
CS6235 - Analysis of Parallel Programs
Introduction

V. Krishna Nandivada

IIT Madras

*

Academic Formalities

Written assignment = 1 x 10 marks.
Programming assignments = 2 x 10 marks,
Project = 10 marks.
Quiz 1 = 15 marks, Quiz 2 = 15 marks, Final = 30 marks.
Extra marks

During the lecture time - individuals can get additional 5 marks.
How? - Ask a good question, answer a chosen question, make a
good point! Take 0.5 marks each. Max one mark per day per
person.

Attendance requirement – as per institute norms. Non compliance
will lead to ‘W’ grade.

Proxy attendance - is not a help; actually a disservice.
Plagiarism - A good word to know. A bad act to own.

Will be automatically referred to the institute welfare and
disciplinary committee.

Contact (Anytime) :
Instructor: Krishna, Email: nvk@iitm.ac.in, Office: BSB 352.
TA : Shashin H (cs20s003@smail)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 2 / 225

*

What, When and Why of Program Analysis

What:
A process of automatic analysis of computer programs regarding
different program properties.

How?
Analyze the program with or without executing!

Why? Study?
Give guarantees about the correctness of program optimization,
effectiveness of program optimization, program safety, and so on.
Used by compilers, debuggers, verifiers, IDEs, profilers.
A programming language is an artificial language designed to
communicate instructions to a machine, particularly a computer.
Handy, if you care about the programs you write!

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 3 / 225

*

Flavors of Program Analyses

You have a goal? I have an analysis.

1. Constant Replacement Constant propagation
2. Method Inlining Points-to analysis
3. Remove Null Pointer checks Points-to analysis
4. Loop parallelization Dependence analysis
5. Remove array out of bounds checks Bounds check
6. Debugging Program slice
7. Register allocation Liveness analysis
8. Find-definition (IDE) Def-use analysis
9. Dead-code elimination Reaching-definition analysis
10. Program-safety Type checking
11. Barrier elimination MHP Analysis
12. Race Detection MHP Analysis

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 4 / 225

*

Why Parallel Program Analysis?

Parallel systems have become mainstay (Why? - holdon).
Automatic Extraction of parallelism has not been very successful.
The community is looking at writing parallel programs.
Analysis of parallel programs is a natural consequence.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 5 / 225

*

Why Parallel Systems / Multicores?

Focus on increasing the number of computing cores.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 6 / 225

*

What, When Multicores? Why not Multiprocessors

What A multi-core processor is composed of two or more
independent cores. Composition involves the interconnect,
memory, caches.

When IBM POWER4, the world’s first dual-core processor,
released in 2001.

Why not Multi-processors
An application can be ”threaded” across multiple cores, but not
across multi-CPUs – communication across multiple CPUs is fairly
expensive.
Some of the resources can be shared. For example, on Intel Core
Duo: L2 cache is shared across cores, thereby reducing further
power consumption.
Less expensive: A single CPU board with a dual-core CPU Vs a
dual board with 2 CPUs.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 7 / 225

*

Course outline

A rough outline (we may not strictly stick to this).
Parallel programming constructs basics.
Program analysis basics
Parallel program representation
MHP analysis and its impact on traditional analysis
Parallel-Program Specific analysis
Advanced Topics (depending on time).

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 8 / 225

*

Your friends: Languages and Tools

Start exploring
Java - familiarity a must - Use eclipse to save you valuable coding
and debugging cycles.
JavaCC, JTB – tools you will learn to use.
Make Ant Scripts – recommended toolkit.
Find the course webpage:
http://www.cse.iitm.ac.in/∼krishna/cs6235/

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 9 / 225

*

Get set. Ready steady go!

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 10 / 225

*

Expectations

What qualities are important in a program analysis?
1 Should identify properties correctly.
2 Should analyze all valid programs.
3 Analysis runs fast
4 Analysis time proportional to program size
5 Support for modular analysis.
6

Each of these shapes your expectations about this course

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 11 / 225

*

Phases inside the compiler

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate Code Generator

Machine-Independent Opt

Code Generation

Machine-dependent Opt

character-stream

token-stream

syntax-tree

syntax-tree

intermediate-representation

intermediate-representation

target-machine-code (IR)

target-machine-code

Front end responsibilities:
Recognize syntactically legal
code; report errors.
Recognize semantically legal
code; report errors.
Produce IR.

Back end responsibilities:
Optimizations, code
generation.

Program Analysis:
After parsing.

Parallel Programs:
Impacts both FE and BE

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 12 / 225

*

Examples of how Parallelism Impacts Analysis I/III

function int Withdraw(int amount){
if (balance > amount) {

balance = balance - amount;
return SUCCESS;

}
return FAIL;

}

Say balance = 100.
Two parallel threads executing Withdraw(80)
At the end of the execution, it may so happen that both of the
withdrawals are successful. Further balance can still be 20!

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 13 / 225

*

Race freedom is enough?

void deposit(int amt) {
acquire(m);
balance = balance+amt;
release(m);

}
int read balance() {

int t;
acquire(m);
t = balance;
release(m);
return t;

}

int withdraw(int amt) {
int t = read balance();
acquire(m);
if (t <= amt) {

balance = 0;
} else {

balance = balance-amt;
t = amt;

}
release(m);
return t;

}

// Initial balance = 10.
fork withdraw(10); ; // Thread 1
fork deposit(10); ; // Thread 2

Example taken from Flanagan and Qadeer TLDI 2003.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 14 / 225

*

Examples of how Parallelism Impacts Analysis II/III

for (int i = ...) {
X[f(i)] = ... ;
async { ... = X[g(i)]; }

}

=⇒ // Legal transformation?

// After loop distribution
for (int i = ...)

X[f(i)] = ... ;
for (int i = ...)

async { ... = X[g(i)]; }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 15 / 225

*

Example of how Parallelism Impacts Analysis III/III

A = new int[n]; // initialized to 0.

T1

for (i=1;i<n;++i){
A[i] = i;

}

T2

for (j=1;j<n ;++j){
assert(A[j] >= A[j+1]-1)

}
Q: Can the computation loop be parallelized?
Is it safe?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 16 / 225

*

Outline
1 Introduction

Formalities
Overview
Parallelism and its impact on performance
Introduction Parallel constructs
Java Concurrency

2 Program Analysis Basics
Forward Analysis
Backward Analysis (a brief overview)
Dimensions of Analysis
Points-to/Alias Analysis
Dimensions of Analysis: Inter-/Intra- procedural
Call Graph Construction
Dependence Analysis

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection
5 Memory consistency models
6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 17 / 225

*

Sources of speedups in Parallel Programs

Say a serial Program P takes T units of time.
Q: How much time will the best parallel version P′ take (when run
on N number of cores)? T

N units?
Linear speedups is almost unrealizable, especially for increasing
number of compute elements.
Ttotal = Tsetup +Tcompute +Tfinalization

Tsetup and Tfinalization may not run concurrently - represent the
execution time for the non-parallelizable parts of code.
Best hope : Tcompute can be fully parallelized.

Ttotal(N) = Tsetup +
Tcompute

N +Tfinalization (1)

Speedup S(N) = Ttotal(1)
Ttotal(N) . In practice?

Chief factor in performance improvement : Serial fraction of the
code.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 18 / 225

*

Amdahl’s Law

Serial fraction γ =
Tsetup+Tfinalization

Ttotal(1)

Fraction of time spent in parallelizable part = (1− γ)

Ttotal(N) =
γ×Ttotal(1)︸ ︷︷ ︸
serial code

+
(1− γ)×Ttotal(1)

N︸ ︷︷ ︸
parallel code

=
(

γ + 1−γ

N

)
×Ttotal(1)

Speedup S(N) = Ttotal(1)
(γ+ 1−γ

N)×Ttotal(1)

= 1
(γ+ 1−γ

N)
≈ 1

γ
. . . Amdahl’s Law

Max speedup is inversely proportional to the serial fraction of the
code.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 19 / 225

*

Implications of Amdahl’s law

Assume: Ten processors. Goal: 10 fold speedup.

Serial fraction Parallel fraction Speedup = 1
(γ+ 1−γ

N)
40 % 60 % 2.17
20 % 80 % 3.57
10 % 90 % 5.26
01 % 99 % 9.17

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 20 / 225

*

Implications of Amdahl’s law

As we increase the number of parallel compute units, the speed
up need not increase - an upper limit on the usefulness of adding
more parallel execution units.
For a given program maximum speedup nearly remains a
constant.
Say a parallel program spends only 10% of time in parallelizable
code. If the code is fully parallelized, as we aggressively increase
the number of cores, the speedup will be capped by (∼) 1.11×.
Say a parallel program spends only 10% of time in parallelizable
code. Q: How much time would you spend to parallelize it?
Amdahl’s law helps to set realistic expectations for performance
gains from the parallelization exercise.
Mythical Man-month - Essays on Software Engineering. Frederic
Brooks.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 21 / 225

*

Peaking via Amdahl’s law

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 22 / 225

*

Limitations of Amdahl’s law

An over approximation : In reality many factors affect the
parallelization and even fully parallelizable code does not result in
linear speed ups.
Overheads exist in parallel task
creations/termination/synchronization.
Does not say anything about the impact of cache - may result in
much more or far less improvements.
Dependence of the serial code on the parallelizable code - can the
parallelization in result in faster execution of the serial code?
Amdahl’s law assumes that the problem size remains the same
after parallelization: When we buy a more powerful machine, do
we play only old games or new more powerful games?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 23 / 225

*

Discussion: Amdahl’s Law

When we increase the number of cores - the problem size is also
increased in practise.
Also, naturally we use more and more complex algorithms,
increased amount of details etc.
Given a fixed problem, increasing the number of cores will hit the
limits of Amdahl’s law. However, if the problem grows along with
the increase in the number of processors - Amdahl’s law would be
pessimistic
Q: Say a program P has been improved to P′ (increase the
problem size) - how to keep the running time same? How many
parallel compute elements do we need?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 24 / 225

*

Outline
1 Introduction

Formalities
Overview
Parallelism and its impact on performance
Introduction Parallel constructs
Java Concurrency

2 Program Analysis Basics
Forward Analysis
Backward Analysis (a brief overview)
Dimensions of Analysis
Points-to/Alias Analysis
Dimensions of Analysis: Inter-/Intra- procedural
Call Graph Construction
Dependence Analysis

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection
5 Memory consistency models
6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 25 / 225

*

Concurrency in programs

Processes Threads Tasks
1 A program in exe-

cution
Light weight process sequence of instruc-

tions
2 Shared mem:

1 process/run
1 or more threads per
process

one more tasks can
be executed by a
thread

3 Distributed mem:
1 or more pro-
cesses

1 or more threads per
process

one more tasks can
be executed by a
thread

4 C: fork Java:new Thread()
C: pthread create()

X10: async S

5. Does NOT share
heap/stack

Shares Heap Share stack + heap

6. Scheduled by the
OS

Scheduled by the run-
time

Scheduled by the
threads/runtime

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 26 / 225

*

Processes - Example
int *y;
void main(){
int done = 0;
y=calloc(1,4);
printf("1. Before forking\n");
if (fork() == 0){
printf("2a. In the Child\n");
done = 1;
while (*y == 0);
printf("2b. Ending the Child\n");
exit(0);

} else {
printf("3a. After forking\n");
while (!done) ;

*y = 1;
printf("3b. Before waiting\n");
wait();

}
printf("4. Bye\n"); }

What is the output?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 27 / 225

*

Threads - Example
int *y;
void main(){
int done = 0;
y=calloc(1,4);
printf("1. Before forking\n");
if (create_thread() == 0){ // hypothetical call
printf("2a. In the Child\n");
done = 1;
while (*y == 0);
printf("2b. Ending the Child\n");

} else {
printf("3a. After creating thread\n");
while (!done) ;

*y = 1;
printf("3b. Before waiting\n");
wait();

}
printf("4. Bye\n"); }

What is the output?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 28 / 225

*

Tasks - Example

int *y;
void main(){
int done = 0;
y=calloc(1, 4);
printf("1. Before forking\n");
async{ // create task
printf("2a. In the Child\n");
done = 1;
while (*y == 0);
printf("2b. Ending the Child\n");

}
printf("3a. After creating task\n");
while (!done) ;

*y = 1;
printf("3b. Before waiting\n");
wait();

printf("4. Bye\n"); }

What is the output?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 29 / 225

*

Operations on or by processes / threads /tasks

Creation.
Execute in parallel with each other.
May communicate with each other (data / synchronization).
Termination.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 30 / 225

*

Outline
1 Introduction

Formalities
Overview
Parallelism and its impact on performance
Introduction Parallel constructs
Java Concurrency

2 Program Analysis Basics
Forward Analysis
Backward Analysis (a brief overview)
Dimensions of Analysis
Points-to/Alias Analysis
Dimensions of Analysis: Inter-/Intra- procedural
Call Graph Construction
Dependence Analysis

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection
5 Memory consistency models
6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 31 / 225

*

Java Threads Vs Processes

Each instance of JVM creates a single process.
Each process creates one or more threads.

Main thread creates the others.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 32 / 225

*

Java Threads

Each Java thread is an object - instance of the Java Thread class.
An application that creates an instance of Thread must provide
the code that will run in that thread.

implement Runnable interface.
Provide an implementation of the run method.

or
extend Thread class
Provide an overridden implementation of the run method.

Adv/Disadv??
(Hint) Java allows single inheritance.
Extending thread class⇒ cannot extend any other class.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 33 / 225

*

What can a thread do?

Start executing the thread body specified in the run method.
Sleep - Thread.sleep(..)
Wait for child threads to finish: ch.join()
Communicate with other threads.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 34 / 225

*

Communication via synchronized methods

synchronized statements and methods. Making a methods
synchronized has two effects:

It is not possible for two invocations of synchronized methods on
the same object to interleave.
When a synchronized method exits, it automatically establishes a
happens-before relationship with any subsequent invocation of a
synchronized method for the same object.

Guarantees that changes to the state of the object are visible to all
threads.

Constructors cannot be synchronized. Why? Consequence - only
the object creating threads should call the constructor.
synchronized methods ensure that there is no thread interference.
Q: Too many synchronized methods. Disadv?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 35 / 225

*

How do synchronized methods/statements work?

Each object has an associated intrinsic lock.
When a thread invokes a synchronized method,

automatically acquires the intrinsic lock for that method’s object
releases the lock when the method returns (normal or via
exception).

What if a thread invokes a synchronized method recursively?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 36 / 225

*

Updating shared variables

Java guarantees that following actions would be atomic.
Reads and writes are atomic for reference variables and for most
primitive variables (all types except long and double).
Reads and writes are atomic for all variables declared volatile
(including long and double variables).
Any write to a volatile variable establishes a happens-before
relationship with subsequent reads of that same variable.
We can also declare a variable (of some types) as atomic.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 37 / 225

*

Atomic variables

The java.util.concurrent.atomic package defines
classes supporting atomic operations on single variables.
Supports many types of get and set operations.
Like volatile variables’ write operation, the set operation has
an happens-before relation with the corresponding get operation.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 38 / 225

*

Atomic variables - Example

import java.util.concurrent.atomic.AtomicInteger;

class AtomicCounter {
private AtomicInteger c = new AtomicInteger(0);

// guarantees thread non-interference.
public void increment() {

c.incrementAndGet();
}
public void decrement() {

c.decrementAndGet();
}
public int value() {

return c.get();
}

}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 39 / 225

*

Atomic variables (contd)

Supported classes:
AtomicBoolean AtomicInteger AtomicIntegerArray
. . . AtomicLong AtomicLongArray
. . . LongAccumulator LongAdder

All support: boolean compareAndSet(expectedValue,
updateValue)

CAS operation: How to use it to realize synchronization?
Building blocks for implementing ‘non-blocking’ data structures.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 40 / 225

*

Happens before relation

Sequential order: Each action in a thread happens-before every
action in that thread that comes later in the program’s order.
Unlock→ Lock: An unlock (synchronized block or method exit) of
a monitor happens-before every subsequent lock (synchronized
block or method entry) of that same monitor.
Volatile writes: A write to a volatile field happens-before every
subsequent read of that same field. Writes and reads of volatile
fields have similar memory consistency effects as entering and
exiting monitors, but do not entail mutual exclusion locking.
A call to start on a thread happens-before any action in the started
thread.
All actions in a thread happen-before any other thread
successfully returns from a join on that thread.

Happens-before relation is transitive.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 41 / 225

*

Deadlock, Livelock and Starvation

Deadlock: two or more threads are blocked forever, waiting for
each other.
Starvation: a thread is unable to gain regular access to shared
resources and is unable to make progress.
Livelock: threads are not blocked, but are not making any
progress.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 42 / 225

*

Guarded blocks

A way to coordinate with others.
A guarded block

polls a condition that has to be true to proceed.
other threads set that condition

public void guardedEntry(){
while (!flag) ;

// flag is set. Inefficient.
}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 43 / 225

*

Guarded blocks (contd)

public synchronized void guardedEntry() {
// Check once and "wait"
while(!flag) { // Loop is needed.

try {
wait(); // releases the lock

} catch (InterruptedException e) {}
}
// flag is set. Efficient.

}

Q: Why synchronized?
notify vs notifyAll

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 44 / 225

*

Immutable Objects

An object is considered immutable if its state cannot change after
it is constructed.
Helps write reliable code.
cannot be corrupted by thread interference or observed in an
inconsistent state.
Creating many immutable objects Vs updating existing objects.

Cost of object creation, GC
Code needed to protect mutable objects from corruption.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 45 / 225

*

Example

public class SynchronizedRGB {
private int red; // between 0 - 255.
private int green; // between 0 - 255.
private int blue; // between 0 - 255.
private String name;

public synchronized void set(int r, int g, int b,
String n) {..}

public synchronized int getRGB() {
return ((red << 16) | (green << 8) | blue);

}
public synchronized String getName() { return name; }
public synchronized void invert() {

red=255-red; green=255-green; blue=255-blue;
name="Inverse of " + name;

} }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 46 / 225

*

Example (contd)

...
SynchronizedRGB color =

new SynchronizedRGB(0, 0, 0, "Black");

int myColorInt = color.getRGB(); //Statement 1
String myColorName = color.getName(); //Statement 2

What if another threads updates the color object after Statement 1?

synchronized (color) {
int myColorInt = color.getRGB();
String myColorName = color.getName();

}

Such issues do not arise with immutable objects

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 47 / 225

*

Mutable to Immutable

General guidelines:
Don’t provide ‘setter’ methods.
Make all fields final and private.
Don’t allow subclasses to override methods or provide ‘setter’
methods.

declare the class as final.
make constructor final and provide a factory method.

If the instance fields include references to mutable objects, don’t
allow those objects to be changed:

Don’t provide methods that modify the mutable objects.
Don’t share references to the mutable objects. Copy and share if
required.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 48 / 225

*

Mutable to Immutable (Example)

final public class ImmutableRGB {
final private int red; // between 0 - 255.
final private int green; // between 0 - 255.
final private int blue; // between 0 - 255.
final private String name;

public /*synchronized*/ int getRGB() {
return ((red << 16) | (green << 8) | blue); }

public /*synchronized*/ String getName()
{ return name; }

public /*synchronized*/ ImmutableRGB invert() {
return new ImmutableRGB(255 - red,

255 - green, 255 - blue,
"Inverse of " + name);

} }

No synchronized methods required!
V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 49 / 225

*

Deadlocks in Locks

public class Deadlock {
class Friend {
private final String name;
public Friend(String name){this.name = name; }
public String getName() {return this.name; }
public synchronized void bow(Friend bower) {
System.out.format("%s: %s" +" has bowed to me!",

this.name, bower.getName());
bower.bowBack(this); }
public synchronized void bowBack(Friend bower) {
System.out.format("%s:%s"+" has bowed back!",
this.name, bower.getName()); } }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 50 / 225

*

Deadlocks in Locks (contd)

public static void main(String[] args) {
final Friend alpha = new Friend("Alpha");
final Friend beta = new Friend("Beta");
new Thread(new Runnable() {

public void run() { alpha.bow(beta); }
}).start();
new Thread(new Runnable() {

public void run() { beta.bow(alpha); }
}).start();

} }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 51 / 225

*

Avoid deadlocks in Locks

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Random;

public class Safelock {
static class Friend {

private final String name;
private final Lock lock = new ReentrantLock();

public Friend(String name) { this.name=name;}

public String getName() { return this.name;}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 52 / 225

*

Avoid deadlocks in Locks (cont.)

public boolean impendingBow(Friend bower) {
Boolean myLock = false;
Boolean yourLock = false;
try {

myLock = lock.tryLock();
yourLock = bower.lock.tryLock();

} finally {
if (! (myLock && yourLock)) {

if (myLock) {
lock.unlock();

}
if (yourLock) {

bower.lock.unlock();
} } }

return myLock && yourLock;
}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 53 / 225

*

Avoid deadlocks in Locks (cont.)

public void bow(Friend bower) {
if (impendingBow(bower)) {

try {
System.out.format("%s: %s has"

+ " bowed to me!",
this.name, bower.getName());

bower.bowBack(this);
} finally {

lock.unlock();
bower.lock.unlock(); }

} else {
System.out.format("%s: %s started"

+ " to bow to me, but saw that"
+ " I was already bowing to him.",
this.name, bower.getName());

} }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 54 / 225

*

Avoid deadlocks in Locks (cont.)

public void bowBack(Friend bower) {
System.out.format("%s: %s has" +

" bowed back to me!%n",
this.name, bower.getName());

}
}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 55 / 225

*

Avoid deadlocks in Locks (cont.)

class BowLoop implements Runnable {
private Friend bower;
private Friend bowee;

public BowLoop(Friend bower, Friend bowee) {
this.bower = bower; this.bowee = bowee;}

public void run() {
Random random = new Random();
for (;;) {

try {
Thread.sleep(random.nextInt(10));

} catch (InterruptedException e) {}
bowee.bow(bower);

} } }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 56 / 225

*

Avoid deadlocks in Locks (cont.)

public static void main(String[] args) {
final Friend alpha = new Friend("Alpha");
final Friend beta = new Friend("Beta");
new Thread(new BowLoop(alpha, beta)).start();
new Thread(new BowLoop(beta, alpha)).start();

}
}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 57 / 225

*

Barriers in Java

CyclicBarrier
allows a set of threads to wait for each other.
can be reused after the end of one phase.

class MainClass{
final CyclicBarrier barrier;
MainClass(){

barrier = new CyclicBarrier(NumThreads,
new Runnable() {

public void run (){
execute-at-the-end-of-phase;

}});
for(int i=0;i<NumThreads;++i){

new Thread(new mThread().start());
} } }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 58 / 225

*

Barriers in Java (cont.)

class mThread implements Runnable {
public void run(){

while (not-done)
do-some-computation;
barrier.await();
// may throw InterruptedExecution or
// BrokenBarrierException

}
}

All or none breakage model.
Memory consistency effects and happen before relations:
S1 Barrier{Sb} S2
S3 Barrier{Sb} S4

S1 and S3 happen before Sb and Sb happens before S2 and S4.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 59 / 225

*

Tasks and ThreadPools in Java

ThreadPool: reuses previously created threads to execute current
tasks
Threads are created once and reused across all the tasks.

Less overhead.
When task/tasks arrive(s), the threads are ready.
Avoids resource thrashing caused by creating threads arbitrarily.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 60 / 225

*

ThreadPools and Tasks example

class Task implements Runnable {
public void run() {...}

}

class Main {
public static void main(String[] args){
Runnable r1 = new Task(..); // Create tasks.
Runnable r2 = new Task(..);
...

// Create the pool.
ExecutorService pool=Executors.newFixedThreadPool(max_t);

// pass the tasks to the pool.
pool.execute(r1);
pool.execute(r2);
...
pool.shutdown(); // shutdown - tasks cannot be added.
} }

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 61 / 225

*

Outline
1 Introduction

Formalities
Overview
Parallelism and its impact on performance
Introduction Parallel constructs
Java Concurrency

2 Program Analysis Basics
Forward Analysis
Backward Analysis (a brief overview)
Dimensions of Analysis
Points-to/Alias Analysis
Dimensions of Analysis: Inter-/Intra- procedural
Call Graph Construction
Dependence Analysis

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection
5 Memory consistency models
6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 62 / 225

*

Program Analysis

code
object

code
source

IRIR

tokens

syntactic structure

Scanner

Routines
Semantic

Parser

Optimizer Code
Generator

Table

Symbol

Code optimization requires that the compiler has a global
“understanding” of how programs use the available resources.

It has to understand how the control flows (control-flow analysis) in the
program and how the data is manipulated (data-flow analysis)

Control-flow analysis: flow of control within each procedure and across
procedures.

Data-flow analysis: how the data is manipulated in the program.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 63 / 225

*

Example

int fib (int m){
int f0=0, f1=1, f2,i;
if (m <=1)

return m;
else {

for (i=2; i<=m; ++i) {
f2 = f0 + f1;
f0 = f1;
f1 = f2;

}
return f2;

}
}

1 receive m (val)
2 f0 = 0
3 f1 = 1
4 if (m <= 1) goto L3
5 i = 2
6 L1: if (i<=m) goto L2
7 return f2
8 L2: f2 = f0 + f1
9 f0 = f1
10 f1 = f2
11 i = i + 1
12 goto L1
13 L3:return m

IR for the C code (in a format described in Muchnick book)

receive specifies the reception of a parameter and the
parameter-passing discipline (by-value, by-result, value-result,
reference). Why do we want to have an explicit receive instruction?–
Gives a point of definition for the args.

What is the control structure? Obvious?V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 64 / 225

*

Example - flow chart and control-flow

int fib (int m){
int f0=0, f1=1, f2,i;
if (m <=1)

return m;
else {

for (i=2; i<=m; ++i) {
f2 = f0 + f1;
f0 = f1;
f1 = f2;

}
return f2;

}
}

1 receive m (val)
2 f0 = 0
3 f1 = 1
4 if (m <= 1) goto L3
5 i = 2
6 L1: if (i<=m) goto L2
7 return f2
8 L2: f2 = f0 + f1
9 f0 = f1
10 f1 = f2
11 i = i + 1
12 goto L1
13 L3:return m

The high-level abstractions might be lost in the IR.

Control-flow analysis can expose control structures not obvious in the
high level code. Possible? Loops constructed from if and goto

A basic block is informally a straight-line sequence of code that can be
entered only at the beginning and exited only at the end.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 65 / 225

*

Basic blocks - what do we get?

entry and exit are added for
reasons to be explained later.
We can identify loops by using
dominators

a node A in the flowgraph dominates
a node B if every path from entry
node to B includes A.
This relations is antisymmetric,
reflexive, and transitive.

back edge: An edge in the flow graph,
whose head dominates its tail
(example - edge from B6 to B4.
A loop consists of subset of nodes
dominated by its entry node (head of
the back edge) and having exactly
one back edge in it.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 66 / 225

*

Deep dive - Basic block
Basic block definition

A basic block is a maximal sequence of instructions that can be entered
only at the first of them

The basic block can be exited only from the last of the instructions of the
basic block.

Implication:First instruction can be a) entry point of a routine,b) item
target of a branch, c) item instruction following a branch or a return.

First instruction is called the leader of the BB.

How to construct the basic block?

Identify all the leaders in the program.

For each leader: include in its basic block all the instructions from the
leader to the next leader (next leader not included) or the end of the
routine, in sequence.

What about function calls?

In most cases it is not considered as a branch+return. Why?

Problem with setjmp() and longjmp()? [self-study]
V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 67 / 225

*

CFG - Control flow graph

Definition:
A rooted directed graph G = (N,E), where N is given by the set of
basic blocks + two special BBs: entry and exit.
And edge connects two basic blocks b1 and b2 if control can pass
from b1 to b2.
An edge(s) from entry node to the initial basic block(s?)
From each final basic blocks (with no successors) to exit BB.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 68 / 225

*

CFG continued

successor and predecessor – defined in a natural way.
A basic block is called branch node - if it has more than one
successor.
join node – has more than one predecessor.
For each basic block b:

Succ(b) = {n ∈ N|∃e ∈ E such that e = b→ n}
Pred(b) = {n ∈ N|∃e ∈ E such that e = n→ b}

A region is a strongly connected subgraph of a flow-graph.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 69 / 225

*

Data Flow Analysis

Why:
Provide information about a program manipulates its data.
Study function’s behavior.
To help build control flow information.
Program understanding (a function sorts an array!).
Generating a model of the original program and verify the model.
The DFA should give information about that program that does not
misrepresent what the procedure being analyzed does.
Program validation.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 70 / 225

*

Reaching Definitions

A particular definition of a variable is said to reach a given point if
there is an execution path from the definition to that point
the variable might may have the value assigned by the definition.

In general undecidable.

Our goal:
The analysis must be conservative – the analysis should not tell
us that a particular definition does not reach a particular use, if it
may reach.
A ‘may’ conservative analysis gives us a larger set of reaching
definitions than it might, if it could produce the minimal result.

To make maximum benefit from our analysis, we want the analysis to
be conservative, but be as aggressive as possible.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 71 / 225

*

Different types of analysis

Intra procedural analysis.
Whole program (inter-procedural) analysis.
Generate intra procedural analysis and extend it to whole
program.

We will study an iterative mechanism to perform such analyses.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 72 / 225

*

Iterative Dataflow Analysis

Build a collection of data flow equations – specifying which data
may flow to which variable.
Solve it iteratively.
Start from a conservative set of initial values – and continuously
improve the precision.
Disadvantage: We may be handling large data sets.
Start from an aggressive set of initial values – and continuously
improve the precision.
Advantage: Datasets are small to start with.
Choice – depends on the problem at hand.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 73 / 225

*

Example program

1 int g (int m, int i);

2 int f(int n) {
3 int i = 0, j;
4 if (n == 1) i = 2;
5 while (n > 0) {
6 j = i + 1;
7 n = g(n, i);
8 }
9 return j;
10 }

Does def of i in line 3 reach the uses in line 6 and 7?
Does def of j in line 6 reach the use in line 9?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 74 / 225

*

Definitions

GEN : GEN(b) returns the set of definitions generated in the basic
block b; assigned values in the block and not subsequently killed
in it.
KILL : KILL(b) returns the set of definitions killed in the basic block
b.
IN : IN(b) returns the set of definitions reaching the basic block b.
OUT : OUT(b) returns the set of definitions going out of basic
block b.
PRSV : Negation of KILL

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 75 / 225

*

Representation and Initialization

Bit Pos Definition Basic Block
1 m in node 1 B1
2 f0 in node 2
3 f1 in node 3
4 i in node 5 B3
5 f2 in node 8 B6
6 f0 in node 9
7 f1 in node 10
8 i in node 11

Set rep Bit vector
GEN(B1) = {1, 2, 3} ⟨11100000⟩
GEN(B3) = {4} ⟨00010000⟩
GEN(B6) = {5, 6, 7, 8} ⟨00001111⟩
GEN(.) = {} ⟨00000000⟩

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 76 / 225

*

Populating PRSV, OUT and IN

Set rep Bit vector
PRSV(B1) = {4, 5, 8} ⟨00011001⟩
PRSV(B3) = {1, 2, 3, 5, 6, 7} ⟨11101110⟩
PRSV(B6) = {1} ⟨10000000⟩
PRSV(.) = {1, 2, 3, 4, 5, 6, 7, 8} ⟨11111111⟩

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 77 / 225

*

Dataflow equations

A definition may reach the end of a basic block i:

OUT(i) = GEN(i)∪ (IN(i)∩PRSV(i))

or with bit vectors:

OUT(i) = GEN(i)∨ (IN(i)∧PRSV(i))

A definition may reach the beginning of a basicblock i:

IN(i) =
⋃

j∈Pred(i)

OUT(j)

GEN, PRSV and OUT are created in each basic block.
OUT(i) = {} // initialization
But IN needs to be initialized to something safe.
IN(entry) = {}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 78 / 225

*

Solving the Dataflow equations: example

Itr 1:
OUT(entry) = ⟨00000000⟩ IN(entry) = ⟨00000000⟩
OUT(B1) = ⟨11100000⟩ IN(B1) = ⟨00000000⟩
OUT(B2) = ⟨11100000⟩ IN(B2) = ⟨11100000⟩
OUT(B3) = ⟨11110000⟩ IN(B3) = ⟨11100000⟩
OUT(B4) = ⟨11110000⟩ IN(B4) = ⟨11110000⟩
OUT(B5) = ⟨11110000⟩ IN(B5) = ⟨11110000⟩
OUT(B6) = ⟨00001111⟩ IN(B6) = ⟨11110000⟩
OUT(entry) = ⟨11110000⟩ IN(exit) = ⟨11110000⟩

Itr 2:
OUT(entry) = ⟨00000000⟩ IN(entry) = ⟨00000000⟩
OUT(B1) = ⟨11100000⟩ IN(B1) = ⟨00000000⟩
OUT(B2) = ⟨11100000⟩ IN(B2) = ⟨11100000⟩
OUT(B3) = ⟨11110000⟩ IN(B3) = ⟨11100000⟩
OUT(B4) = ⟨11111111⟩ IN(B4) = ⟨11111111⟩
OUT(B5) = ⟨11111111⟩ IN(B5) = ⟨11111111⟩
OUT(B6) = ⟨10001111⟩ IN(B6) = ⟨11111111⟩
OUT(entry) = ⟨11111111⟩ IN(exit) = ⟨11111111⟩

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 79 / 225

*

Dataflow equations: behavior

We specify the relationship between the data-flow values before
and after a block – transfer or flow equations.

Forward: OUT(s) = f (IN(s), · · ·)
Backward: IN(s) = f (OUT(s), · · ·)

The rules never change a 1 to 0. They may only change a 0 to a 1.
They are monotone.
Implication – the iteration process will terminate.
Q: What good is reaching definitions? undefined variables.
Q: Why do the iterations produce an acceptable solution to the set
of equations? – lattices and fixed points.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 80 / 225

*

Lattice

What : Lattice is an algebraic structure
Why : To represent abstract properties of variables, expressions,
functions, etc etc.

Values
Attributes
. . .

Why “abstract”? Exact interpretation (execution) gives exact
values, abstract interpretation gives abstract values.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 81 / 225

*

Lattice definition

A lattice L consists of a set of values, and two operations called meet
(⊓) and join (⊔). Satisfies properties:

closure: For all x,y ∈ L, ∃ a unique z and w ∈ L, such that x⊔ y = z
and x⊓ y = w – each pair of elements have a unique lub and glb.
commutative: For all x,y ∈ L, x⊓ y = y⊓ x, and x⊔ y = y⊔ x.
associative: For all x,y,z ∈ L, (x⊓ y)⊓ z = x⊓ (y⊓ z), and
(x⊔ y)⊔ z = x⊔ (y⊔ z)

There exists two special elements of L called bottom (⊥), and top
(⊤).
∀x ∈ L, x⊓⊥=⊥ and x⊔⊤=⊤.
distributive : (optional). ∀x,y,z ∈ L, x⊔ (y⊓ z) = (x⊔y)⊓ (x⊔ z), and
x⊓ (y⊔ z) = (x⊓ y)⊔ (x⊓ z)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 82 / 225

*

Lattice properties

Meet (and join) induce a partial order (⊑):
∀x,y ∈ L, x⊑ y, iff x⊓ y = x.
Transitive, antisymmetry and reflexive.

Example Lattices:

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 83 / 225

*

Monotones and fixed point

A function f : L→ L, is a monotone, if for all x,y ∈ L,
x⊑ y⇒ f (x)⊑ f (y).
Example: bit-vector lattice:

f (x1x2x3) = ⟨x11x2⟩
f (x1x2x3) = ⟨x2x3x1⟩

A flow function models the effect of a programming language
construct. as a mapping from the lattice for that particular analysis
to itself.
We want the flow functions to be monotones. Why?
A fixed point of a function f : L→ L is an element z ∈ L, such that
f (z) = z.
For a set of data-flow equations, a fixed-point is a solution of the
set of equations – cannot generate any further refinement.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 84 / 225

*

Meet Over All Paths solutions

The value we wish to compute in solving data-flow equations is –
meet over all paths (MOP) solution.
Start with some prescribed information at the entry (or exit
depending on forward or backward).
Repeatedly apply the composition of the appropriate flow
functions.
For each node form the meet of the results.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 85 / 225

*

A worklist based implementation (a forward analysis)
1 procedure WorklistIterate (N: Set<Node>, entry: Node, F: Node ×L→ L, dfin:

Node→ L, Init : L) // dfin is an output variable.

2 begin
3 B, P: Node;
4 worklist: Set<Node>;
5 effect, totalEffect : L;
6 dfin(entry)← Init;
7 worklist = N − {entry};
8 foreach B ∈ N do dfin(B)←⊤ ;
9 repeat

10 B← worklist.removeOne();
11 totalEffect←⊤;
12 foreach P ∈ Pred(B) do
13 effect← F(P, dfin(P));
14 totalEffect← totalEffect ⊓ effect;

15 if dfin(B) ̸= totalEffect then
16 dfin(B)← totalEffect;
17 worklist.add(Succ(B));

18 until worklist = Φ;

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 86 / 225

*

Example: Constant Propagation

Goal: Discover values that are constants on all possible executions of
a program and to propagate these constant values as far forward
through the program as possible
Conservative: Can discover only a subset of all the possible
constants.
Lattice:

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 87 / 225

*

Constant Propagation lattice meet rules

⊥ = Constant value cannot be guaranteed.
⊤ = May be a constant, not yet determined.
∀x

x⊓⊤= x
x⊓⊥=⊥
c1⊓ c1 = c1
c2⊓ c1 =⊥

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 88 / 225

*

Simple constant propagation

Gary A. Kildall: A Unified Approach to Global Program
Optimization - POPL 1973.
Reif, Lewis: Symbolic evaluation and the global value graph -
POPL 1977.
Simple constant Constants that can be proved to be constant
provided,

no information is assumed about which direction branches will take.
Only one value of each variable is maintained along each path in
the program.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 89 / 225

*

Kildall’s algorithm

Start with an entry node in the program graph.
• Process the entry node, and produce the constant propagation
information. Send it to all the immediate successors of the entry
node.
At a merge point, get an intersection of the information.
If at any successor node, if for any variable the value is “reduced”,
the process the successor, similar to the processing done for entry
node.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 90 / 225

*

Constant propagation - equations

Let us assume that one basic block per statement.
Transfer functions set F - a set of transfer functions.
fs ∈ F is the transfer function for statement s.
The dataflow values are given by a map: m: Vars→ ConstantVal

If m is the set of input dataflow values, then m′ = fs(m) gives the
output dataflow values.
Generate equations like before.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 91 / 225

*

Constant propagation: equations (contd)

Start with the entry node.
If s is not an assignment statement, then fs is simply the identity
function.
If s is an assignment statement to variable v, then fs(m) = m′,
where:

For all v′ ̸= v, m′(v′) = m(v′).
If the RHS of the statement is a constant c, then m′(v) = c.
If the RHS is an expression (say y op z),

m′(v) =

 m(y) op m(z) if m(y) and m(z) are constant values
⊥ if either of m(y) and m(z) is ⊥
⊤ Otherwise

If the RHS is an expression that cannot be evaluated, then
m′(v) =⊥.

At a merge point, get a meet of the flow maps.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 92 / 225

*

Constant Propagation - example I

x = 10;
y = 1;
z = 5;
if (cond) {

y = y / x;
x = x - 1;
z = z + 1;

} else {
z = z + y;
y = 0;

}
print x + y + z;

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 93 / 225

*

Constant Propagation - example II

x = 10;
y = 1;
z = 1;
while (x > 1) {

y = x * y;
x = x - 1;
z = z * z;

}
A[x] = y + z;

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 94 / 225

*

Outline
1 Introduction

Formalities
Overview
Parallelism and its impact on performance
Introduction Parallel constructs
Java Concurrency

2 Program Analysis Basics
Forward Analysis
Backward Analysis (a brief overview)
Dimensions of Analysis
Points-to/Alias Analysis
Dimensions of Analysis: Inter-/Intra- procedural
Call Graph Construction
Dependence Analysis

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection
5 Memory consistency models
6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 95 / 225

*

Definitions

A variable is live at a program point, if it holds a value that may
be needed in future

a← 0
L1 : b← a+1

c← c+b
a← b×2
if a < N goto L1
return c

v is live on edge e if there is a directed
path from SRC(e) to a use of v that does
not pass through any def(v)
v is live-in at node n if live on all of n’s
in-edges
v is live-out at n if live on any of n’s
out-edges
v ∈ use[n]⇒ v live-in at n

v live-in at n⇒ v live-out at all m ∈ pred[n]
v live-out at n,v ̸∈ def[n]⇒ v live-in at n

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 96 / 225

*

Liveness analysis

Define:

in[n] = variables live-in at n

out[n] = variables live-out at n

Then:

out[n] =
⋃

s∈succ(n)

in[s]

succ[n] = φ ⇒ out[n] = φ

Note:

in[n] ⊇ use[n]
in[n] ⊇ out[n]−def[n]

use[n] and def[n] are constant (independent of control flow)
Now, v ∈ in[n] iff. v ∈ use[n] or v ∈ out[n]−def[n]
Thus, in[n] = use[n]∪ (out[n]−def[n])

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 97 / 225

*

Iterative algorithm

Recall the iterative forward analysis and port it to perform backward
analysis. [DIY]

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 98 / 225

*

Flow Sensitive Vs Flow Insensitive

i: m = new X(); // Ri
j: n = new X(); // Rj
k: p = m;
l: p = n;
a: q = p;
b: n = m;

Flow sensitive (after ’b’)
m -> {Ri}
p -> {Rj}
q -> {Rj}
n -> {Ri}

Flow insensitive:
m -> {Ri}
p -> {Ri, Rj}
q -> {Ri, Rj}
n -> {Ri, Rj}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 99 / 225

*

Outline
1 Introduction

Formalities
Overview
Parallelism and its impact on performance
Introduction Parallel constructs
Java Concurrency

2 Program Analysis Basics
Forward Analysis
Backward Analysis (a brief overview)
Dimensions of Analysis
Points-to/Alias Analysis
Dimensions of Analysis: Inter-/Intra- procedural
Call Graph Construction
Dependence Analysis

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection
5 Memory consistency models
6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 100 / 225

*

Points-to/Alias Analysis

Goal: Reason about what different variables / fields point to in the
heap.

p = new A(); // R1
p.f = new Y(); // R2
if (cond) {

q = new X(); // R3
q.f = new Z(); // R4
r1 = q;

} else {
q = new X(); // R5
q.f = new Z(); // R6
r2 = q;

}
p.f = new Y(); // R7
q.f = new Z(); // R8

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 101 / 225

*

Points-to/Alias Analysis in Java

Abstractly model Stack and Heap:
Vars: Set of all Variables.
Refs: Set of all References
Values: P(Refs) // P = Power set
Stack ρ: Vars→ Values
Heap σ : Refs × Fields→ Values

Initialize the Stack and Heap
each local variable,
fields (of the locally allocated objects)

−→ point to the empty set.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 102 / 225

*

Points-to/Alias Analysis Lattice

L = Power set of all the abstract references.
x ⊓ y = x ∪ y
x ⊔ y = x ∩ y
⊥ = Set of all the abstract references.
⊤ = φ

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 103 / 225

*

Points-to/Alias Analysis transfer functions

1. alloc a : x = new . . . ρ[x← Oa]
2. copy x = y ρ[x← ρ(y)]
3. load x = y.f ρ[x←∪∀o∈ρ(y)σ(o, f)]
4a. store (strong update) x.f = y ∀o ∈ ρ(x), σ [(o, f)← ρ(y)]
4b. store (weak update) x.f = y ∀o ∈ ρ(x), σ [(o, f)← σ(o, f)∪ρ(y)]

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 104 / 225

*

Dimensions of Analysis: Inter-/Intra- procedural

Intra-procedural analysis:
Analyze each procedure independently.
At a call-site assume the worst-case scenario.

Constant propagation?
Points-to Analysis?

Inter-procedural analysis:
Analyze the whole program, while being aware of the procedure
details.
Need to know about who-calls-whom? - Call Graph.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 105 / 225

*

Call Graph Construction

Call Graph G = (N,S,E,r).
N = set of all the functions.
r ∈ N is the root (main method).
S = set of call site labels (for example, line numbers).
∀n1,n2 ∈ N, we say (n1,s,n2) ∈ E) if n1 may call n2 at call site s.
In a function n1, if there exists a call of the form x.foo(), then the
edges to add: From n1 to

every foo in the program (too conservative).
every foo present in the possible classes whose object x may
contain.

Decide this list just based on the class hierarchy (CHA).
Decide this list by doing a flow analysis (CFA - not covered).

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 106 / 225

*

Class Hierarchy Analysis

class A{
foo(){..}
bar(){..}

}
class B extends A {

foo(){..}
}
class C extends B {

foo(){..}
}
class D extends C {

foo(){..}
bar(){..}

}

class Main {
foo(){

B x = ...
x.foo();
C y = ...
y.bar();

}
}

Call Graph?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 107 / 225

*

Dimensions of Analysis

Context insensitive (call site independent).
For each procedure in a program identify the subset of its
parameters, such that each of the parameters will get a single
“value”, across all the invocations.
The procedure will return a single “value” across all the invocations.

Context sensitive (call site dependent):
for each particular procedure called from a particular context (a
particular site), the subset of parameters that have the same
“value” each time the procedure is called at that site.
For each call site, the function may return a different “value”.

What are the “values”? Depends on the analysis.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 108 / 225

*

Context-insensitive points-to analysis
1 Function InterProcPointsTo(CallGraph CG)
2 worklist = {CG.root};
3 while worklist is not empty do
4 p = worklist.dequeue();
5 begin
6 Process stmts in p like before; // Intra-procedural analysis till fixed-point
7 During the analysis, if we encounter a stmt s of the form x=y.foo(..)

then
8 compute the actual arguments of s;
9 foreach function q that may be called at s do

10 Compute meet: current values for the formals of q and the actuals;
11 if the values of the arguments of q have changed then
12 remember the new value and add q to the worklist;

13 “Update” the value of x and all the fields of the arguments to foo
as per the summary of q.

14 v = compute the meet of all the return values of p;
15 Set the return value of p to v;
16 Set the summary of p to include the final values of the formal arguments;
17 foreach call function q that calls p do
18 add q to the worklist

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 109 / 225

*

Example I/II

class A{
A f0;
void foo(A x){
f0 = new A();
x.f0 = f0;

} }
class B extends A{

B f1;
void foo(A x){
f1 = new B();
x.f0 = f1;

}
A getf1(){
return f1;

} }

class Main {
public static void main (){

B a1 = new B();
a1.foo(a1);
A a2 = a1.f0;
A a3 = a1.getf1();

// Q: a2 and a3 aliases?
a2.foo(a3);
A a4 = a2.f0;

// Q: a2 and a4 aliases?
}

}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 110 / 225

*

Example II/II (Impact of imprecise call-graph)

class A{
A f0;
void foo(A x){
f0 = new A();
x.f0 = f0;

} }
class B extends A{

B f1;
void foo(A x){
f1 = new B();
x.f0 = f1;
if (*) x.foo(x);

}
A getf1(A x){
return f1;

} }

class Main {
public static void main (){

B a1 = new B();
a1.foo(a1);
A a2 = a1.f0;
A a3 = a1.getf1();

// Q: a2 and a3 aliases?
}

}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 111 / 225

*

Dependence Analysis - Skipped.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 112 / 225

*

Outline

1 Introduction

2 Program Analysis Basics

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection

5 Memory consistency models

6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 113 / 225

*

Symbol table information

A compiler uses symbol table to store many different types of
information.
What kind of information might the compiler need?

textual name
data type
dimension information (for aggregates)
declaring procedure
lexical level of declaration
storage class (base address)
offset in storage
if record, pointer to structure table
if parameter, by-reference or by-value?
can it be aliased? to what other names?
number and type of arguments to functions
. . .

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 114 / 225

*

Symbol table organization

How should the table be organized?
Linear List

O(n) probes per lookup
easy to expand — no fixed size
one allocation per insertion

Ordered Linear List
O(log2 n) probes per lookup using binary search
insertion is expensive (to reorganize list)

Binary Tree
O(n) probes per lookup — unbalanced
O(log2 n) probes per lookup — balanced
easy to expand — no fixed size
one allocation per insertion

Hash Table
O(1) probes per lookup — on average
expansion costs vary with specific scheme

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 115 / 225

*

Nested scopes: block-structured symbol tables

What information is needed?
when asking about a name, want most recent declaration
declaration may be from current scope or outer scope
innermost scope overrides outer scope declarations

Key point: new declarations occur only in current scope
What operations do we need?

void put (Symbol key, Object value)
bind key to value
Object get(Symbol key)
return value bound to key
void beginScope()
remember current state of table
void endScope()
close current scope and restore table to state at most recent open
beginScope

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 116 / 225

*

Attribute information

Attributes are internal representation of declarations
Symbol table associates names with attributes
Names may have different attributes depending on their meaning:

variables: type, procedure level, frame offset
types: type descriptor, data size/alignment
constants: type, value
procedures: formals (names/types), result type, block information
(local decls.), frame size

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 117 / 225

*

Intermediate representations

Why use an intermediate representation?
1 break the compiler into manageable pieces

– good software engineering technique
2 simplifies retargeting to new host

– isolates back end from front end
3 simplifies handling of “poly-architecture” problem

– m lang’s, n targets⇒ m+n components (myth)
4 enables machine-independent optimization

– general techniques, multiple passes
An intermediate representation is a compile-time data structure

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 118 / 225

*

Intermediate representations

front back
end end

source
code code

machineoptimizer
IR IR

Generally speaking:
front end produces IR
optimizer transforms that representation into an equivalent
program that may run more efficiently
back end transforms IR into native code for the target machine

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 119 / 225

*

Intermediate representations

Representations talked about in the literature include:
abstract syntax trees (AST)
linear (operator) form of tree
directed acyclic graphs (DAG)
control flow graphs
program dependence graphs
static single assignment form
3-address code
hybrid combinations
Parallel Program Graphs
Program Structure Tree/Graphs
Concurrent Control Flow Graphs
...

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 120 / 225

*

Intermediate representations - properties

Important IR Properties
ease of generation
ease of manipulation
cost of manipulation
level of abstraction
freedom of expression
size of typical procedure

Subtle design decisions in the IR have far reaching effects on the
speed and effectiveness of the compiler.
Level of exposed detail is a crucial consideration.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 121 / 225

*

IR design issues

Is the chosen IR appropriate for the (analysis/ optimization/
transformation) passes under consideration?
What is the IR level: close to language/machine.
Multiple IRs in a compiler: for example, High, Medium and Low

x = a[i,j+2]

// int a[][20];

t1 = j + 2
t2 = i * 20
t3 = t1 + t2
t4 = 4 * t3
t5 = addr a
t6 = t5 + t4
x = *t6

r1 = [fp-4] // j
r2 = r1 + 2
r3 = [fp-8] // i
r4 = r3 * 20
r5 = r4 + r2
r6 = 4 * r5
r7 = fp - 216 // a
x = [r7+r6]

In reality, the variables etc are also only pointers to other data
structures.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 122 / 225

*

Intermediate representations

Broadly speaking, IRs fall into three categories:
Structural

structural IRs are graphically oriented
examples include trees, DAGs
heavily used in source to source translators
nodes, edges tend to be large

Linear
pseudo-code for some abstract machine
large variation in level of abstraction
simple, compact data structures
easier to rearrange

Hybrids
combination of graphs and linear code
attempt to take best of each
e.g., control-flow graphs
Example: GCC Tree IR.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 123 / 225

*

Abstract syntax tree

An abstract syntax tree (AST) is the procedure’s parse tree with the
nodes for most non-terminal symbols removed.

�

hid:xi �

hnum:2i hid:yi

This represents “x − 2 ∗ y”.
For ease of manipulation, can use a linearized (operator) form of the
tree.
e.g., in postfix form: x 2 y ∗ −

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 124 / 225

*

Control flow graph

The control flow graph (CFG) models the transfers of control in the
procedure

nodes in the graph are basic blocks
straight-line blocks of code
edges in the graph represent control flow
loops, if-then-else, case, goto

if (x=y) then
s1

else
s2

s3

x=y?

s2s1

s3

falsetrue

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 125 / 225

*

3-address code

At most one operator on the right side of an instruction.
3-address code can mean a variety of representations.
In general, it allow statements of the form:
x ← y op z

with a single operator and, at most, three names.
Simpler form of expression:
x - 2 * y

becomes
t1 ← 2 * y
t2 ← x - t1

Advantages
compact form (direct naming)
names for intermediate values

Can include forms of prefix or postfix code

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 126 / 225

*

3-address code: Addresses

Three-address code is built from two concepts: addresses and
instructions.

An address can be
A name: source variable program name or pointer to the Symbol
Table name.
A constant: Constants in the program.
Compiler generated temporary:

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 127 / 225

*

3-address code

Typical instructions types include:

1 assignments x ← y op z

2 assignments x ← op y

3 assignments x ← y

4 branches goto L

5 conditional branches
if x goto L

6 procedure calls
param x1, param x2, . . .param xn and
call p, n

7 pointer assignments: *x = y.

How to translate:

if (x < y) S1
else S2

?

x = y[i];

?

x = *y;

?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 128 / 225

*

Program Dependence Graphs (PDGs)

PDG is a standard representation of control and sequential data
dependencies.
Like CFG, a PDG node represents an arbitrary sequential
computation (basic-block).
A PDG edge - can represent control or data-dependence.
PDG is a graph (N,Ecd,Edd)

For a,b ∈ N:
(a,b) ∈ Ecd if control may be transferred from a to b.
(a,b) ∈ Edd if b is data dependent than a.

There exists variable v, such that v ∈ Def (a) and v ∈ Use(b).
This definition of v from a reaches b.

Edges may have labels.
Control dependence edges: (i) true/false, (ii) unconditional
Data dependence edges: What type of dependence? Example:

loop carried / independent.
direction vector or distance vector.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 129 / 225

*

Parallel Program Graph

Parallel Program Graph (PPG) is a general intermediate
representation of parallel programs.

includes PDG and CFG.
PPGs include

control edges that represent (parallel) flow of control, and
synchronization edges that impose ordering constraints on the
execution instances of PPG nodes.

In PPGs, unlike in PDGs, we can have dependencies from a
future iteration to a past iteration.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 130 / 225

*

PPG (contd).

A PPG is a graph (N,Econt,Esync)

Econt ⊆ N×N×{T,F,U}
Esync ⊆ N×N× syncConds, where syncConds represents the set of
conditions.
Nodes: START, END, PREDICATE, COMPUTE, or MGOTO

Start

S1

S2 [mgoto]

S3 S4

S5 S6

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 131 / 225

*

Program Structure Tree/Graph

PST is a single-entry-single-exit (SESE) representation of a
function.
Consider a language that supports two special constructs:

async S – Creates an asynchronous task.
finish S – Waits for all the asynchronous tasks in S.
atomic S – ensures mutual exclusion.

A PST (N,E) is for a procedure is rooted tree,
N is a set of nodes
A node can be root, compute-statement, if-else, if, loop, async,
finish, atomic.
E is a set of tree edges obtained by collapsing the AST
representation of the procedure into the eight nodes types.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 132 / 225

*

PST Example

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 133 / 225

*

Extending PST to obtain Program Structure Graph

Add another type of node: call
Add an edge from the call-node to each possible function it may
call.
The graph no longer will be a tree.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 134 / 225

*

Parallel Execution Graph (PEG)

Obtained by combining the CFGs of each thread via special
edges.
Use cloning to resolve alias resolution:

Consider a code:
synchronized(x) S

Say, x points to {R1, R2}.
Produce a structure with two branches:

one branch has a monitor access to S with R1 as the lock.
second branch has a monitor access to S with R2 as the lock.

Methods:
Regular methods - inline.

Results in a single CFG for each thread.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 135 / 225

*

Parallel Execution Graph (PEG) (contd.)

Nodes in the graph: Nodes of the CFGs.
Add edges from the CFG nodes of one thread to the other. Edges
can be

Thread create
notify

Each edge due to a communication methods (thread create/ wait /
notify etc) is labeled:

(object, name, caller) – receiver object, method name,
caller thread id.
Short cut: replace “this” with “*”.

Special nodes for entrance and exit points of synchronized blocks.

(lock-obj, entry, thread-id)
(lock-obj, exit, thread-id)
both outside the synchronized block.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 136 / 225

*

Parallel Execution Graph (PEG) (contd.)

Modelling the wait call:
Recall at a wait call:

Lock is released.
Reacquires the lock on notification.

Transform the CFG node:

(lock, notified-entry, t) indicates received notification and waiting.
Shaded region - synchronized block.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 137 / 225

*

Parallel Execution Graph (PEG) (contd.)

Different types of edges:
waiting edge: between waiting and notified-entry
local edge: non waiting edge between two nodes of the same CFG.
start edge: from (t,start,*) to (*,begin,t)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 138 / 225

*

Example (PEG)

class Writer extends Thread {
public static void main(..){
Buffer buffer = new Buffer();
Reader r1 = new Reader(buffer);
Reader r2 = new Reader(buffer);
r1.start();
r2.start();
while(notDone()){
synchronized(buffer) {

buffer.write();
buffer.notifyAll();

}
}
r.join();
r2.join();
}

}

class Reader extends Thread {
Buffer buffer;
public Reader (Buffer b) {

buffer = b;
}
public void run(){

while (notDone()){
synchronized(buffer) {
while(buffer.isEmpty()){

buffer.wait();
}
buffer.read();

}
}

}
}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 139 / 225

*

Parallel Execution Graph (PEG) (contd.)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 140 / 225

*

MHP Analysis

Auxiliary Challenge
Compute the MHP map for each statement in the program (based on
the key question 1).

Auxiliary Challenge
Compute the MHP map for each pair of statements in the program
(based on the key question 2).

Auxiliary Challenge 1 ∀s1: MHP(s1)
Auxiliary Challenge 2 ∀s1,s2: MHP(s1,s2)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 141 / 225

*

MHP Analysis for Java Programs

Consider the constructs, thread creation, join, wait, notify, and
synchronization.
Input: PEG
For each PEG node n

M(n): Nodes that may run in parallel with n.
OUT(n): MHP information propagated to the successor(s) of n.
A worklist based algorithm.

worklist initialized to: start nodes of the main thread, reachable
from the begin node the main thread.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 142 / 225

*

Computing Notify Edges

Special edges have to added during the analysis.
notify edge: from (obj, notify, r) to (obj, notified-entry, s)
or from notifyAll node.

NotifySucc(n)=

 {m|m ∈ (obj,notified-entry,*)
∧WaitingPred(m) ∈M(n)} if n ∈ notifyNodes(obj)

undefined otherwise

Q: Why we cannot insert them before starting the analysis?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 143 / 225

*

What if statically the receiver points to more than
object?

NotifySucc(n)=

 {m|m ∈ (obj,notified-entry,*)
∧WaitingPred(m) ∈M(n)} if n ∈ notifyNodes(obj)

undefined otherwise

Say, the node n is of the form x.notify, and x may point-to {O1, O2,
O3}. Similarly, say the node m is of the form y.notified-entry and
y may point-to {O1, O2, O4},
Then we will add {O1, notified-entry, *}, and {O2,
notified-entry, *} to NotifySucc(n).

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 144 / 225

*

Computing M sets

N(t): set of all PEG nodes in the thread t.

thread(n): maps each node in the PEG to the thread to which it belongs.

M(n) = M(n)∪

(∪p∈startPred(n)OUT(p)
−N(thread(n))) if n ∈ (*,begin,*)
((∪p∈NotifyPred(n)OUT(p))
∩ OUT(WaitingPred(n)))
∪ GENnotifyAll(n) if n ∈ (*,notified-entry,*)
∪p∈localPred(n)OUT(p) otherwise

1 Intersection: (1) the thread of n is waiting for a notification and (2) one of
the notify predecessors of n executes.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 145 / 225

*

Computing auxiliary maps

notifyAll can awake multiple threads.
All the corresponding notified-entry nodes may all execute in
parallel.
A node m is put in GENnotifyAll(n) if

m refers to the same lock object obj as n does,
the WaitingPred nodes of m and n may happen in parallel, and
there is a node r labeled (obj, notifyAll, *) that is a notify
predecessor of both m and n.

GENnotifyAll(n) =

Φ, if n ̸∈ (obj,notified-entry,*)
{m|m ∈ (obj,notified-entry,*)∧

WaitingPred(n) ∈M(WaitingPred(m))∧
(∃r ∈ N : r ∈ (obj,notifyAll,*)∧
r ∈ (M(WaitingPred(m))∩M(WaitingPred(n))))},

if n ∈ (obj,notified-entry,*)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 146 / 225

*

What if statically the receiver points to more than
object?

GENnotifyAll(n) =

Φ, if n ̸∈ (obj,notified-entry,*)
{m|m ∈ (obj,notified-entry,*)∧

WaitingPred(n) ∈M(WaitingPred(m))∧
(∃r ∈ N : r ∈ (obj,notifyAll,*)∧
r ∈ (M(WaitingPred(m))∩M(WaitingPred(n))))},

if n ∈ (obj,notified-entry,*)

For the node m of the form, t.notified-entry, say t points to
{O1,O2,O3}. Similarly, for the node r of the form x.notifyAll, say x
points to {O1,O2,O4}. Then we will add the notified-entry statement to
GENnotifyAll(n) for both {O1, notified-entry, *}, and {O2,
notified-entry, *},

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 147 / 225

*

Computing the OUT Sets

OUT(n) = (M(n)∪GEN(n))−KILL(n)

GEN(n) may (or) not run in parallel with n, but may execute in
parallel with n’s successors.
KILL(n): set of nodes that must NOT be passed to n’s successors

n may run in parallel with nodes of KILL(n).

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 148 / 225

*

Computing the GEN Sets

if n is a start node
Add the corresponding the begin node.
start and begin don’t run in parallel.

n is a “notify” node.
Local successors of n may happen in parallel with NotifySucc(n)

GEN(n) =

(*,begin,t), if n ∈ (t,start,*)
NotifySucc(n), if ∃obj : n ∈ notifyNodes(obj)
Φ otherwise

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 149 / 225

*

What if statically the receiver points to more than
object?

if n is a node of the form x.start and x points to {O1, O2}.
Add begin node corresponding to both O1 and O2.
start and begin don’t run in parallel.

n is a “notify” node of the form x.notify and x points to {O1,
O2}.

Local successors of n may happen in parallel with NotifySucc(n)
Note: NotifySucc(n) already includes all the nodes corresponding to
O1 and O2.

GEN(n) =

(*,begin,t), if n ∈ (t,start,*)
NotifySucc(n), if ∃obj : n ∈ notifyNodes(obj)
Φ otherwise

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 150 / 225

*

Computing the KILL Sets

If n is a join node:
after n completes, no nodes from t may execute.

If n is an entry (or notified-entry) node:
after n completes, thread is inside the monitor.
KILL includes all nodes from this monitor.

n is a notifyAll
no threads will wait for this object after n.

KILL(n) =

N(t), if n ∈ (t,join,*)
Monitorobj, if n ∈ (obj,entry,*)∪

(obj,notified-entry,*)
WaitingNodes(obj) if (n ∈ (obj,notify,*)∧

|waitingNodes(obj) |= 1)∨
(n ∈ (obj,notifyAll,*))

Φ otherwise

Other points: Inverse maps.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 151 / 225

*

What if statically the receiver points to more than
object?

Note: We want to kill information, only if we have “must” information.
If n is a node of the form x.join and x must point to a singleton
object then:

after n completes, no nodes from t may execute.
If n is an entry (or notified-entry) node:

after n completes, thread is inside the monitor.
KILL includes all nodes from this monitor only if the receiver
variable of entry/notified-entry must point-to a single object.

n is a notifyAll
no threads will wait for this object after n, only if the receiver must
point-to only a single object.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 152 / 225

*

References

An Efficient Algorithm for Computing MHP Information for Concurrent
Java Programs. Naumovich-Avrunin-Clarke. FSE 1999.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 153 / 225

*

Deadlock analysis for concurrent
objects [Flores-Montoya et al.,
FORTES 2013]
Termination and cost analysis for
concurrent loops [Albert et al., ATVA
2013]
Slicing [Krinke, PASTE 1998]
Precise dependence analysis +
Optimizing task parallel programs
[Nandivada et al., TOPLAS 2013]

The speed of the MHP analysis plays a key role in the speed and
effectiveness of these dependent optimizations and analyses.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 154 / 225

*

MHP Analysis for task parallel programs

May Happen in Parallel Analyses.
For languages that support async-finish-atomic parallelism.

async statement creates lightweight tasks.
finish acts as a task join/termination construct.
atomic is realizes mutual exclusion.
Example languages: X10, HJ and so on.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 155 / 225

*

Language subset under consideration: KX10

async S : creates an activity to execute S.
finish S : ensures activity termination.

IEF: Immediately Enclosing Finish

atomic S : realizes global critical section.

// Parent Activity
finish {

S1; // Parent Activity
async {

S2; // Child Activity
}
S3; // Parent activity continues

}
S4;

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 156 / 225

*

Background: Program Structure Tree (PST)

A program representation that compresses an abstract syntax tree to
consider:

root, seq-stmt, loop, async, finish and atomic.

S0: finish {
S1: async {
S13: finish {

S5: ...
S6: async S11
S7: async S12

}
S8: ...
S9: ...
S10: ... } // end async

S2: ... } // end finish
S3: ...
S4: ...

Root

S0:finish S3

S2

S8 S10

S1:async

S5

S13:finish S9

S4

S7:async

S12

S6:async

S11

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 157 / 225

*

Incremental MHP Analysis

Initialization +
Replace par-
allel entries of
pst with dummy
nodes+remember

Re-introduce
finish en-
tries one at a
time

Re-introduce
async en-
tries one at a
time

Re-introduce
atomic en-
tries one at a
time

pst

SeqP

List

CPF
1

List

CPFA
2

List

MHP(S)
&

∀ S MHP(S)

1CPF = SeqP + replaced finish nodes.
2CPFA = CPF + replaced async nodes.

Order of re-introduction not important.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 158 / 225

*

iMHP-addFinish

1 Function iMHP-addFinish(PST pst, Node L)
2 begin

// Do nothing to the MHP maps!

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 159 / 225

*

iMHP-addAsync

1 Function iMHP-addAsync(PST pst, Node L)
2 begin
3 A = IEF(L);// Tasks that may

contain L
/* Add to the MHP map of each

stmt inside the proposed
task, all the stmts within
the common IEF that may start
after the task. */

4 m = {};
5 foreach s ∈ Descendents(A) do
6 if s is reachable from L then m = m∪{s}

;

7 D = Descendents(L);
8 foreach l ∈ D do MHP(l) = MHP(l)∪m;

// Update the MHP maps of the
statements in m

9 foreach a ∈ m do
10 MHP(a) = MHP(a)∪D;

(D)

finish

async

finish

(L)

(A)

m

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 160 / 225

*

Illustration

Root

S0:finish S3

S2

S8 S10

S1:async

S5

S13:finish S9

S4

S7:async

S12

S6:async

S11

Root

S0:dummy S3

S2

S8 S10

S1:dummy

S5

S13:dummy S9

S4

S7:dummy

S12

S6:dummy

S11

Initialization:
List={S13:finish,
S0:finish, S6:async,
S7:async, S1:async}
∀ s, MHP(s)={}
Root

S0:finish S3

S2

S8 S10

S1:dummy

S5

S13:finish S9

S4

S7:dummy

S12

S6:dummy

S11

Process finish updates:
MHP(s) = {}, where s∈{S0, S1,
S2, S3, S4, S5, S6, S7, S8, S9,
S10, S11, S12, S13}
Root

S0:finish S3

S2

S8 S10

S1:dummy

S5

S13:finish S9

S4

S7:dummy

S12

S6:async

S11

Process S6:async:
MHP(S11) = {S12, S7}
MHP(S7) = MHP(S12) = {S11}
MHP(s)={} where
s ̸∈{S7,S11,S12}
Root

S0:finish S3

S2

S8 S10

S1:dummy

S5

S13:finish S9

S4

S7:async

S12

S6:async

S11

Process S6:async:
MHP(S11) = {S12, S7}
MHP(S7) = MHP(S12) = {S11}
MHP(s)={} where s̸∈{S7,S11,S12}

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 161 / 225

*

iMHP-addAtomic

1 Function iMHP-addAtomic(PST pst, Node L1)
2 begin
3 D = Descendents(L1);
4 foreach L2 ∈MHP(L1) do
5 if inAtomic(L2) then
6 MHP(L1) = MHP(L1)−{L2};

7 foreach L2 ∈ Nodes do
8 if inAtomic(L2) then
9 if L1 ∈MHP(L2) then

10 MHP(L2) = MHP(L2)−{D};

11 foreach s ∈ D do // includes L1
12 inAtomic (s) = true;
13 MHP(s) = MHL(L1);

Q: If two atomics don’t have any conflicting accesses they need not run in
order. How to fix the algorithm?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 162 / 225

*

iMHP-addAtomic
1 Function iMHP-addAtomic(PST pst, Node L1)
2 begin
3 D1 = Descendents(L1);
4 foreach Atomic statement L2 ∈MHP(L1) do
5 D2 = Descendents(L2);
6 if D1 and D2 access some common memory location and one of

the accesses is a write then
7 MHP(L1) = MHP(L1)−{D2};

8 foreach Atomic L2 ∈ Nodes do
9 if L1 ∈MHP(L2) then

10 D2 = Descendents(L2);
11 if D1 and D2 access some common memory location and one

of the accesses is a write then
12 MHP(L2) = MHP(L2)−{D1};

13 foreach s ∈ D1 do
14 MHP(s) = MHL(L1);

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 163 / 225

*

Complexity Argument

iMHP-add* invoked O(C) times.
iMHP-addFinish — O(1).
iMHP-addAsync

efficient disjoint-set union-find
algorithms for union, find, delete.
Amortized complexity
iMHP-addAsync: O(N×α(N)).

Amortized complexity
iMHP-addAtomic: O(N×α(N)).
Overall complexity:
O(C×N×α(N))≈ O(C×N).
Cost of MHP(S) = O(C×N).
Cost of ∀ S, MHP(S) = O(C×N).

1 Function
iMHP-addAsync(PST pst,
Node L)

2 begin
3 A = IEF(L); m = {};
4 foreach

s ∈ Descendents(A) do
5 if s is reachable from

L then
6 m = m∪{s}

7 D = Descendents(L);
8 foreach l ∈ D do
9 MHP(l) = MHP(l)∪m

10 foreach a ∈ m do
11 MHP(a) =

MHP(a)∪D;

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 164 / 225

*

Data Race Detection

Data Races - a common programming error.
Two memory accesses lead to a data race.

If the memory accesses are performed by two “concurrent” threads.
At least one of the accesses is a write.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 165 / 225

*

Basic idea behind static data-race detection

Q: Is there a data-race between two statements S1 and S2?
MHP(S1, S2) = true
If both S1 and S2 access a common memory location.
If one of the accesses is a write.

Challenges in Static Data race detection.
MHP analysis is imprecise.
Leads to too many (spurious) data-race reports.
Makes the tools unusable.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 166 / 225

*

(Dynamic) Data race detection in the presence of locks

MHP(S1, S2) = true
If both S1 and S2 access a common memory location.
If one of the accesses is a write.
the accesses are made without holding a common lock.

Lockset based analysis.

Use the Dynamic trace to determine the possible racy executions.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 167 / 225

*

Insufficiency of Lockset based analysis

Thread1

w(y)
acq(l)
w(x)
rel(l)

---------------------->

Thread2

acq(l)
r(x)
r(y)
rel(l)

Access to y occurs in both the threads.
Accesses don’t happen using any shared lock.
But, the accesses are ordered!

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 168 / 225

*

Happens Before Analysis for Data-race detection

If we know that
statement S1 happens before (HB) S2.
or S2 (HB) S1

then there can be no race between S1 and S2.

Thread1

w(y)
acq(l)
w(x)
rel(l)

---------------------->

Thread2

acq(l)
r(x)
r(y)
rel(l)

HB Analysis based race detectors identify event ordering communications.
Only unordered events can lead to races.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 169 / 225

*

Happens Before Partial Order

Orders all events by a single thread - program order.
Orders lock releases/acquires of the same lock - in the order in
which they are observed.
(Include other forms of communication)
The remaining unordered events may potentially run in parallel.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 170 / 225

*

Insufficiency HB race detection

Locks lead to soft ordering.
lock based synchronized blocks can be reordered in a different
execution.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 171 / 225

*

Insufficiency of HB based race detectors.

1 class PolarCoord {
2 int radius, angle;
3 int count; // counts accesses
4
5 static PolarCoord pc = new PolarCoord();
6
7 void setRadius(int r) {
8 count++;
9 synchronized(this) { radius = r; }
10 }
11
12 int getAngle() {
13 int t;
14 synchronized(this) { t = angle; }
15 count++;
16 return t;
17 }
18 public static void main(String[] args){
19 fork { pc.setRadius(10); }
20 fork { pc.getAngle(); }
21 } }

The count field
counts the number
of calls to
setRadius and
getAngle.

Race?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 172 / 225

*

Performance of HB race detectors

Thread1

r(count)
w(count)
acq(this)
w(radius)
rel(this)

------->

Thread2

acq(this)
r(angle)
rel(this)
r(count)
w(count)

Thread1

r(count)
w(count)

acq(this)
w(radius)
rel(this)

Thread2

acq(this)
r(angle)
rel(this)

r(count)
w(count)

HB says “race” for the second trace, and not for the first.
Reality - Race present in both.
First trace is considered to have a “predictable” race.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 173 / 225

*

Causally Precedes as an Alternative to HB

A race occurs if two conflicting actions are not CP-ordered.
CP-ordering identifies “predictable” races.
Note: considering all possible reorderings can be quite expensive.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 174 / 225

*

Form of the trace

Each trace event is of the form [t : a]i,
t is the thread id.
a is the action (e.g., w(x),r(x),acq(l),rel(l))
i is the event’s index in the global trace.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 175 / 225

*

Defining HB relation

Events of the same thread program order
([t :]i1 ≪HB [t :]i2), if i1 < i2

Release and acquire on the same lock - ordered as they appear
[t1 : rel(l)]ir ≪HB [t2 : acq(l)]ia , if ir < ia

HB is closed under composition (transitivity). ≪HB= (≪HB o≪HB)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 176 / 225

*

Defining Casually Precedes relation

Smallest relation such that
Release-acquire relation between critical sections over the same
lock with conflicting events.

[t1 : rel(l)]ir ≪CP [t2 : acq(l)]ja , if
[t1 :]k1 conflicts with [t2 :]k2 such that
ia < k1 < ir < ja < k2 < jr, where
(ia and ir) acq-rel pairs in t1 and
(ja and jr) acq-rel pairs in t2.

Release-acquire relation between critical sections over the same
lock that contains CP-ordered events.

[t1 : rel(l)]ir ≪CP [t2 : acq(l)]ja , if
acq pair of ir in t1≪CP rel pair of ja in t2.

CP is closed under left and right composition with HB
≪CP= (≪HB o≪CP) = (≪CP o≪HB)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 177 / 225

*

CP Vs HB

CP is a subset of HB.
First two rules a subset of the rel-acq edges.

Thus weaker.
But leads to sound results.

Two events have CP-race, if (i) the events are conflicting, (ii) the event
are not CP-ordered (in either direction).

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 178 / 225

*

Example

Thread1

w(y)
acq(l)
rel(l)

---------------------->

Thread2

acq(l)
rel(l)
w(y)

Race exists?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 179 / 225

*

More examples and details

See the example in Sections 2.2 and 3 in “Sound Predictive Race
Detection in Polynomial Time”,
Smaragdakis-Evans-Saadoswki-Yi-POPL-2012.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 180 / 225

*

Deadlock: recap definitions

In a concurrent program involving a group of more than one actor
(process/thread):

Each member of the group is waiting for the another member to
take some action and
None make any progress.
Example:

Thread T1, takes Lock L1 and is waiting for lock L2.
Thread T2, takes lock L2 and is waiting for lock L1.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 181 / 225

*

Deadlock: necessary conditions (recap)

Coffman conditions: A deadlock can arise, if and only if all of the
following conditions occur simultaneously in a system:

Mutual Exclusion: At least one resource must be held in a
non-shareable mode.
Hold and wait: A thread must hold on to a non-shareable resource
and waiting for another.
No preemption: Once a thread is holding onto a non-shareable
resource, it cannot be preempted, unless released by the thread
itself.
Circular wait: Each thread waits on resources held by another
process. This can be a long chain of waits, such that the last
member is waiting for the resource held by the first thread.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 182 / 225

*

Static Deadlock Detection

Reference: Effective Static Deadlock Detection, Mayur Naik,
Chang-Seo Park, Koushik Sen, David Gay, ICSE 2009.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 183 / 225

*

Outline
1 Introduction

Formalities
Overview
Parallelism and its impact on performance
Introduction Parallel constructs
Java Concurrency

2 Program Analysis Basics
Forward Analysis
Backward Analysis (a brief overview)
Dimensions of Analysis
Points-to/Alias Analysis
Dimensions of Analysis: Inter-/Intra- procedural
Call Graph Construction
Dependence Analysis

3 Symbol Tables and Intermediate Representation
Symbol Tables
Intermediate Representation

4 Data Race Detection
5 Memory consistency models
6 Conclusion

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 184 / 225

*

Memory Consistency Models

A memory consistency model is
a set of rules governing how the memory systems will process
memory operations from multiple processors.

Order in which memory operations will appear to execute -
determines what value should a read return?

a contract between programmer and system.
Determines what optimizations can be performed for correct
programs.

Affects : Ease of programming, performance, and all the program
analysis tools/techniques.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 185 / 225

*

Uniprocessor Memory model

Memory value requirement: Memory operations occur in program
order: read returns the value of the last write in program order.
Simple to reason about.
Compiler optimizations preserve these semantics.
Independent operations can execute in parallel.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 186 / 225

*

Strict consistency

Strictest memory model.
Requires that the ‘read’ should get the value written by the last
‘write’.
Requires a Global clock ≡ Halting problem.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 187 / 225

*

Sequential consistency

[Lamport]: A multiprocessor system is sequentially consistent if the
result of any execution is the same as if the operations of all
processors were executed in some sequential order, and the
operations of each individual processor appear in the order specified
by the program.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 188 / 225

*

Sequential consistency

Result of an execution appears as if:
All operations executed in some sequential order.
Memory operations of each process in program order.
Nothing specified about caches, write buffers.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 189 / 225

*

Understanding Program Order. Dekker’s Algorithm for synchronization

Flag1 = Flag2 = 0

P1
Flag1 = 1
if Flag2 == 0

critical section

Execution:

P1
(Op, Loc, Val)
Write, Flag1, 1

Read, Flag2, 0

P2
Flag2 = 1
if Flag1 == 0

critical section

P2
(Op, Loc, Val)
Write, Flag2, 1

Read, Flag1, __

Reads of 1 by Flag1 Flag2 are valid.
Problematic situation

Write buffers with read bypassing.

Overlap or reorder writes/reads by compiler / hardware.

Values in registers.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 190 / 225

*

Understanding Program Order. Ex 2

A = Flag = 0

P1
A = 23;
Flag = 1;

Execution:

P1
(Op, Loc, Val)
Write, A, 23
Write Flag, 1

P2
while (Flag != 1) ;
... = A;

P2
(Op, Loc, Val)
Read, Flag, 0

Read, Flag, 1
Read A, ---

Problematic situation
Overlap or reorder writes/reads by compiler / hardware.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 191 / 225

*

Write Atomicity

Initially A = B = C = 0
P1 P2 P3 P4
A = 1; A = 2; while (B != 1) ; while (B != 1) ;
B = 1; C = 1; while (C != 1) ; while (C != 1) ;

tmp1 = A; tmp2 = A;
Q: What are the possible values of tmp1 and tmp2?
Q: Can tmp1 = 1 and tmp2 = 2 be possible? How?

Cache coherence protocol must serialize writes to same location.
Writes to same location should be seen in same order by all.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 192 / 225

*

Atomicity Ex 2

if ‘read’ returns a new value before all copies see it.
Read others’-write early optimization is unsafe.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 193 / 225

*

Sequential Consistency implementation

Implementations of this model must satisfy the following:
Program Order Requirement : The operations of same processor
must be executed in program order
Write Atomicity : All writes appear to be instantaneous (no buffer).
All processors must see all write operations in the same order
(cache coherence).
Easier to implement in architectures with no cache, no write
buffers, blocking reads, .

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 194 / 225

*

Sequential Consistency - issues

Sequential Consistency constraints
write→ read
write→ write
read→ read, write

Implications (not allowed)
Read others’ write early.
Read own write early.
Unserialized writes to the same location.

Simple model to reason about given parallel programs.
Makes it very hard to modify a parallel program (automatic and
manual)

Processor reordering for performance - write buffers, overlapped
writes, non-blocking reads
Compiler transformations - scalar replacement, register allocation,
instruction scheduling.
Programmer reordering code for aesthetics/SE requirements.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 195 / 225

*

Sequential consistency - too strict

Many architectures do not give SC.
Compiler optimizations on SC are limited.
Sofwtware engineering issues.

Give up!
Use weaker models - relax the program order requirement and
write atomicity requirement.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 196 / 225

*

Sequential consistency (English)

Memory operations of each process happens in program order.
any valid interleaving of read and write operations is OK.
all processes must see the same interleaving.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 197 / 225

*

Sequential consistency examples

P1 W(x)1
P2 W(x)2
P3 R(x)2 R(x)1
P4 R(x)2 R(x)1

Sequentially consistent - as both P3 and P4 see writes in the same
sequential order.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 198 / 225

*

Sequential consistency (counter) example

P1 W(x)1
P2 W(x)2
P3 R(x)2 R(x)1
P4 R(x)1 R(x)2

Sequentially inconsistent - as both P3 and P4 see writes in the two
different sequential orders.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 199 / 225

*

Sequential consistency (counter) example

x = y = z = 0
P1 P2 P3
x = 1; y = 1 z = 1
print(y,z) print (x,z) print (x,y)

Inconsistent execution:

1. x = 1
2. print (y, z); // 0, 0
3. print (x, z); // 1, 0
4. y = 1;
5. z = 1;
6. print (x, y); // 1, 1

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 200 / 225

*

Causal Consistency

Slightly weaker than Sequential Consistency Model.
Causally related memory operations : issued by same processor
and access same memory location - are seen by every node in
causal order.
Causal order is transitive.

memory operations that are causally related must have a total order
and
program order for the ones issued by same processor.

Hence such memory operations must be seen in same order by
all processors.
Here, write atomicity has been slightly weakened.
weaker than sequential consistency, which requires that all nodes
see all writes in the same order.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 201 / 225

*

Causal consistency (example)

P1 W(x)1 W(x)3
P2 R(x)1 W(x)2
P3 R(x)1 R(x)3 R(x)2
P4 R(x)1 R(x)2 R(x)3

Causally consistent, but not sequentially/strict consistent.
Processors may see different order.
All orders respect causal order (program order and read-write
order).
Has no global order, partial order for each processor.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 202 / 225

*

Causal consistency (counter) Example

P1 W(x)1
P2 R(x)1 W(x)2
P3 R(x)2 R(x)1
P4 R(x)1 R(x)2

Violates causal consistency.
Removing the Read from the P2 – makes the execution causally
consistent.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 203 / 225

*

PRAM consistency

All processes see memory writes from one process in the order
they were issued from the process.
Writes from different processes may be seen in a different order
on different processes.
no guarantees about the order in which different processes see
writes, except that two or more writes from a single source must
arrive in order, as though they were in a pipeline.

P1 W(x)1
P2 R(x)1 W(x)2
P3 R(x)2 R(x)1
P4 R(x)1 R(x)2

PRAM ≤ Causal ≤ SC ≤ Strict
(Also known as, FIFO consistency, or Processor consistency)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 204 / 225

*

Weak Ordering

Divide memory operations into data operations and
synchronization operations
Synchronization operations act like a fence.

All data operations before synch in program order must complete
before synch is executed.
All data operations after synch in program order must wait for synch
to complete.
Synchronizations are performed in program order.
All accesses to synchronization variables are seen by all processes
(or nodes, processors) in the same order (sequentially) - these are
synchronization operations. Accesses to critical sections are seen
sequentially.
All other accesses may be seen in different order on different
processes

Illusion of write atomicy has to be maintained.
Hardware implementation of fence: processor has counter that is
incremented when data op is issued, and decremented when data
op is completed.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 205 / 225

*

Weak Ordering

Example 1:
P1 W(x)1 W(x)2 Sync
P2 R(x)1 R(x)2 Sync
P3 R(x)2 R(x)1 Sync

Example 2:
P1 W(x)1 W(x)2 Sync
P2 SyncR(x)2

The programmer has to manage synchronization explicitly.
Weak ≤ PRAM ≤ Causal ≤ SC ≤ Strict

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 206 / 225

*

Weak consistency (counter) example

P1 W(x)1 W(x)2 Sync
P2 SyncR(x)1

P2 will observe the most recent write of the variable x, which has
the value 2. Thus, it’s not a valid sequence.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 207 / 225

*

Release Consistency

A problem with weak consistency: when a synchronization variable is accessed,
we do not know whether it is done because the process is finished writing
shared data or is about to start reading data.
Synchronization instructions divided : Acquire (such as lock) and Release (such
as unlock).
Acquire: Any memory operation after acquire must be executed only after
acquire is completed (and seen by all).

Release :

Release must be executed only when all memory operations
statements are complete.
But accesses after ‘release’ in program order do not have to wait for
release (unless protected by another acquire).

do “acquire” = that writes on other processors to protected variables will be
known
do “release” = that writes to protected variables are exported
and will be seen by other machines when they do a “lock” (lazy release
consistency) or immediately (eager release consistency)
Total order among all synchronization instructions must be maintained.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 208 / 225

*

Weak and Release comparison

Weak: Shared data can be counted on to be consistent only after
a synchronization is done.
Release: Shared data are made consistent when a critical region
is exited.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 209 / 225

*

Release Consistency - example

Example:
P1: L W(x)1 W(x)2 U
P2: L R(x)2 U
P3: R(x)1

RC ≤Weak ≤ PRAM ≤ Causal ≤ SC ≤ Strict

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 210 / 225

*

Release Consistency - example

Example:
P1: W(x)1 W(x)2 L W(x)3 U
P3: Sync R(x)1

RC ≤Weak ≤ PRAM ≤ Causal ≤ SC ≤ Strict

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 211 / 225

*

Delta and Eventual consistency models

Delta consistency: The write operations will propagate through
the shared memory system and all the replicas will be consistent
after a fixed time period δ .

if an object is modified, during the short period of time following its
modification, the read may not be consistent.
after a fixed time period, the modification is propagated and the
read will be consistent.

Eventual Consistency Model : The writes propagates eventually
(we cannot have a fixed bound on the delay)

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 212 / 225

*

Eventual Consistency

Allow stale reads, but ensure that reads will eventually reflect
previously written values (no guarantees on delays)
Doesn’t order concurrent writes as they are executed, which might
create conflicts later: which write was first?
More concurrency opportunities than strict, sequential, or causal
consistency.
Used a lot: Amazon: Dynamo, a key/value store, file
synchronization

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 213 / 225

*

Total Store Ordering (TSO)

Key operations:store, FLUSH and atomic load/store instructions
Sequence in which key operations appear in memory for a given
processor is identical to the sequence in which they were issued
by the processor.

SPARC and x86 both support TSO.

Allows the usage of Write Buffers, compared to Sequential
Consistency.

A = B = 0

P1
A = 1

Read B

P2
B = 1

Read A

// A = B = 0 ?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 214 / 225

*

Total Store Order

Allows reordering stores to loads.
Can read own write early, not others.

Can read a variable before its own prior write is finished.

Writes by the same thread are not reordered.
Say <p gives the processor order, and <m gives the memory order.
Irrespective of memory locations (a = b or a ̸= b).

If L(a)<p L(b)⇒ L(a)<m L(b) // load after load
If L(a)<p S(b)⇒ L(a)<m S(b) // store after load
If S(a)<p S(b)⇒ S(a)<m S(b) // store after store
If S(a)<p L(b)⇒ S(a)<m L(b) // load after store

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 215 / 225

*

Partial Store order

PSO: Writes to different locations from the processor may reach
the memory out of order.

SPARC supports PSO.
Read yourself - STBAR instruction.

Irrespective of memory locations (a = b or a ̸= b).
If L(a)<p L(b)⇒ L(a)<m L(b) // load after load
If L(a)<p S(b)⇒ L(a)<m S(b) // store after load
If S(a)<p S(b)⇒ S(a)<m S(b) // store after store
If S(a)<p L(b)⇒ S(a)<m L(b) // load after store

A = B = 0

P1
A = 1

B = 1

P2
while (B == 0);

Read A

// P2 reads A as 0.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 216 / 225

*

Programmer centric models

Problem with relaxed models is that most of them are based on
the performance optimization that can be performed.
However, from a programmer’s perspective, it is not clear how to
use these effectively.

How to reason about programs for systems with relaxed memory
models
How to use the safety nets minimally, to get the desired semantics
from program

Even Sequential Consistency is not simple enough.
We need models which is simple for the programmer, but provides
enough information about program to apply optimization and get
efficiency.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 217 / 225

*

Programmer centric models

Programmers understand their code:
Different operations have different semantics
P1 P2
A = 23; while (Flag != 1) ;
B = 37; . . . = B;
Flag = 1; . . . = A;

Flag = Synchronization; A, B = Data
Can reorder data operations
Distinguish data and synchronization

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 218 / 225

*

Data Race Free 0 - DRF0

Data-Race-Free-0 Program
All access distinguished as either synchronization or data.
All races distinguished as synchronization (in any SC execution).

Data-Race-Free-0 Model
Guarantees SC to data-race-free-0 programs.
Others - reads return value of some write to the location.

A program is considered to be data-race-free-0 if and only if
1 for any sequentially consistent execution, all conflicting accesses

are ordered by the happens-before relation, and
2 all synchronization operation in the program are recognizable by

the hardware and each accesses exactly a single memory
location.

Example: TestAndSet instruction or normal access but to a special
memory location known to h/w.

References:
1. Weak ordering—a new definition, Sarita Adve and Mark Hill, ISCA 1990.
2. A Unified Formalization of Four Shared-Memory Models, Sarita Adve and Mark Hill,
TPDC 1993.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 219 / 225

*

Programming with Data Race Free 0 - DRF0

Needed information: for each operation: if it will race (in any SC
execution).
Procedure:

Write program assuming SC.
For each memory operation in the program:

Guaranteed to be no races? “Data access”: “synchronization”.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 220 / 225

*

Example for DRF0

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 221 / 225

*

Counter example for DRF0

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 222 / 225

*

Problems with data race free model

It does not define any semantics for programs with data races.
A concern for safe languages like Java, which provide safety for
any program and cannot let the behavior of a program to be
ambiguous.
Either define safe semantics for such programs or identify them
and prevent their execution.
Define higher abstractions for programmers which are inherently
data race free
Expensive for hardware to implement

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 223 / 225

*

Goals of Memory model

Programmability? - Lost intuitive interface of SC
Programmer must reason about the allowed behaviors.
Can be subtle.

Portability? - Many different models across different systems.
Code may not be portable.

Performance? - Can we do better?
Optimizations must take into consideration what’s allowed by the
hardware/language.

Future:
Parallel programs today are inherently non deterministic
We need deterministic outcomes from our parallel programs.
Deterministic Outcomes from Inherent non determinism.
Possible?

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 224 / 225

*

Advantages from relaxed models

Gains both in the H/W and compiler.
Gains in H/W (during execution):

latency hiding - can overlap many reads and writes.
Gain by the compiler:

more operations can be reordered. (compare with SC).

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 225 / 225

*

Impact on Compiler Optimizations

Compilers routines move code around.
Instruction scheduling, code motion, register allocation, common
sub-expression elimination, loop tiling, software pipelining, . . .

Safety of many of these optimizations depends on
data-dependency.
The definition of data-dependency in parallel programs is closely
tied to underlying memory consistency models.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 226 / 225

*

Example impact of memory consistency model - I/III

Impact of memory consistency model/parallelism on loop distribution.

// Before loop distribution
for (int i = ...) {
/*S1*/ X[f(i)]=...

;
async { /*S2*/...X̄[g(i)];}

}

=⇒

// After loop distribution
for (int i = ...)
/*S1*/X[f(i)]=... ;

for (int i = ...)
async { /* S2 */ ...X̄[g(i)];}

Loop distribution - basis?

Flow dependence from S1 to S2 on variable X (direction vector ≤).

In a sequential compiler

no async - cannot distribute; see loop-carried anti-dependence.

In a compiler for parallel programs:

No anti-dependence, and hence no dependence cycle. Hence we
can distribute.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 227 / 225

*

Example impact of memory consistency model - II/III
Impact of memory consistency model/parallelism on loop parallelization.

// Before loop ||n

int []A = new int[n]; //0 init
async {
for (int i=0;i<n;++i) {

a[i] = i;
} }
for (int j=1;j<n;++j)

assert (a[j] <= a[j-1]+1);

=⇒

// After loop ||n

int []A = new int[n]; // 0 init
async {

foreach (int i=0;i<n;++i) {
a[i] = i;

} }
foreach (int j=1;j<n;++j)

assert (a[j] <= a[j-1]+1);
Loop parallelization - basis?

If there is no async

Safe to parallelize L1 and L2 - as iterations are independent.
In a compiler for parallel programs (with async):

Safe to parallelize L2 - does not break any dependency.
L1: depends on the consistency model.

Sequential Consistency: a[i] and a[i+1] must be be seen in order
at L2. Cannot be parallelized.
weak ordering: a[i] and a[i+1] need not be seen in order at L2.
Can be parallelized.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 228 / 225

*

Example impact of memory consistency model - III/III

Impact of memory consistency model/parallelism on Constant Propagation.

// Before const prop
int x = 0;
async {

= x;
barrier
x = 2;
barrier
x = 3;
barrier;
= x;

}

async {
x = 1
barrier
= x ;

barrier
= x;

barrier
= x;

x = 4;
}

No asyncs?

With async:

Consistency model not aware of barriers.
Consistency model aware of barriers.

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 229 / 225

*

So long. . .

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 230 / 225

*

Sources

Wikipedia

fixstars.com

Jernej Barbic slides.

Loop Chunking in the presence of synchronization.

Vivek Sarkar’s slides.

Sarita Adve’s slides.

Nimit’s Singhania’s presentation.
http://regal.csep.umflint.edu/ swturner/Classes/csc577/Online/Chapter06/Chapter06.html

Java Memory Model JSR-133: “Java Memory Model and Thread Specification
Revision”

V.Krishna Nandivada (IIT Madras) CS6235 - Jan 2022 231 / 225

	Introduction
	Formalities
	Overview
	Parallelism and its impact on performance
	Introduction Parallel constructs
	Java Concurrency

	Program Analysis Basics
	Forward Analysis
	Backward Analysis (a brief overview)
	Dimensions of Analysis
	Points-to/Alias Analysis
	Dimensions of Analysis: Inter-/Intra- procedural
	Call Graph Construction
	Dependence Analysis

	Symbol Tables and Intermediate Representation
	Symbol Tables
	Intermediate Representation

	Data Race Detection
	Memory consistency models
	Conclusion

