
CS6868 Quiz 1
Dept of CSE, IIT Madras

Total marks = 24
Time = 45 min

16 Feb 2018

Read the instructions and questions carefully. You can make any reasonably
assumptions that you think are necessary; but state them clearly. There are total three
questions (eight marks each). You will need approximately 15 minutes for answering
an eight marks question (plan your time accordingly). For questions with sub-parts,
the division for the sub-parts are given in square brackets.

You will get an answer sheet with 8 pages (if you get a answer booklet with fewer
pages then ask for a replacement). Leave the first page empty and start from Page#2.
Start each question on a new page. Think about the question before you start writing
and write briefly. For any question, the answer (including the answers for all
the sub-parts) should NOT cross more than two pages. If the answer for any
question is spanning more than two pages, we will strictly ignore the spill-over text.
If you scratch/cross some part of the answer, you can use space from the next page.
You mostly would NOT need any additional sheets.

1. [8] Concurrency State Amdahl’s law related to speedup of parallel programs
in the presence of multiple hardware threads. [1] Consider the following program:

main(){

S1; // x units of time

parfor (i=0;i<n/2;++i)

{S2;} // 0.5*x units of time

S3; // 0.75*x units of time

parfor (i=0;i<n;++i)

{S4;} // 2*x units of time

S5; // 1.25*x units of time

parfor (i=0;i<2*n;++i)

{S6;} // 1.5*x units of time

S7; // 1.75*x units of time

}

Assume that parfor is a construct to create a loop whose iterations may run in
parallel. Using Amdahl’s law, compute the speedup; assume # processors=n [5].

For each of the two schedules given below, state if it is Linearizable and/or
sequentially consistent [2].

// Thread 1

q.enq(1); // start time = 0, end time = 5

q.deq(2); // start time = 7, end time = 8

// Thread 2

q.enq(2); // start time = 1, end time = 6

q.deq(1); // start time = 7, end time = 9

(a)

// Thread 1

q.enq(1); // start time = 0, end time = 5

q.deq(2); // start time = 8, end time = 9

// Thread 2

q.enq(2); // start time = 7, end time = 10

(b)

1



2. [8] Non-blocking locks: Explain the functionality of the compareAndSet

method of AtomicInteger. [1] Give two reasons on how is it more beneficial
to use a non-blocking primitive like CompareAndSet to realize synchronization
(compared to a blocking scheme like the Java synchronized construct). [2] Give
an implementation of Java synchronized construct (that is, implementations
for monitorEnter and monitorExit methods) using the AtomicInteger class
and CompareAndSet method as primitives. Your implementation should be such
that the code ‘a.monitorEnter(); S; a.monitorExit()’ would be considered
a valid translation of the Java code of the form ‘syncrhonized (a) S’ [3+1.5].
In which class, do you suggest the monitorEnter and monitorExit methods be
defined? [0.5]

3. [8] Java: Provide an immutable variant of the following Java data structure [4].

class List {

int data;

List next;

public List (int d, List n){ data=d; next = n; }

public int synchronized getElem(){ return data; }

public void synchronized incrAll(){

incr();

if (next != null) next.incrAll();

}

public void synchronized incr(){ data++; }

}

Which of the three properties reflexivity, commutativity and transitivity hold
for the Happens-Before relationship? [1] For the following piece of Java code
(annotated with labels for convenience), draw a directed graph depicting the
happens-before relationship [3]. The nodes of the graph are the labels of the
statement instances (a statement may be executed multiple times) and edges
indicate the happens-before relation (an edge a → b indicates that a happend
before b). For the ease of representation, denote a statement with Label Lx

inside a method called from a label Ly as Ly Lx.

class A extends Thread{

public void run(){

L1: S1;

L21: synchronized (this) {

L31 : S31

L32 : S32

L22: }

L4: S4

}

}

public class B {

void main(String []s){

L5: Thread t1 = new A();

L6: Thread t2 = new A();

L7: t1.start();

L8: t2.start();

L9: t1.join();

L10: t2.join();

}

}

2


