CS6235 Quz 2 Exam: Apr 17 2021

Maximum marks = 20, Time: 1.00 hr

Name:	Roll:
• Write your roll number on every s	sheet of the answer book.
• Each question is for four marks.	
• There are two sections in the question j	paper.
 Descriptive type: Answer any four out of the five questions. True or False: Each incorrect True/False answer will lead to a deduction of 0.5 mark. Advise: work out each question separately and legibly. 	
Section 1. Descriptive type	
1. Consider the following snippet of Java	code.
CLASS AL	class X extends Thread {

```
public static void main(String []a){
                                                        public void run(){
 S1;
                                                          S2;
 Thread t1 = new X();
                                                          S3;
 Thread t2 = new Y();
                                                        }
 t1.start();
                                                      }
 t2.start();
                                                      class Y extends Thread {
                                                        public void run(){
 t1.join();
                                                          S4;
 t2.join();
                                                        }
 }
                                                      }
}
```

- (a) Insert additional code in the program such that S1 and S2 may run in parallel. That is, MHP(S1, S2) = true. [2]
- (b) Insert additional code in the program such that S3 and S4 may NOT run in parallel. That is, MHP(S3, S4) = false. [2]
- (a) Consider a compiler for Java programs. Assume that we have populated a map MHP, such that MHP(S) returns the set of statements that may run in parallel with S. Similarly, we have populated two maps ρ and σ, such that for any variable v, ρ(v) returns the set of abstract objects v may point to, and σ(O₁, f) returns the set of objects pointed to by field f of the abstract object O₁. Use these maps to detect if there is data race between two statements S1 and S2. [2]
 - (b) Say, we have populated a map MHP, such that MHP(S1, S2) returns *true*, if S1 and S2 may run in parallel, and *false* otherwise. Use this map to compute a map M, such that if S is a statement in the program then M(S) should return the set of statement that may run in parallel with S, [2]

3. Draw the PEG for the following Java code. Clearly state how you obtained the notify edges (if any) using the iterative analysis discussed in the class [4].

```
class Main {
                                                class Reader extends Thread {
public static void main(String [] args)
                                                Buffer buffer;
 {
                                                public Reader(Buffer b){ buffer = b; }
 Buffer buffer = new Buffer();
                                                 public void run() {
 Reader r1 = new Reader(buffer);
                                                  Writer w1;
 r1.start();
                                                  w1 = new Writer(buffer);
 r1.join(); } }
                                                  w1.start();
                                                  w1.join();
class Writer extends Thread {
                                                  synchronized (buffer)
Buffer buffer;
public Writer(Buffer b){ buffer = b; }
                                                  ł
                                                    buffer.wait();
public void run() {
                                                    buffer.read();
  synchronized (buffer)
                                                  }
  {
                                                 }
   buffer.write();
                                                }
   buffer.notify();
```

- 4. Consider the problem of inter-procedural constant propagation. Write an example code that shows the imprecision resulting from using CHA for call-graph resolution. [4]
- 5. Consider a Java program that is written in such a way such that each local variable is written to exactly once. Does performing flow-sensitive analysis (in contrast to performing flow-insensitive analysis) improve the precision of points-to analysis for such a program? If your answer is "No", then give an argument supporting it. If your answer is "yes" give an example supporting it. [4]

Section 2. True/False (1 mark each)

The size of an PEG is O(N), where N is the program size.

A PSG cannot be used represent a program with recursive functions.

- In the set of instructions given for three-address code in the class, the unconditonal branch (goto L) is redundant and can be avoided.
 - Context sensitive analysis always leads to more precise results than context insensitive analysis