CS1101 Introduction to Programming

Instructors: Krishna Sivalingam, V Krishna Nandivada, Rajsekar M,

Co-ordinator: Madhu Mutyam

Course Material - SD, SB, PSK, NSN, DK, TAG - CS&E, IIT M

1

2

3

Course Outline

- Introduction to Computing
- Programming (in C)
- Exercises and examples from the mathematical area of Numerical Methods
- Problem solving using computers

Evaluation

- Two Quizzes 30
- Programming Assignments 25
- End of Semester Exam 45
- Attendance taken in the lab and in lectures

Class Hours

- Class meets 3 times a week (E2 slot)
 - Monday 2.55 3.45 PM
 - Tuesday 1.00 1.50 PM
 - Wednesday 4.55 5.45 PM
- Venue
 - CRC 102 / CRC 103

Programming Assignments

• Class split into batches; One batch per weekday

4

5

6

- Time: 7:30 9:30 PM
- Venue: Departmental Computing Facility (DCF) in CSE Dept.

Policies

- Strictly no cell phone usage in class
 - Keep your cell phone turned offNot even in silent mode
 - $-\operatorname{No}$ SMS, chat etc.
- Cell phones will be confiscated if there are violations
 - Returned only after 2 weeks
- Repeat violations
 - Students will be sent to the Dean (Acad)

What is this CS110 about?

- Computer and its components
- Computing
- Programming Languages
- Problem Solving and Limitations of a Computer

Common uses of a Computer

- As a tool for storing and retrieving information

 Extracting and storing information regarding students entering IIT
- As a tool for providing services to customers – Billing, banking, reservation
- As a calculator capable of user-defined operations
 - Designing electrical circuit layouts
 - Designing structures
 - Non-destructive testing and simulation

What is a Computer?

- A computer is a *programmable machine*
- Its behavior is controlled by a program
- Programs reside in the *memory* of the machine – "The stored program concept"

The First Programmer

Augusta Ada King, Countess of Lovelace (December 10, 1815 – November 27, 1852), born Augusta Ada Byron, is mainly known for having written a description of Charles Babbage's early mechanical general-purpose computer, the analytical engine.

The programming language ADA is named after her.

ENIAC – The First Electronic Computer

Physically, ENIAC was massive compared to modern PC standards. It contained 17,468 vacuum tubes, 7,200 crystal diodes, 1,500 relays, 70,000 resistors, 10,000 capacitors and around 5 million hand-soldered joints. It weighed 27 tons, was roughly 2.4 m by 0.9 m by 30 m, took up 167 m², and consumed 150 kW of power.

Electronic Numerical Integrator and Computer, 1946-55 (Univ. Penn.) 13

Variables

- Data is represented as binary strings

 It is a sequence of 0's and 1's (bits), of a predetermined size "word". A *byte* is made of 8 *bits*.
- Each memory location may be given a *name*.
- The name is the *variable* that refers to the data stored in that location
 - e.g. rollNo, classSize
- Variables have *types* that define the interpretation of data
 - e.g. integers (1, 14, 25649), or characters (a, f, G, H)

Instructions

- Instructions take data stored in variables as arguments
- Some instructions do some operation on the data and store it back in some variable
 - e.g. The instruction "X ← X+1" on integer type says that "Take the integer stored in X, add 1 to it, and store it back in (location) X"
- Other instructions tell the processor to do something
 - e.g. "jump" to a particular instruction next, or to exit

18

Programs

- A program is a sequence of instructions
- Normally the processor works as follows,
 - Step A: pick next instruction in the sequence
 - Step B: get data for the instruction to operate upon
 - Step C: execute instruction on data (or "jump")
 - Step D: store results in designated location (variable)
 - Step E: go to Step A
- Such programs are known as *imperative programs*

Programming Paradigms

- Imperative programs are sequences of instructions. They are abstractions of how the von Neumann machine operates
 - · Pascal, C, Fortran
- Object Oriented Programming Systems (OOPS) model the domain into objects and interactions between them
 Simula, CLOS, C++, Java
- *Logic programs* use logical inference as the basis of computation
 - Prolog
- *Functional programs* take a mathematical approach of functions
 - LISP, ML, Haskell

A Limitation – Computer Arithmetic

- Number of digits that can be stored is limited
- · Causes serious problems

Consider a computer that can store: Sign, 3 digits and a decimal point Sign and decimal point are optional

example : 212, -212, -21.2, -2.12, -.212

21

19

More Examples

- 113. + -111. = 2.00
- 2.00 + 7.51 = 9.51
- -111. + 7.51 = -103.49 (exact arithmetic)

But our computer can store only 3 digits. So it rounds -103.49 to -103

This is a very important thing to know as a system designer. Why?

Why?

Consider 113. + -111. + 7.51

To us addition is associative (a+b)+c = a+(b+c)

(113. + -111.) + 7.51 = 2.00 + 7.51 = 9.51113. + (-111. + 7.51) = 113. - 103. = 10.0

23

24

22

Conclusion

- Computer is fast but restricted
- So we must learn to use its speed
- And manage its restrictions

Books

- Paul Deitel and Harvey Deitel. C: How to Program.
- V. Rajaraman: Computer Programming in C
- R. G. Dromey: How to Solve It By Computer Kernighan and Ritchie: The C Programming
- Language
- Kernighan and Pike: The Unix Programming Environment

The Blocks, Their Functions

- Input unit
 - Takes inputs from the external world via variety of input devices *keyboard, mouse, etc.*
- Output Unit
 - Sends information (after retrieving, processing) to output devices – monitors/displays, projectors, audio devices, etc.

More (try more filename on your Unix/Linux machine)

Memory

- Place where information is stored
- Primary memory
 - · Electronic devices, used primarily for temporary storage
 - · Characterized by their speedy response

- Secondary Memory

- Devices for long-term storage
- Contained well tuned mechanical components, magnetic storage media floppies, hard disks
- · Compact Disks use optical technology

Some More (Commands are in /bin, /usr/bin. Use ls)

• System Bus

- Essentially a set of wires, used by the other units to communicate with each other
- transfers data at a very high rate
- ALU Arithmetic and Logic Unit
 - Processes data add, subtract, multiply, ...
 - Decides after comparing with another value, for example

29

28

Finally (check man cp, man mv, man ls, man -k search string)

Control Unit

- Controls the interaction among other units
- Knows each unit by its name, responds to requests fairly, reacts quickly on certain critical events
- Gives up control periodically in the interest of the system

Control Unit + ALU is called the CPU

The CPU (editors vi, emacs used to create text)

- Can fetch an instruction from memory
- Execute the instruction
- *Store* the result in memory
- A program a set of instructions
- An instruction has the following structure *Operation operands destination*

• A simple operation add a, b Adds the contents of memory locations a and b and stores the result in location a

Assembly language

• An x86/IA-32 processor can execute the following binary instruction as expressed in machine language:

Binary: 10110000 01100001

mov al, 061h

- Move the hexadecimal value 61 (97 decimal) into the processor register named "al".
- Assembly language representation is easier to remember (*mnemonic*)

From Wikipedia

33

Higher Level Languages

- Higher level statement = many assembly instructions
- For example "X = Y + Z" could require the following sequence
 - Fetch the contents of Y into R1
 - Fetch the contents of Z into R2
 - Add contents of R1 and R2 and store it in R1

34

- Move contents of R1 into location named X

Sign - Magnitude Notation
Common cell lengths for integers : $k = 16$ or 32 or 64 bits
First bit is used for a sign
0 – positive number
1 – negative number
The remaining bits are used to store the binary magnitude of the number.
Limit of 16 bit cell : $(32,767)_{10} = (2^{15}-1)_{10}$
Limit of 32 bit cell : $(2,147, 483,647)_{10} = (2^{31} - 1)_{10}$
3

One's Complement Notation			
In the one's complement method, the negative of integer n is represented as the bit complement of binary n			
E.g. : One's Complement of $(3)_{10}$ in a 3 - bit cell complement of 011 : 100 -3 is represented as = $(100)_2$ Arithmetic requires care: 2 + (-3) = 010 + 100 = 110 - 0k	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		
But, 3 + (-2) = 011 + 101 = 000 and carry of 1 need to add back the carry to get 001! NOT WIDELY USED	Zero has two representations!		

In the two's complement method, the negative in a k - bit cell is represented as 2^k	
Two's Complement of $n = (2^k - n)$	
E.g. : Two's Complement of $(3)_{10}$ in a 3 - bit cell	
-3 is represented as $(2^3 - 3)_{10} = (5)_{10} = (101)_{10}$)2
Arithmetic requires no special care:	000: 0 001: +1
2 + (-3) = 010 + 101 = 111 - 0k	010: +2 011: +3
3 + (-2) = 011 + 110 = 001 and carry of 1	100: -4 (8-4
we can ignore the carry!	$101: -3 (8-3) \\ 110: -2 (8-2) \\ 110: -2 (8-2) \\ 110: -3 \\ 110: -$
WIDELY USED METHOD for -ve numbers	111 : -1 (8 - 1 40

Two's Complement Notation

The Two's Complement notation admits one more negative number than the sign - magnitude notation.

To get back <i>n</i> , read off the sign from the MSB	000: 0
If -ve, to get magnitude, complement the cell and add 1 to it!	$\begin{array}{r} 001: \ +1\\ 010: \ +2\\ 011: \ +3 \end{array}$
E.g.: $101 \rightarrow 010 \rightarrow 011 = (-3)_{10}$	100 : -4 101 : -3 110 : -2
	111 : -1
	41

Numbers with Fractions
Integer Part + Fractional Part
Decimal System - base 10 235 . 7846
Binary System - base 2
$10011 . 11101 = (19.90625)_{10}$ Fractional Part (0.7846) ₁₀ = $\frac{7}{10} + \frac{8}{10^2} + \frac{4}{10^3} + \frac{6}{10^4}$
Fractional Part $(0.11101)_2 = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{0}{2^4} + \frac{1}{2^5} = 0.90625$
42

Binary Fraction → **Decimal Fraction**

 $(10.11)_2$

Integer Part $(10)_2 = 1*2^1 + 0*2^0 = 2$

Fractional Part $(11)_2 =$

Decimal Fraction = $(2.75)_{10}$

Fixed Versus Floating Point Numbers

Fixed Point: position of the radix point fixed and is same for all numbers

E.g.: With 3 digits after decimal point: 0.120 * 0.120 = 0.014A digit is lost!!

Floating point numbers: radix point can float $1.20 \times 10^{-1} * 1.20 \times 10^{-1} = 1.44 \times 10^{-2}$

Floating point system allows a much wider range of values to be represented

46

Scientific Notation (Decimal)

 $0.0000747 = 7.47 \times 10^{-5}$ 31.4159265 = 3.14159265 × 10¹ 9,700,000,000 = 9.7 × 10⁹

Binary

 $(10.01)_2 = (1.001)_2 \times 2^1$ $(0.110)_2 = (1.10)_2 \times 2^{-1}$

