
Parallel Computing and
OpenMP Tutorial

Shao-Ching Huang

IDRE High Performance Computing Workshop

2013-02-11

Overview

 Part I: Parallel Computing Basic Concepts

– Memory models

– Data parallelism

 Part II: OpenMP Tutorial

– Important features

– Examples & programming tips

2

Part I : Basic Concepts

Why Parallel Computing?

 Bigger data

– High-res simulation

– Single machine too small to hold/process all data

 Utilize all resources to solve one problem

– All new computers are parallel computers

– Multi-core phones, laptops, desktops

– Multi-node clusters, supercomputers

4

Memory models

Parallel computing is about data processing.

In practice, memory models determine how we write parallel
programs.

Two types:

 Shared memory model

 Distributed memory model

Shared Memory

All CPUs have access to the (shared) memory

(e.g. Your laptop/desktop computer)

6

Distributed Memory

Each CPU has its own (local) memory, invisible to other CPUs

7

High speed networking (e.g. Infiniband) for good performance

Hybrid Model

 Shared-memory style within a node

 Distributed-memory style across nodes

8

For example, this is one node of Hoffman2 cluster

Parallel Scalability

 Strong scaling

– fixed the global problem size

– local size decreases as N is increased

– ideal case: T*N=const (linear decay)

 Weak scaling

– fixed the local problem size (per processor)

– global size increases as N increases

– ideal case: T=const.

9

T(N) = wall clock run time
N = number of processors

T

N

ideal

Real code

T

N

ideal

Real code

Identify Data Parallelism – some typical examples

 “High-throughput” calculations

– Many independent jobs

 Mesh-based problems
– Structured or unstructured mesh

– Mesh viewed as a graph – partition the graph

– For structured mesh one can simply partition along coord. axes

 Particle-based problems

– Short-range interaction

• Group particles in cells – partition the cells

– Long-range interaction

• Parallel fast multipole method – partition the tree

10

Portal parallel programming – OpenMP example

 OpenMP

– Compiler support

– Works on ONE multi-core computer

Compile (with openmp support):

 $ ifort ­openmp foo.f90

Run with 8 “threads”:

 $ export OMP_NUM_THREADS=8

 $./a.out

Typically you will see CPU utilization over 100% (because the
program is utilizing multiple CPUs)

11

V. Krishna Nandivada
gcc -fopenmp hello.c

Portal parallel programming – MPI example

 Works on any computers

Compile with MPI compiler wrapper:

 $ mpicc foo.c

Run on 32 CPUs across 4 physical computers:

 $ mpirun ­n 32 ­machinefile mach ./foo

'mach' is a file listing the computers the program will run on, e.g.

 n25 slots=8

 n32 slots=8

 n48 slots=8

 n50 slots=8

The exact format of machine file may vary slightly in each MPI
implementation. More on this in MPI class...

12

Part II : OpenMP Tutorial

(thread programming)

14

What is OpenMP?

 API for shared-memory parallel programming

– compiler directives + functions

 Supported by mainstream compilers – portable code

– Fortran 77/9x/20xx

– C and C++

 Has a long history, standard defined by a consortium

– Version 1.0, released in 1997

– Version 2.5, released in 2005

– Version 3.0, released in 2008

– Version 3.1, released in 2011

 http://www.openmp.org

Elements of Shared-memory Programming

 Fork/join threads

 Synchronization
– barrier

– mutual exclusive (mutex)

 Assign/distribute work to threads
– work share

– task queue

 Run time control
– query/request available resources

– interaction with OS, compiler, etc.

16

OpenMP Execution Model

 We get speedup by running multiple threads simultaneously.

Source: wikipedia.org

saxpy operation (C)

18

 const int n = 10000;
 float x[n], y[n], a;
 int i;

 for (i=0; i<n; i++) {
 y[i] = a * x[i] + y[i];
 }

 const int n = 10000;
 float x[n], y[n], a;
 int i;

#pragma omp parallel for
 for (i=0; i<n; i++) {
 y[i] = a * x[i] + y[i];
 }

gcc saxpy.c gcc saxpy.c -fopenmp

Sequential code OpenMP code

Enable OpenMP support

saxpy operation (Fortran)

19

 integer, paramter :: n=10000
 real :: x(n), y(n), a
 Integer :: i

 do i=1,n
 y(i) = a*x(i) + y(i)
 end do

 integer, paramter :: n=10000
 real :: x(n), y(n), a
 integer :: i

!$omp parallel do
do i=1,n
 y(i) = a*x(i) + y(i)
 end do

gfortran saxpy.f90 gfortran saxpy.f90 -fopenmp

Sequential Code OpenMP code

Enable OpenMP support

Private vs. shared – threads' point of view

 Loop index “i” is private

– each thread maintains its own “i” value and range

– private variable “i” becomes undefined after “parallel for”

 Everything else is shared

– all threads update y, but at different memory locations

– a,n,x are read-only (ok to share)

 const int n = 10000;
 float x[n], y[n], a = 0.5;
 int i;
 #pragma omp parallel for
 for (i=0; i<n; i++) {
 y[i] = a * x[i] + y[i];
 }

 By default, only j (the outer loop) is private

 But we want both i and j to be private, i.e.

 Solution (overriding the OpenMP default):

21

#pragma omp parallel for
 for (j=0; j<n; j++) {
 for (i=0; i<n; i++) {
 //… do some work here
 } // i-loop
 } // j-loop

#pragma omp parallel for private(i)

!$omp parallel do
 do j=1,n
 do i=1,n
 !… do some work here
 end do
 end do

Nested loop – outer loop is parallelized

!$omp parallel do private(i)

 j is already private
by default

OpenMP General Syntax

 Header file

#include <omp.h>

 Parallel region:

 Environment variables and functions (discussed later)

23

#pragma omp construct_name [clauses…]
{
 // … do some work here

} // end of parallel region/block

 Clauses specifies the precise
“behavior” of the parallel region

!$omp construct_name [clauses…]
 !… do some work here

!$omp end construct_name

C/C++

Fortran

Parallel Region

 To fork a team of N threads, numbered 0,1,..,N-1

 Probably the most important construct in OpenMP

 Implicit barrier

24

//sequential code here (master thread)

#pragma omp parallel [clauses]
{
 // parallel computing here
 // …
}

// sequential code here (master thread)

!sequential code here (master thread)

!$omp parallel [clauses]
 ! parallel computing here
 ! …
!$omp end parallel

! sequential code here (master thread)

C/C++ Fortran

Clauses for Parallel Construct

 shared

 nowait

 if

 reduction

 copyin

25

#pragma omp parallel clauses, clauses, …

 private

 firstprivate

 num_threads

 default

!$omp parallel clauses, clauses, …

Some commonly-used clauses:

C/C++

Fortran

Clause “Private”

 The values of private data are undefined upon entry to and exit
from the specific construct

 To ensure the last value is accessible after the construct,
consider using “lastprivate”

 To pre-initialize private variables with values available prior to the
region, consider using “firstprivate”

 Loop iteration variable is private by default

26

Clause “Shared”

 Shared among the team of threads executing the region

 Each thread can read or modify shared variables

 Data corruption is possible when multiple threads attempt to
update the same memory location

– Data race condition

– Memory store operation not necessarily atomic

 Code correctness is user’s responsibility

27

nowait

 This is useful inside a big parallel region

 allows threads that finish earlier to proceed without waiting

– More flexibility for scheduling threads (i.e. less
synchronization – may improve performance)

28

#pragma omp for nowait

// for loop here

!$omp do
! do-loop here
!$omp end do nowait

C/C++ Fortran

In a big parallel region

#pragma omp for nowait
...

!$omp do
! … some other code

If clause

 if (integer expression)

– determine if the region should run in parallel

– useful option when data is too small (or too large)

 Example

29

#pragma omp parallel if (n>100)
{
 //…some stuff
}

!$omp parallel if (n>100)

 //…some stuff

!$omp end parallel

C/C++ Fortran

Work Sharing

 We have not yet discussed how work is distributed among
threads...

 Without specifying how to share work, all threads will redundantly
execute all the work (i.e. no speedup!)

 The choice of work-share method is important for performance

 OpenMP work-sharing constructs

– loop (“for” in C/C++; “do” in Fortran)

– sections

– single

33

Loop Construct (work sharing)

Clauses:

 private

 firstprivate

 lastprivate

 reduction

 ordered

 schedule

 nowait

34

#pragma omp parallel shared(n,a,b) private(i)
{ #pragma omp for
 for (i=0; i<n; i++)
 a[i]=i;
 #pragma omp for
 for (i=0; i<n; i++)

b[i] = 2 * a[i];
}

!$omp parallel shared(n,a,b) private(i)
!$omp do
 do i=1,n
 a(i)=i
 end do
!$omp end do
...

Parallel Loop (C/C++)

35

#pragma omp parallel
{
 // …
 #pragma omp for
 for (i=0; i<N; i++)
 {
 …
 }// end of for
}// end of parallel

#pragma omp parallel for
for (i=0; i<N; i++)
{
 …
}// end of for

Style 1Style 1 Style 2

Parallel Loop (Fortran)

36

$!omp parallel
{
 ! ...
 $!omp do
 do i=1,n
 ...
 end do
 $!omp end do
$!omp end parallel

$!omp parallel do
 do i=1,n
 ...
 end do
$!omp end parallel do

Style 1Style 1 Style 2

Loop Scheduling

Scheduling types:

– static: each thread is assigned a fixed-size chunk (default)

– dynamic: work is assigned as a thread request it

– guided: big chunks first and smaller and smaller chunks later

– runtime: use environment variable to control scheduling

37

#pragma omp parallel for
{
 for (i=0; i<1000; i++)
 { foo(i); }
}

How is the loop divided
into separate threads?

Static scheduling

Dynamic scheduling

Guided scheduling

Loop Schedule Example

41

#pragma omp parallel for schedule(dynamic,5) \
 shared(n) private(i,j)
 for (i=0; i<n; i++) {
 for (j=0; j<i; j++) {
 foo(i,j);
 } // j-loop
 } // i-loop
} // end of parallel for

“dynamic” is useful when the amount of work in
foo(i,j) depends on i and j.

Sections

One thread executes one section

– If “too many” sections, some
threads execute more than one
section (round-robin)

– If “too few” sections, some
threads are idle

– We don’t know in advance
which thread will execute which
section

42

#pragma omp sections
{
 #pragma omp section
 { foo(); }
 #pragma omp section
 { bar(); }
 #pragma omp section
 { beer(); }
} // end of sections

 Each section is executed exactly once

$!omp sections
 $!omp section
 call foo()
 $!omp end section
 $!omp section
 call bar
 $!omp end section
$!omp end sections

C/C++

Fortran

Single

A “single” block is executed by one thread

– Useful for initializing shared variables

– We don’t know exactly which thread will execute the block

– Only one thread executes the “single” region; others bypass it.

43

#pragma omp single
{
 a = 10;
}
#pragma omp for
{ for (i=0; i<N; i++)
 b[i] = a;
}

$!omp single
 a = 10;
$!omp end single

$!omp parallel do
 do i=1,n
 b(i) = a
 end do
$!omp end parallel do

C/C++ Fortran

Computing the Sum

 We want to compute the sum of a[0] and a[N-1]:

 A “naive” OpenMP implementation (incorrect):

44

sum = 0;
for (i=0; i<N; i++)
 sum += a[i];

sum = 0;
#pragma omp parallel for
for (i=0; i<N; i++)
 sum += a[i];

sum = 0;
do i=1,n
 sum = sum + a(i)
end do

sum = 0;
$!omp parallel do

do i=1,n
 sum = sum + a(i)

end do
$!omp end parallel do

Race condition!

C/C++ Fortran

C/C++ Fortran

Critical

 One thread at a time

– ALL threads will execute the region eventually

– Note the difference between “single” and “critical”

 Mutual exclusive

45

#pragma omp critical
{
 //...some stuff
 }

$!omp critical
 !...some stuff
$!omp end critical

C/C++ Fortran

Computing the sum

46

sum = 0;
#pragma omp parallel shared(n,a,sum) private(sum_local)
 {
 sum_local = 0;
 #pragma omp for
 for (i=0; i<n; i++)
 sum_local += a[i]; // form per-thread local sum

 #pragma omp critical
 {
 sum += sum_local; // form global sum
 }
 }

The correct OpenMP-way:

Reduction operation

47

sum = 0;
#pragma omp parallel \
shared(...) private(...)
 {
 sum_local = 0;
 #pragma omp for
 for (i=0; i<n; i++)
 sum_local += a[i];
 #pragma omp critical
 {
 sum += sum_local;
 }
 }

sum = 0;
#pragma omp parallel for \

shared(...) private(...) \
reduction(+:sum)

 {
 for (i=0; i<n; i++)
 sum += a[i];
}

sum example from previous slide: A cleaner solution:

Reduction operations of +,*,-,&
|, ^, &&, || are supported.

Barrier

48

int x = 2;
#pragma omp parallel shared(x)
 {
 int tid = omp_get_thread_num();
 if (tid == 0)
 x = 5;
 else
 printf("[1] thread %2d: x = %d\n",tid,x);

 #pragma omp barrier

 printf("[2] thread %2d: x = %d\n",tid,x);
 }

some threads may
still have x=2 here

all threads have x=5
here

cache flush + thread
synchronization

Resource Query Functions

 Max number of threads

omp_get_max_threads()

 Number of processors

omp_get_num_procs()

 Number of threads (inside a parallel region)

omp_get_num_threads()

 Get thread ID

omp_get_thread_num()

 See OpenMP specification for more functions.

49

50

#include <omp.h>
int main()
{
 float *array = new float[10000];
 foo(array,10000);
}

void bar(float *x, int istart, int ipts)
{
 for (int i=0; i<ipts; i++)
 x[istart+i] = 3.14159;
}

void foo(float *x, int npts)
{
 int tid,ntids,ipts,istart;
#pragma omp parallel private(tid,ntids,ipts,istart)
 {
 tid = omp_get_thread_num(); // thread ID
 ntids = omp_get_num_threads(); // total number of threads
 ipts = npts / ntids;
 istart = tid * ipts;
 if (tid == ntids-1) ipts = npts - istart;
 bar(x,istart,ipts); // each thread calls bar
 }
}

Query function example:

Control the Number of Threads

 Parallel region

#pragma omp parallel num_threads(integer)

 Run-time function

omp_set_num_threads()

 Environment variable

export OMP_NUM_THREADS=n

51

higher priority

 High-priority ones override low-priority ones.

Which OpenMP version do I have?

52

GNU compiler on my desktop:
$ g++ --version
g++ (Ubuntu/Linaro 4.4.4-14ubuntu5) 4.4.5

$ g++ version.cpp –fopenmp
$ a.out
version : 200805

Intel compiler on Hoffman2:
$ icpc --version
icpc (ICC) 11.1 20090630

$ icpc version.cpp -openmp
$ a.out
version : 200805

#include <iostream>
using namespace std;
int main()
{
 cout << "version : " << _OPENMP << endl;
}

Version Date

3.0 May 2008

2.5 May 2005

2.0 March 2002http://openmp.org

OpenMP Environment Variables

 OMP_SCHEDULE

– Loop scheduling policy

 OMP_NUM_THREADS

– number of threads

 OMP_STACKSIZE

 See OpenMP specification for many others.

53

Parallel Region in Subroutines

 Main program is “sequential”

 subroutines/functions are parallelized

54

int main()
{
 foo();
}

void foo()
{
 #pragma omp parallel
 {
 // some fancy stuff here
 }
}

Parallel Region in “main” Program

 Main program is “sequential”

 subroutines/functions are parallelized

55

void foo(int i)
{
 // sequential code
}

void main()
{
 #pragma omp parallel
 {

i = some_index;
 foo(i);
 }
}

Nested Parallel Regions

 Need available hardware resources (e.g. CPUs) to gain
performance

56

void main()
{
 #pragma omp parallel
 {

i = some_index;
 foo(i);
 }
}

void foo()
{
 #pragma omp parallel
 {
 // some fancy stuff here
 }
}

Each thread from main fork a team of threads.

Conditional Compilation

Check _OPENMP to see if OpenMP is supported by the compiler

57

#include <omp.h>
#include <iostream>
using namespace std;
int main()
{
#ifdef _OPENMP
 cout << "Have OpenMP support\n";
#else
 cout << "No OpenMP support\n";
#endif
 return 0;
}

$ g++ check_openmp.cpp -fopenmp
$ a.out
Have OpenMP support

$ g++ check_openmp.cpp
$ a.out
No OpenMP support

Single Source Code

 Use _OPENMP to separate sequential and parallel code within
the same source file

 Redefine runtime library functions to avoid linking errors

58

#ifdef _OPENMP
 #include <omp.h>
#else
 #define omp_get_max_threads() 1
 #define omp_get_thread_num() 0
#endif

To simulate a single-thread run

Good Things about OpenMP

 Simplicity

– In many cases, “the right way” to do it is clean and simple

 Incremental parallelization possible

– Can incrementally parallelize a sequential code, one block at
a time

– Great for debugging & validation

 Leave thread management to the compiler

 It is directly supported by the compiler

– No need to install additional libraries (unlike MPI)

59

Other things about OpenMP

 Data race condition can be hard to detect/debug

– The code may run correctly with a small number of threads!

– True for all thread programming, not only OpenMP

– Some tools may help

 It may take some work to get parallel performance right

– In some cases, the performance is limited by memory
bandwidth (i.e. a hardware issue)

60

Other types of parallel programming

 MPI

– works on both shared- and distributed memory systems

– relatively low level (i.e. lots of details)

– in the form of a library

 PGAS languages

– Partitioned Global Address Space

– native compiler support for parallelization

– UPC, Co-array Fortran and several others

61

Summary

 Identify compute-intensive, data parallel parts of your code

 Use OpenMP constructs to parallelize your code

– Spawn threads (parallel regions)

– In parallel regions, distinguish shared variables from the
private ones

– Assign work to individual threads

• loop, schedule, etc.

– Watch out variable initialization before/after parallel region

– Single thread required? (single/critical)

 Experiment and improve performance

62

Thank you.

63

	Parallel Computing and OpenMP Tutorial
	Overview
	Slide 3
	Why Parallel Computing?
	Slide 5
	Shared Memory
	Distributed Memory
	Hybrid Model
	Parallel Scalability
	Elements of Thread Programming
	Slide 11
	Slide 12
	OpenMP Tutorial (for programming multiple threads)
	What is OpenMP?
	Slide 16
	Fork/join Example
	saxpy operation
	Slide 19
	Slide 20
	Nested Loop
	OpenMP Basic Syntax
	Parallel Region
	Clauses for Parallel construct
	Private Clause
	Shared Clause
	nowait
	If clause
	Work Sharing
	Loop Construct (work sharing)
	Parallel Loop
	Slide 36
	Loop Scheduling
	Slide 38
	Slide 39
	Slide 40
	Loop Schedule Example
	Sections
	Single
	Computing the sum
	Critical
	Slide 46
	Reduction
	Barrier
	Resource Query Functions
	Slide 50
	Control the Number of Threads
	Which OpenMP version does my compiler support?
	Environment Variables
	Parallel Region in Subroutines
	Parallel Region in Main Program
	Nested Parallel Regions
	Conditional Compilation
	Single Source Code
	Good Things about OpenMP
	Not-so-good Things about OpenMP
	Slide 61
	Summary
	Thank you.

