Acknowledgement

CS3300 - Compiler Design

Intro to Semantic Analysis

V. Krishna Nandivada

IIT Madras
Copyright ©2000 by Antony L. Hosking. Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to
lists, requires prior specific permission and/or fee. Request permission to publish from hosking@cs.purdue.edu.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 2/21

Semantic Processing Alternatives for semantic processing

one-pass analysis and synthesis

one-pass compiler plus peephole

one-pass analysis & IR synthesis + code generation pass
multipass analysis (e.g. gce)
multipass synthesis (e.g. gce)
language-independent and retargetable (e.g. gcc) compilers

The compilation process is driven by the syntactic structure of the
program as discovered by the parser
Semantic routines:
@ interpret meaning of the program based on its syntactic structure
@ two purposes:
e finish analysis by deriving context-sensitive information (e.g. type
checking)
@ begin synthesis by generating the IR or target code

@ associated with individual productions of a context free grammar _ . . ,
or subtrees of a syntax tree Our focus in the assignments: One-pass analysis & IR synthesis +

multipass analysis + multipass synthesis.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 3/21 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 4/21

Goal - Type checking (Minidava)

We need generate type information.
e For fields, variables, expressions, functions.
Need to enforce types:
e Assignments, function calls, expressions.
We need to remember the type information and recall them
as/where required — symbol table.

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 5/21

Symbol table information

What kind of information might the compiler need?

textual name

data type

dimension information (for aggregates)
declaring procedure

lexical level of declaration

storage class (base address)
offset in storage

if record, pointer to structure table

if parameter, by-reference or by-value?

can it be aliased? to what other names?

number and type of arguments to functions

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 7/21

Symbol tables

For compile-time efficiency, compilers use a symbol table:
@ associates lexical names (symbols) with their attributes
What items should be entered?
@ variable names
@ defined constants
@ procedure and function names
@ literal constants and strings
@ source text labels
@ compiler-generated temporaries (we’ll get there)

A symbol table is a compile-time structure
Separate table for structure layouts (types) (includes field offsets and lengths)
May need to preserve list of locals for the debugger

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 6/21

Storage classes of variables

During code generation, each variable is assigned an address
(addressing method), approrpriate to its storage class.

@ A local variable is not assigned a fixed machine address (or
relative to the base of a module) — rather a stack location that is
accessed by an offest from a register whose value does not point
to the same location, each time the procedure is invoked. Why is it
interesting?

@ Four major storage classes: global, stack, stack static, registers

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 8/21

Symbol table organization

How should the table be organized?
@ Linear List
e O(n) probes per lookup
@ easy to expand — no fixed size
@ one allocation per insertion
@ Ordered Linear List

e O(log,n) probes per lookup using binary search
@ insertion is expensive (to reorganize list)

@ Binary Tree
e O(n) probes per lookup — unbalanced
e O(log,n) probes per lookup — balanced
e easy to expand — no fixed size
e one allocation per insertion

@ Hash Table

@ O(1) probes per lookup — on average
@ expansion costs vary with specific scheme

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 9/21

Nested scopes: complications

Fields and records:
give each record type its own symbol table
or assign record numbers to qualify field names in table
with R do (stmt):
@ all IDs in (stmt) are treated first as R.id

@ separate record tables:
chain R’s scope ahead of outer scopes
@ record numbers:

open new scope, copy entries with R’s record number
or chain record numbers: search using these first

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 11/21

Nested scopes: block-structured symbol tables

What information is needed?
@ when asking about a name, want most recent declaration
@ declaration may be from current scope or outer scope
@ innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope
What operations do we need?

@ void put (Symbol key, Object value)
bind key to value

@ Object get (Symbol key)
return value bound to key

@ void beginScope ()
remember current state of table

@ void endScope ()
close current scope and restore table to state at most recent op
beginScope

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 10/21

Nested scopes: complications (cont.)

Implicit declarations:

@ labels:
declare and define name (in Pascal accessible only within
enclosing scope)

@ Ada/Modula-3/Tiger FOR loop:
loop index has type of range specifier

Overloading:
@ link alternatives (check no clashes), choose based on context
Forward references:
@ bind symbol only after all possible definitions = multiple passes
Other complications:
packages, modules, interfaces — IMPORT, EXPORT

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 12/21

Attribute information

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:

@ variables: type, procedure level, frame offset
@ types: type descriptor, data size/alignment
@ constants: type, value

@ procedures: formals (names/types), result type, block information
(local decls.), frame size

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 13/21

Type descriptors

Type descriptors are compile-time structures representing type
expressions
e.g., char x char — pointer(integer)

NN

X pointer or pointer
char char integer () . l
char integer
V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 15/21

Type expressions

Type expressions are a textual representation for types:

@ basic types: boolean, char, integer, real, etc.

© type names

© constructed types (constructors applied to type expressions):

@ array(I,T) denotes an array of T indexed over 1

e.g., array(1...10,integer)
products: T; x T, denotes Cartesian product of type expressions T
and T,
records: fields have names
e.g., record((a x integer), (b X real))
pointers: pointer(T) denotes the type “pointer to an object of type T”
functions: D — R denotes the type of a function mapping domain
type D to range type R
e.g., integer X integer — integer

0 o ©

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 14/21

Type compatibility

Type checking needs to determine type equivalence
Two approaches:

Name equivalence: each type name is a distinct type.

Structural equivalence: two types are equivalent iff. they
have the same structure (after substituting type
expressions for type names)

@ s=riff. s and r are the same basic types

@ array(sy,s2) = array(t, 1) iff. sy =t and s, =1,

@ sixsmr=nxnpiff.si=nands, =n

@ pointer(s) = pointer(t) iff. s =1t

@51 —osm=h—bhiff.sj=nand s, =10

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 16/21

Type compatibility: example Type compatibility: Pascal name equivalence

Build compile-time structure called a type graph:

Consider: _
type link = fcell; @ each constructor or basic type creates a node
var next : link; @ each name creates a leaf (associated with the type’s descriptor)
last : 1link;
P : Tcell;
a r tcell; neft 1%st ? % ;
Under name equivalence: N Ky | \ V
@ next and last have the same type W 4 \)
@ p, g and r have the same type link = pointer pointer pointer

@ p and next have different type

Under structural equivalence all variables have the same type
Ada/Pascal/Modula-2/Tiger are somewhat confusing: they treat distinct
type definitions as distinct types, so p has different type from g and r

cell

Type expressions are equivalent if they are represented by the same
node in the graph

V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 17/21 V.Krishna Nandivada (lIT Madras) CS3300 - Aug 2019 18/21
Type compatibility: recursive types Type compatibility: recursive types
Congider: Link teell
ype in = cell; . . Lo)
cell - record Allowing cycles in the type graph eliminates ce11:
info : integer; cell =record
next : 1link;
end; +
We may want to eliminate the names from the type graph X
Eliminating name 1ink from type graph for record: / \

cell =record x x
; TR

x info integer next pointer
/ \
X X
NN
info integer next pointer Think: If structural equivalence was to be used by Java, how to type
! check?
cell

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 19/21 V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019 20/ 21

Enforcing type checks in MiniJava

Examples
@ Assignment statements,
@ |f-expression,
@ Arithmatic expression,
@ Function call,
@ Return statement,

V.Krishna Nandivada (IIT Madras) CS3300 - Aug 2019

