WORLD, &a, &win);

 /* Array ‘a’ is now accessible from all processes in

 * MPI_COMM_WORLD */

 MPI_Win_free(&win);

 MPI_Finalize(); return 0;
}

16

MPI_WIN_CREATE_DYNAMIC

•  Create an RMA window, to which data can later be
attached
♦  Only data exposed in a window can be accessed with RMA ops

•  Initially “empty”
♦  Application can dynamically attach/detach memory to this

window by calling MPI_Win_attach/detach
♦  Application can access data on this window only after a

memory region has been attached
•  Window origin is MPI_BOTTOM

♦  Displacements are segment addresses relative to
MPI_BOTTOM

♦  Must tell others the displacement after calling attach

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, !
" " " " " " " "MPI_Win *win) !

17

Example with MPI_WIN_CREATE_DYNAMIC
int main(int argc, char ** argv)
{
 int *a; MPI_Win win;

 MPI_Init(&argc, &argv);
 MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &win);

 /* create private memory */
 a = (int *) malloc(1000 * sizeof(int));
 /* use private memory like you normally would */
 a[0] = 1; a[1] = 2;

 /* locally declare memory as remotely accessible */
 MPI_Win_attach(win, a, 1000*sizeof(int));

 /* Array ‘a’ is now accessible from all processes */

 /* undeclare remotely accessible memory */
 MPI_Win_detach(win, a); free(a);
 MPI_Win_free(&win);

 MPI_Finalize(); return 0;
}

18

Data movement

• MPI provides ability to read, write
and atomically modify data in
remotely accessible memory
regions
♦ MPI_GET
♦ MPI_PUT
♦ MPI_ACCUMULATE
♦ MPI_GET_ACCUMULATE
♦ MPI_COMPARE_AND_SWAP
♦ MPI_FETCH_AND_OP

19

Data movement: Put

• Move data from origin, to target
• Separate data description triples for

origin and target

Origin

MPI_Put(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Win win)

Target

Remotely
Accessible
Memory

Private
Memory

20

Data movement: Get

• Move data to origin, from target

MPI_Get(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Win win)

Origin Target

Remotely
Accessible
Memory

Private
Memory

21

Atomic Data Aggregation: Accumulate

•  Element-wise atomic update operation, similar to a put
♦  Reduces origin and target data into target buffer using op

argument as combiner
♦  Predefined ops only, no user-defined operations

•  Different data layouts
between target/origin OK
♦  Basic type elements

must match

•  Op = MPI_REPLACE
♦  Implements f(a,b)=b
♦  Element-wise atomic PUT

MPI_Accumulate(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, int target_rank,
 MPI_Aint target_disp, int target_count,
 MPI_Datatype target_dtype, MPI_Op op, MPI_Win win)

+=#

Origin Target

Remotely
Accessible
Memory

Private
Memory

22

Atomic Data Aggregation: Get Accumulate

•  Element-wise atomic read-modify-write
♦  Op = MPI_SUM, MPI_PROD, MPI_OR, MPI_REPLACE,

MPI_NO_OP, …
♦  Predefined ops only

•  Result stored in target buffer
•  Original data stored in result buf
•  Different data layouts between

target/origin OK
♦  Basic type elements must match

•  Element-wise atomic get with
MPI_NO_OP

•  Element-wise atomic swap with MPI_REPLACE

MPI_Get_accumulate(void *origin_addr, int origin_count,
 MPI_Datatype origin_dtype, void *result_addr,
 int result_count, MPI_Datatype result_dtype,
 int target_rank, MPI_Aint target_disp,
 int target_count, MPI_Datatype target_dype,
 MPI_Op op, MPI_Win win)

+=#

Origin Target

Remotely
Accessible
Memory

Private
Memory

23

Atomic Data Aggregation: CAS and FOP

•  FOP: Simpler version of MPI_Get_accumulate
♦  All buffers share a single predefined datatype
♦  No count argument (it’s always 1)
♦  Simpler interface allows hardware optimization

•  CAS: Atomic swap if target value is equal to
compare value

MPI_Compare_and_swap(void *origin_addr, void *compare_addr,
 void *result_addr, MPI_Datatype dtype, int target_rank,
 MPI_Aint target_disp, MPI_Win win)

MPI_Fetch_and_op(void *origin_addr, void *result_addr,
 MPI_Datatype dtype, int target_rank,
 MPI_Aint target_disp, MPI_Op op, MPI_Win win)

24

Ordering of Operations in
MPI RMA

•  No guaranteed ordering for Put/Get operations
•  Result of concurrent Puts to the same location

undefined
•  Result of Get concurrent Put/Accumulate undefined

♦  Can be garbage in both cases
•  Result of concurrent accumulate operations to the

same location are defined according to the order in
which the occurred
♦  Atomic put: Accumulate with op = MPI_REPLACE
♦  Atomic get: Get_accumulate with op = MPI_NO_OP

•  Accumulate operations from a given process are
ordered by default
♦  User can tell the MPI implementation that ordering is not

required as optimization hint
♦  You can ask for only the needed orderings, e.g., RAW

(read-after-write), WAR, RAR, or WAW

25

RMA Synchronization Models
•  RMA data access model

♦  When is a process allowed to read/write remotely accessible
memory?

♦  When is data written by process X is available for process Y to read?
♦  RMA synchronization models define these semantics

•  Three synchronization models provided by MPI:
♦  Fence (active target)
♦  Post-start-complete-wait (generalized active target)
♦  Lock/Unlock (passive target)

•  Data accesses occur within “epochs”
♦  Access epochs: contain a set of operations issued by an origin

process
♦  Exposure epochs: enable remote processes to access and/or update

a target’s window
♦  Epochs define ordering and completion semantics
♦  Synchronization models provide mechanisms for establishing epochs

•  E.g., starting, ending, and synchronizing epochs

V. Krishna Nandivada
Active target: - data moved from one proc to other. Both participate.
 - Similar to message passing, but the target node only
 participates in synchronization.
 - target window is accessed only within exposure epoch.

Passive target: - Only the origin process participates.
 - target process does not participate explictly.
 - no concept of exposure epoch.

V. Krishna Nandivada
Active and Passive targets

26

Fence: Active Target
Synchronization

•  Collective synchronization
model

•  Starts and ends access and
exposure epochs on all
processes in the window

•  All processes in group of “win”
do an MPI_WIN_FENCE to open
an epoch

•  Everyone can issue PUT/GET
operations to read/write data

•  Everyone does an
MPI_WIN_FENCE to close the
epoch

•  All operations complete at the
second fence synchronization

Fence

Fence

MPI_Win_fence(int assert, MPI_Win win)

P0 P1 P2

27

PSCW: Generalized Active
Target Synchronization

•  Like FENCE, but origin and target
specify who they communicate
with

•  Target: Exposure epoch
♦  Opened with MPI_Win_post
♦  Closed by MPI_Win_wait

•  Origin: Access epoch
♦  Opened by MPI_Win_start
♦  Closed by MPI_Win_complete

•  All synchronization operations may
block, to enforce P-S/C-W ordering
♦  Processes can be both origins and

targets

Start

Complete

Post

Wait

Target Origin

MPI_Win_post/start(MPI_Group grp, int assert, MPI_Win win)
MPI_Win_complete/wait(MPI_Win win)

V. Krishna Nandivada
The synchronization between post and start ensures
 - the put call of the origin process does not start until
 the target process exposes the window (with the post call);

The target process will expose the window
 - only after preceding local accesses to the window have
 completed.

The synchronization between complete and wait ensures that
 - the put call of the origin process completes before
 the window is unexposed (with the wait call).

The target process will execute following local accesses to the target window
 only after the wait returned.

V. Krishna Nandivada
Post/Start — Complete/Wait

28

Using Active Target
Synchronization

•  Active target RMA works well for many BSP-
style program
♦  Halo exchange
♦  Dense linear algebra

•  How might you write the dense matrix-vector
multiply using
♦  MPI_Get: Instead of Allgather
♦  MPI_Put: Instead of send/receive

•  Do you think using Get instead of Allgather is
a good choice at scale? Why or why not? How
would use use a performance model to argue
your choice?

V. Krishna Nandivada
Passive synchronization

V. Krishna Nandivada
o- Using MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)
 - lock_type: MPI_LOCK_EXCLUSIVE or MPI_LOCK_SHARED
 - rank: of the target (??)
 - assert - keep it to 0.

 - Starts an RMA access epoch.

o- MPI_Win_unlock (int rank, MPI_Win win)
 - completes an RMA access epoch started by a call to
 MPI_Win_lock.
	

V. Krishna Nandivada
while(!converged(A)){
 update(A);
 MPI_Win_fence(0, win);
 for(i=0; i < toneighbors; i++)
 MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
 todisp[i], 1, totype[i], win);
 MPI_Win_fence(0, win);
 }

V. Krishna Nandivada
while(!converged(A)){
 update(A);
 MPI_Win_post(fromgroup, 0, win);
 MPI_Win_start(togroup, 0, win); // may wait for post
 for(i=0; i < toneighbors; i++)
 MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],
 todisp[i], 1, totype[i], win);
 MPI_Win_complete(win);
 MPI_Win_wait(win); // blocks for complete.
 }

V. Krishna Nandivada
o- Semantics of RMA communication.
 - Public view and private view.

o- Do not access local locations during update.

V. Krishna Nandivada
Etc.

V. Krishna Nandivada
Resources

V. Krishna Nandivada
http://mpi-forum.org/docs/mpi-2.0

