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Overview

 Part I: Parallel Computing Basic Concepts

– Memory models

– Data parallelism

 Part II: OpenMP Tutorial

– Important features

– Examples & programming tips
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Part I : Basic Concepts



Why Parallel Computing?

 Bigger data

– High-res simulation

– Single machine too small to hold/process all data

 Utilize all resources to solve one problem

– All new computers are parallel computers

– Multi-core phones, laptops, desktops

– Multi-node clusters, supercomputers
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Memory models

Parallel computing is about data processing.

In practice, memory models determine how we write parallel 
programs.

Two types:

 Shared memory model

 Distributed memory model



Shared Memory

All CPUs have access to the (shared) memory

(e.g. Your laptop/desktop computer)
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Distributed Memory

Each CPU has its own (local) memory, invisible to other CPUs
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High speed networking (e.g. Infiniband) for good performance



Hybrid Model

 Shared-memory style within a node

 Distributed-memory style across nodes
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For example, this is one node of Hoffman2 cluster



Parallel Scalability

 Strong scaling

– fixed the global problem size

– local size decreases as N is increased

– ideal case: T*N=const (linear decay)

 Weak scaling

– fixed the local problem size (per processor)

– global size increases as N increases

– ideal case: T=const.
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T(N) = wall clock run time
N = number of processors

T

N

ideal

Real code

T

N

ideal

Real code



Identify Data Parallelism – some typical examples

 “High-throughput” calculations

– Many independent jobs

 Mesh-based problems
– Structured or unstructured mesh

– Mesh viewed as a graph – partition the graph

– For structured mesh one can simply partition along coord. axes

 Particle-based problems

– Short-range interaction

• Group particles in cells – partition the cells

– Long-range interaction

• Parallel fast multipole method – partition the tree
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Portal parallel programming – OpenMP example

 OpenMP

– Compiler support

– Works on ONE multi-core computer

Compile (with openmp support):

  $ ifort ­openmp foo.f90 

Run with 8 “threads”:

  $ export OMP_NUM_THREADS=8

  $ ./a.out

Typically you will see CPU utilization over 100% (because the 
program is utilizing multiple CPUs)
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V. Krishna Nandivada
gcc -fopenmp hello.c



Portal parallel programming – MPI example

 Works on any computers

Compile with MPI compiler wrapper:

  $ mpicc foo.c 

Run on 32 CPUs across 4 physical computers:

  $ mpirun ­n 32 ­machinefile mach ./foo

'mach' is a file listing the computers the program will run on, e.g.

  n25 slots=8

  n32 slots=8

  n48 slots=8

  n50 slots=8

The exact format of machine file may vary slightly in each MPI 
implementation. More on this in MPI class...
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Part II : OpenMP Tutorial

(thread programming)
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What is OpenMP?

 API for shared-memory parallel programming

– compiler directives + functions

 Supported by mainstream compilers – portable code

– Fortran 77/9x/20xx

– C and C++

 Has a long history, standard defined by a consortium 

– Version 1.0, released in 1997

– Version 2.5, released in 2005

– Version 3.0, released in 2008

– Version 3.1, released in 2011 

 http://www.openmp.org



Elements of Shared-memory Programming

 Fork/join threads

 Synchronization
– barrier

– mutual exclusive (mutex)

 Assign/distribute work to threads
– work share

– task queue

 Run time control
– query/request available resources

– interaction with OS, compiler, etc.
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OpenMP Execution Model

  We get speedup by running multiple threads simultaneously.

Source: wikipedia.org



saxpy operation (C)
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 const int n = 10000;
 float x[n], y[n], a;
 int i;

 for (i=0; i<n; i++) {
    y[i] = a * x[i] + y[i];
 }

 const int n = 10000;
 float x[n], y[n], a;
 int i;
 
#pragma omp parallel for
 for (i=0; i<n; i++) {
    y[i] = a * x[i] + y[i];
 }

gcc saxpy.c gcc saxpy.c -fopenmp

Sequential code OpenMP code

Enable OpenMP support



saxpy operation (Fortran)
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 integer, paramter :: n=10000
 real :: x(n), y(n), a
 Integer :: i

 do i=1,n
    y(i) = a*x(i) + y(i)
 end do

 integer, paramter :: n=10000
 real :: x(n), y(n), a
 integer :: i

!$omp parallel do 
do i=1,n
    y(i) = a*x(i) + y(i)
 end do

gfortran saxpy.f90 gfortran saxpy.f90 -fopenmp

Sequential Code OpenMP code

Enable OpenMP support



Private vs. shared – threads' point of view

 Loop index “i” is private

– each thread maintains its own “i” value and range

– private variable “i” becomes undefined after “parallel for”

 Everything else is shared

– all threads update y, but at different memory locations

– a,n,x are read-only (ok to share) 

 const int n = 10000;
 float x[n], y[n], a = 0.5;
 int i;
 #pragma omp parallel for
 for (i=0; i<n; i++) {
    y[i] = a * x[i] + y[i];
 }



 By default, only j (the outer loop) is private

 But we want both i and j to be private, i.e.

 Solution (overriding the OpenMP default):
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#pragma omp parallel for
  for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
         //… do some work here
    } // i-loop
  } // j-loop

#pragma omp parallel for private(i)

!$omp parallel do
  do j=1,n
   do i=1,n
        !… do some work here
    end do
  end do

Nested loop – outer loop is parallelized

!$omp parallel do private(i)

 j is already private 
by default



OpenMP General Syntax

 Header file

#include <omp.h>

 Parallel region:

 Environment variables and functions (discussed later)
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#pragma omp construct_name [clauses…]
{
    // … do some work here

} // end of parallel region/block

 Clauses specifies the precise
“behavior” of the parallel region

!$omp construct_name [clauses…]
    !… do some work here

!$omp end construct_name 

C/C++

Fortran



Parallel Region

 To fork a team of N threads, numbered 0,1,..,N-1

 Probably the most important construct in OpenMP

 Implicit barrier

24

//sequential code here (master thread)

#pragma omp parallel [clauses]
{
    // parallel computing here
    // …
}

// sequential code here (master thread)

!sequential code here (master thread)

!$omp parallel [clauses]
    ! parallel computing here
    ! …
!$omp end parallel

! sequential code here (master thread)

C/C++ Fortran



Clauses for Parallel Construct

 shared

 nowait

 if

 reduction

 copyin
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#pragma omp parallel clauses, clauses, …

 private

 firstprivate

 num_threads

 default

!$omp parallel clauses, clauses, …

Some commonly-used clauses:

C/C++

Fortran



Clause “Private” 

 The values of private data are undefined upon entry to and exit 
from the specific construct

 To ensure the last value is accessible after the construct, 
consider using “lastprivate”

 To pre-initialize private variables with values available prior to the 
region, consider using “firstprivate”

 Loop iteration variable is private by default

26



Clause “Shared”

 Shared among the team of threads executing the region

 Each thread can read or modify shared variables

 Data corruption is possible when multiple threads attempt to 
update the same memory location

– Data race condition

– Memory store operation not necessarily atomic

 Code correctness is user’s responsibility
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nowait

 This is useful inside a big parallel region

 allows threads that finish earlier to proceed without waiting

– More flexibility for scheduling threads (i.e. less 
synchronization – may improve performance)
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#pragma omp for nowait

// for loop here

!$omp do
! do-loop here
!$omp end do nowait

C/C++ Fortran

In a big parallel region

#pragma omp for nowait
...

!$omp do
! … some other code



If clause

 if (integer expression)

– determine if the region should run in parallel

– useful option when data is too small (or too large)

 Example
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#pragma omp parallel if (n>100)
{
    //…some stuff
}

!$omp parallel if (n>100)

    //…some stuff

!$omp end parallel

C/C++ Fortran



Work Sharing

 We have not yet discussed how work is distributed among 
threads...

 Without specifying how to share work, all threads will redundantly 
execute all the work (i.e. no speedup!)

 The choice of work-share method is important for performance

 OpenMP work-sharing constructs

– loop (“for” in C/C++; “do” in Fortran)

– sections

– single

33



Loop Construct (work sharing)

Clauses:

 private

 firstprivate

 lastprivate

 reduction

 ordered

 schedule

 nowait
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#pragma omp parallel shared(n,a,b) private(i)
{ #pragma omp for 
      for (i=0; i<n; i++)
   a[i]=i;
   #pragma omp for
 for (i=0; i<n; i++)

b[i] = 2 * a[i];
}

!$omp parallel shared(n,a,b) private(i)
!$omp do
      do i=1,n
   a(i)=i
      end do
!$omp end do 
...



Parallel Loop (C/C++)
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#pragma omp parallel
{
 // …
  #pragma omp for
    for (i=0; i<N; i++)
   {
      …
   }// end of for
}// end of parallel

#pragma omp parallel for
for (i=0; i<N; i++)
{
    …
}// end of for

Style 1Style 1 Style 2



Parallel Loop (Fortran)
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$!omp parallel
{
 ! ...
  $!omp do
      do i=1,n
        ...
      end do
  $!omp end do
$!omp end parallel

$!omp parallel do
  do i=1,n
     ...
  end do
$!omp end parallel do

Style 1Style 1 Style 2



Loop Scheduling

Scheduling types:

– static: each thread is assigned a fixed-size chunk (default)

– dynamic: work is assigned as a thread request it

– guided: big chunks first and smaller and smaller chunks later

– runtime: use environment variable to control scheduling

37

#pragma omp parallel for
{
   for (i=0; i<1000; i++)
   { foo(i); }
}

How is the loop divided 
into separate threads?



Static scheduling



Dynamic scheduling



Guided scheduling



Loop Schedule Example
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#pragma omp parallel for schedule(dynamic,5) \
        shared(n) private(i,j)
   for (i=0; i<n; i++) {
       for (j=0; j<i; j++) {
          foo(i,j);
        } // j-loop
   } // i-loop
} // end of parallel for  

“dynamic” is useful when the amount of work in 
foo(i,j) depends on i and j.



Sections

One thread executes one section

– If “too many” sections, some 
threads execute more than one 
section (round-robin)

– If “too few” sections, some 
threads are idle

– We don’t know in advance 
which thread will execute which 
section
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#pragma omp sections
{
    #pragma omp section
      { foo(); }
    #pragma omp section
       { bar(); }
    #pragma omp section
       { beer(); }
} // end of sections

 Each section is executed exactly once

$!omp sections
    $!omp section
        call foo()
    $!omp end section
    $!omp section
         call bar
    $!omp end section
$!omp end sections

C/C++

Fortran



Single

A “single” block is executed by one thread

– Useful for initializing shared variables

– We don’t know exactly which thread will execute the block

– Only one thread executes the “single” region; others bypass it.
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#pragma omp single
{   
     a = 10; 
}
#pragma omp for
{  for (i=0; i<N; i++)
       b[i] = a;
}

$!omp single   
     a = 10; 
$!omp end single

$!omp parallel do
   do i=1,n
       b(i) = a
   end do
$!omp end parallel do

C/C++ Fortran



Computing the Sum

 We want to compute the sum of a[0] and a[N-1]:

 A “naive” OpenMP implementation (incorrect):
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sum = 0;
for (i=0; i<N; i++)
  sum += a[i];

sum = 0;
#pragma omp parallel for
for (i=0; i<N; i++)
  sum += a[i];

sum = 0;
do i=1,n
  sum = sum + a(i)
end do

sum = 0;
$!omp parallel do

do i=1,n
  sum = sum + a(i)

end do
$!omp end parallel do

Race condition!

C/C++ Fortran

C/C++ Fortran



Critical

 One thread at a time

– ALL threads will execute the region eventually

– Note the difference between “single” and “critical”

 Mutual exclusive

45

#pragma omp critical
{ 
    //...some stuff
 }

$!omp critical
    !...some stuff
$!omp end critical
 

C/C++ Fortran



Computing the sum
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sum = 0;
#pragma omp parallel shared(n,a,sum) private(sum_local)
   {  
      sum_local = 0;
      #pragma omp for
        for (i=0; i<n; i++)
          sum_local += a[i];   // form per-thread local sum
     
     #pragma omp critical
      { 
        sum += sum_local; // form global sum
      }
   }

The correct OpenMP-way:



Reduction operation
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sum = 0;
#pragma omp parallel \
shared(...) private(...)
   {  
      sum_local = 0;
      #pragma omp for
        for (i=0; i<n; i++)
          sum_local += a[i];   
      #pragma omp critical
      { 
        sum += sum_local;
      }
   }

sum = 0;
#pragma omp parallel for \

shared(...) private(...) \
reduction(+:sum)

   {  
       for (i=0; i<n; i++)
          sum += a[i];   
}

sum example from previous slide: A cleaner solution:

Reduction operations of +,*,-,&
|, ^, &&, || are supported.



Barrier
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int x = 2;
#pragma omp parallel shared(x)
  {
    int tid = omp_get_thread_num();
    if (tid == 0)
      x = 5;
    else
      printf("[1] thread %2d: x = %d\n",tid,x);

    #pragma omp barrier

    printf("[2] thread %2d: x = %d\n",tid,x);
  }

some threads may 
still have x=2 here

all threads have x=5 
here

cache flush + thread
synchronization



Resource Query Functions

 Max number of threads

omp_get_max_threads()

 Number of processors

omp_get_num_procs()

 Number of threads (inside a parallel region)

omp_get_num_threads()

 Get thread ID

omp_get_thread_num()

 See OpenMP specification for more functions.

49
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#include <omp.h>
int main()
{
  float *array = new float[10000];
  foo(array,10000);
}

void bar(float *x, int istart, int ipts)
{
  for (int i=0; i<ipts; i++)
    x[istart+i] = 3.14159;
}

void foo(float *x, int npts)
{
  int tid,ntids,ipts,istart;
#pragma omp parallel private(tid,ntids,ipts,istart)
  {
    tid = omp_get_thread_num();   // thread ID
    ntids = omp_get_num_threads();  // total number of threads
    ipts = npts / ntids;
    istart = tid * ipts;
    if (tid == ntids-1) ipts = npts - istart;
    bar(x,istart,ipts);    // each thread calls bar
  }
}

Query function example:



Control the Number of Threads

 Parallel region

#pragma omp parallel num_threads(integer)

 Run-time function

omp_set_num_threads()

 Environment variable

export OMP_NUM_THREADS=n

51

higher priority

 High-priority ones override low-priority ones.



Which OpenMP version do I have?
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GNU compiler on my desktop:
$ g++ --version
g++ (Ubuntu/Linaro 4.4.4-14ubuntu5) 4.4.5

$ g++ version.cpp –fopenmp
$ a.out
version : 200805

Intel compiler on Hoffman2:
$ icpc --version
icpc (ICC) 11.1 20090630

$ icpc version.cpp -openmp
$ a.out
version : 200805

#include <iostream>
using namespace std;
int main()
{
  cout << "version : " << _OPENMP << endl; 
}

Version Date

3.0 May 2008

2.5 May 2005

2.0 March 2002http://openmp.org



OpenMP Environment Variables

 OMP_SCHEDULE

– Loop scheduling policy

 OMP_NUM_THREADS

– number of threads

 OMP_STACKSIZE

 See OpenMP specification for many others.
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Parallel Region in Subroutines

 Main program is “sequential”

 subroutines/functions are parallelized
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int main()
{
   foo();
}

void foo()
{
   #pragma omp parallel
     {
         // some fancy stuff here
      }
}



Parallel Region in “main” Program

 Main program is “sequential”

 subroutines/functions are parallelized
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void foo(int i)
{
   // sequential code
}

void main()
{
   #pragma omp parallel
     {

i = some_index;
         foo(i);
      }
}



Nested Parallel Regions

 Need available hardware resources (e.g. CPUs) to gain 
performance
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void main()
{
   #pragma omp parallel
     {

i = some_index;
         foo(i);
      }
}

void foo()
{
   #pragma omp parallel
     {
         // some fancy stuff here
      }
}

Each thread from main fork a team of threads.



Conditional Compilation

Check _OPENMP to see if OpenMP is supported by the compiler
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#include <omp.h>
#include <iostream>
using namespace std;
int main()
{
#ifdef _OPENMP
  cout << "Have OpenMP support\n";
#else
  cout << "No OpenMP support\n";
#endif
  return 0;
}

$ g++ check_openmp.cpp -fopenmp
$ a.out
Have OpenMP support

$ g++ check_openmp.cpp         
$ a.out
No OpenMP support



Single Source Code

 Use _OPENMP to separate sequential and parallel code within 
the same source file

 Redefine runtime library functions to avoid linking errors

58

#ifdef _OPENMP
  #include <omp.h>
#else
   #define omp_get_max_threads()   1
   #define omp_get_thread_num()    0
#endif

To simulate a single-thread run



Good Things about OpenMP

 Simplicity

– In many cases, “the right way” to do it is clean and simple

 Incremental parallelization possible

– Can incrementally parallelize a sequential code, one block at 
a time

– Great for debugging & validation

 Leave thread management to the compiler

 It is directly supported by the compiler

– No need to install additional libraries (unlike MPI)
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Other things about OpenMP

 Data race condition can be hard to detect/debug

– The code may run correctly with a small number of threads!

– True for all thread programming, not only OpenMP

– Some tools may help

 It may take some work to get parallel performance right

– In some cases, the performance is limited by memory 
bandwidth (i.e. a hardware issue)

60



Other types of parallel programming

 MPI

– works on both shared- and distributed memory systems

– relatively low level (i.e. lots of details)

– in the form of a library

 PGAS languages

– Partitioned Global Address Space

– native compiler support for parallelization

– UPC, Co-array Fortran and several others

61



Summary

 Identify compute-intensive, data parallel parts of your code

 Use OpenMP constructs to parallelize your code 

– Spawn threads (parallel regions)

– In parallel regions, distinguish shared variables from the 
private ones

– Assign work to individual threads

• loop, schedule, etc.

– Watch out variable initialization before/after parallel region

– Single thread required? (single/critical)

 Experiment and improve performance
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Thank you.
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