
05/08/15

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

CS1101
Introduction to Programming

Instructors: Krishna Sivalingam, V Krishna Nandivada, Rajsekar M,

Co-ordinator: Madhu Mutyam

2

Course Outline
•  Introduction to Computing

•  Programming (in C)

•  Exercises and examples from the mathematical

area of Numerical Methods

•  Problem solving using computers

3

Evaluation
•  Two Quizzes – 30

•  Programming Assignments – 25

•  End of Semester Exam – 45

•  Attendance – taken in the lab and in lectures

05/08/15

2

4

Class Hours
•  Class meets 3 times a week (E2 slot)

– Monday 2.55 – 3.45 PM
– Tuesday 1.00 – 1.50 PM
– Wednesday 4.55 – 5.45 PM

•  Venue

– CRC 102 / CRC 103

5

Programming Assignments
•  Class split into batches; One batch per weekday

•  Time: 7:30 – 9:30 PM

•  Venue: Departmental Computing Facility (DCF)

in CSE Dept.

6

Policies
•  Strictly no cell phone usage in class

– Keep your cell phone turned off
•  Not even in silent mode

– No SMS, chat etc.

•  Cell phones will be confiscated if there are
violations
– Returned only after 2 weeks

•  Repeat violations
– Students will be sent to the Dean (Acad)

05/08/15

3

7

What is this CS110 about?

•  Computer and its components

•  Computing

•  Programming Languages

•  Problem Solving and Limitations of a Computer

8

Common uses of a Computer

•  As a tool for storing and retrieving information
– Extracting and storing information regarding students

entering IIT
•  As a tool for providing services to customers

– Billing, banking, reservation
•  As a calculator capable of user-defined

operations
– Designing electrical circuit layouts
– Designing structures
– Non-destructive testing and simulation

9

What is a Computer?
•  A computer is a programmable machine
•  Its behavior is controlled by a program
•  Programs reside in the memory of the machine

– “The stored program concept”

Von Neumann Alan Turing

Charles Babbage

05/08/15

4

10

Early Computing Hardware

The Slide rule

The Chinese Abacus

The gear replaced the beads in
early mechanical calculators

“History of computing hardware”
From Wikipedia, the free encyclopedia

11

The Difference Engine : ~1850’s

The London Science Museum's
replica Difference Engine, built
from Babbage's design.

Part of Babbage's difference
engine, assembled after his
death by Babbage's son, using
parts found in his laboratory.

An automatic, mechanical
calculator designed to tabulate
polynomial functions

12

The First Programmer

Augusta Ada King, Countess of
Lovelace (December 10, 1815 –
November 27, 1852), born Augusta
Ada Byron, is mainly known for
having written a description of
Charles Babbage's early mechanical
general-purpose computer, the
analytical engine.

The programming language ADA is named after her.

05/08/15

5

13

ENIAC – The First Electronic Computer

Physically, ENIAC was
massive compared to modern
PC standards. It contained
17,468 vacuum tubes, 7,200
crystal diodes, 1,500 relays,
70,000 resistors, 10,000
capacitors and around 5
million hand-soldered joints. It
weighed 27 tons, was roughly
2.4 m by 0.9 m by 30 m, took
up 167 m², and consumed 150
kW of power.

Electronic Numerical Integrator and
Computer, 1946-55 (Univ. Penn.)

14

2008-15: Intel Core i7 Processor
Clock speed: >2.5 GHz
No. of Transistors: 0.731-1.3B
Technology: 45-22nm CMOS
Area: 263-181mm2

Core i7 Processor (desktop version)

15

The Computing Machine

PROCESSOR

The computer is made up of a processor and a
memory. The memory can be thought of as a series
of locations to store information.

MEMORY

01234……. (say) 256 MEGABYTES

05/08/15

6

16

PROCESSOR

•  A program is a sequence of instructions assembled
for some given task
•  Most instructions operate on data
•  Some instructions control the flow of the operations
•  It is even possible to treat programs as data. By doing
so a program could even modify itself.

MEMORY

01234……. 256 MEGABYTES

program data

The Computing Machine

17

Variables

•  Data is represented as binary strings
–  It is a sequence of 0’s and 1’s (bits), of a

predetermined size – “word”. A byte is made of 8 bits.
•  Each memory location may be given a name.
•  The name is the variable that refers to the data

stored in that location
–  e.g. rollNo, classSize

•  Variables have types that define the interpretation
of data
–  e.g. integers (1, 14, 25649), or characters (a, f, G, H)

18

Instructions

•  Instructions take data stored in variables as
arguments

•  Some instructions do some operation on the data
and store it back in some variable
–  e.g. The instruction “X←X+1” on integer type says

that “Take the integer stored in X, add 1 to it, and
store it back in (location) X”

•  Other instructions tell the processor to do
something
–  e.g. “jump” to a particular instruction next, or to exit

05/08/15

7

19

Programs

•  A program is a sequence of instructions
•  Normally the processor works as follows,

– Step A: pick next instruction in the sequence
– Step B: get data for the instruction to operate upon
– Step C: execute instruction on data (or “jump”)
– Step D: store results in designated location (variable)
– Step E: go to Step A

•  Such programs are known as imperative
programs

20

Programming Paradigms
•  Imperative programs are sequences of instructions. They

are abstractions of how the von Neumann machine
operates

•  Pascal, C, Fortran
•  Object Oriented Programming Systems (OOPS) model

the domain into objects and interactions between them
•  Simula, CLOS, C++, Java

•  Logic programs use logical inference as the basis of
computation

•  Prolog
•  Functional programs take a mathematical approach of

functions
•  LISP, ML, Haskell

21

A Limitation – Computer Arithmetic

•  Number of digits that can be stored is limited

•  Causes serious problems

 Consider a computer that can store:
 Sign, 3 digits and a decimal point
 Sign and decimal point are optional

 example : 212, -212, -21.2, -2.12, -.212

05/08/15

8

22

More Examples

•  113. + -111. = 2.00
•  2.00 + 7.51 = 9.51
•  -111. + 7.51 = -103.49 (exact arithmetic)

But our computer can store only 3 digits.
So it rounds –103.49 to –103

This is a very important thing to know as a system

designer. Why?

23

Why?

Consider 113. + -111. + 7.51

To us addition is associative
 (a+b)+c = a+(b+c)

(113. + -111.) + 7.51 = 2.00 + 7.51 = 9.51
113. + (-111. + 7.51) = 113. – 103. = 10.0

24

Conclusion

•  Computer is fast but restricted

•  So we must learn to use its speed

•  And manage its restrictions

05/08/15

9

25

Books

•  Paul Deitel and Harvey Deitel. C: How to
Program.

•  V. Rajaraman: Computer Programming in C
•  R. G. Dromey: How to Solve It By Computer
•  Kernighan and Ritchie: The C Programming

Language
•  Kernighan and Pike: The Unix Programming

Environment

26

Building Blocks of a Computer

Central

Processing
Unit Control Unit

Input Memory ALU Output

 System Bus

27

The Blocks, Their Functions

•  Input unit
– Takes inputs from the external world via variety of

input devices – keyboard, mouse, etc.
•  Output Unit

– Sends information (after retrieving, processing) to
output devices – monitors/displays, projectors, audio
devices, etc.

05/08/15

10

28

More (try more filename on your Unix/Linux machine)

•  Memory
– Place where information is stored
– Primary memory

•  Electronic devices, used primarily for temporary storage
•  Characterized by their speedy response

– Secondary Memory
•  Devices for long-term storage
•  Contained well tuned mechanical components, magnetic

storage media – floppies, hard disks
•  Compact Disks use optical technology

29

Some More (Commands are in /bin, /usr/bin. Use ls)

•  System Bus
– Essentially a set of wires, used by the other units to

communicate with each other
–  transfers data at a very high rate

•  ALU – Arithmetic and Logic Unit
– Processes data - add, subtract, multiply, …
– Decides – after comparing with another value, for

example

30

Finally (check man cp, man mv, man ls, man –k search string)

•  Control Unit
– Controls the interaction among other units
– Knows each unit by its name, responds to requests

fairly, reacts quickly on certain critical events
– Gives up control periodically in the interest of the

system

 Control Unit + ALU is called the CPU

05/08/15

11

31

The CPU (editors vi, emacs used to create text)

•  Can fetch an instruction from memory
•  Execute the instruction
•  Store the result in memory
•  A program – a set of instructions
•  An instruction has the following structure

 Operation operands destination
•  A simple operation

add a, b Adds the contents of memory locations a and b
 and stores the result in location a

32

Compilers

Source code in a
Higher Level Language 1

Source code in a
Higher Level Language n

Assembly language code

Assembler, linker, loader

Compiler Compiler

Human friendly languages à source code

machine language code

Machine understandable language

33

Assembly language
•  An x86/IA-32 processor can execute the

following binary instruction as expressed in
machine language:

 Binary: 10110000 01100001
 mov al, 061h

– Move the hexadecimal value 61 (97 decimal) into the
processor register named ”al".

– Assembly language representation is easier to
remember (mnemonic)

 From Wikipedia

05/08/15

12

34

Higher Level Languages
•  Higher level statement = many assembly

instructions
•  For example “X = Y + Z” could require the

following sequence
– Fetch the contents of Y into R1
– Fetch the contents of Z into R2
– Add contents of R1 and R2 and store it in R1
– Move contents of R1 into location named X

35

Data Representation
•  Integers – Fixed Point Numbers

 Decimal System - Base 10 uses 0,1,2,…,9

 (396)10 = (6 × 100) + (9 × 101) + (3 × 102) = (396)10

 Binary System - Base 2 uses 0,1

 (11001)2 = (1 × 20)+(0 × 21)+(0 × 22)+(1 × 23)+(1 × 24)
 = (25)10

36

Convert (39)10 to binary form

Base = 2

2 19 + Remainder 1
2 9 + Remainder 1

 2 4 + Remainder 1
2 2 + Remainder 0

39 2

2 1 + Remainder 0
0 + Remainder 1

Put the remainders in reverse order

(100111)2 = (1 × 20)+(1 × 21)+(1 × 22)+(0 × 23)+(0 × 24)+(1 × 25)

 = (39)10

39 = 2*19 + 1
 = 2*(2*9 +1) + 1
 = 22*9 + 21*1 + 1
 = 22*(2*4+1) + 21*1 + 1
 = 23*4+22*1+ 21*1 + 1
 = 23*(2*2+0)+22*1+ 21*1 + 1
 = 24*2+23*0+ 22*1+ 21*1 + 1
 = 24*(2*1+0) + …
 = 25*1+24*0+23*0+22*1+ 21*1+ 1

Decimal to Binary Conversion

05/08/15

13

37

base - 10 : (99999…9) = 10m - 1

base - 2 : (11111…1) = 2m - 1

m = 3 (999) = 103 - 1

 (111) = 23 - 1

Limitation: Memory cells consist of 8 bits (1 byte)
multiples, each position containing 1 binary digit

Largest number that can be stored in m-digits

38

Common cell lengths for integers : k = 16 or 32 or 64 bits

First bit is used for a sign

0 – positive number

1 – negative number
The remaining bits are used to store the binary

magnitude of the number.

Limit of 16 bit cell : (32,767)10 = (215 – 1)10

Limit of 32 bit cell : (2,147, 483,647)10 = (231 – 1)10

Sign - Magnitude Notation

39

In the one’s complement method, the negative of integer n
is represented as the bit complement of binary n

E.g. : One’s Complement of (3)10 in a 3 - bit cell

 complement of 011 : 100

 -3 is represented as = (100)2

000 : 0
001 : +1
010 : +2
011 : +3
100 : -3
 101 : -2
 110 : -1
111 : -0

One’s Complement Notation

Arithmetic requires care:

 2 + (-3) = 010 + 100 = 110 – ok

 But, 3 + (-2) = 011 + 101 = 000 and carry of 1

 need to add back the carry to get 001!

 NOT WIDELY USED

Zero has two
representations!

05/08/15

14

40

In the two’s complement method, the negative of integer n
in a k - bit cell is represented as 2k – n

Two’s Complement of n = (2k – n)

E.g. : Two’s Complement of (3)10 in a 3 - bit cell

 -3 is represented as (23 - 3)10 = (5)10 = (101)2

000 : 0
001 : +1
010 : +2
011 : +3
100 : -4 (8 – 4)
101 : -3 (8 – 3)
110 : -2 (8 – 2)
111 : -1 (8 – 1)

Arithmetic requires no special care:

 2 + (-3) = 010 + 101 = 111 – ok

 3 + (-2) = 011 + 110 = 001 and carry of 1

 we can ignore the carry!

WIDELY USED METHOD for –ve numbers

Two’s Complement Notation

41

000 : 0
 001 : +1
 010 : +2
 011 : +3
100 : -4
101 : -3
110 : -2
111 : -1

The Two’s Complement notation admits one more
negative number than the sign - magnitude notation.

Two’s Complement Notation

To get back n, read off the sign from the MSB

If –ve, to get magnitude, complement the cell and
add 1 to it!

E.g.: 101 à 010 à 011 = (-3)10

42

 Integer Part + Fractional Part

Decimal System - base 10
 235 . 7846

Binary System - base 2

 10011 . 11101 = (19.90625) 10

410

6

310

4

210

8

10

7
+++=Fractional Part (0.7846)10

Fractional Part (0.11101)2 90625.0
52

1

42

0

32

1

22

1

2

1
=++++=

Numbers with Fractions

05/08/15

15

43

(10.11)2

Fractional Part (11)2 =

Decimal Fraction = (2.75)10

Binary Fraction → Decimal Fraction

Integer Part (10)2 = 1*21 + 0*20 = 2

44

Convert (0.90625)10 to binary fraction
0.90625
 × 2

 0.8125 + integer part 1
 × 2

 0 + integer part 1

Thus, (0.90625)10 = (0.11101)2

0.90625 = ½(1+0.8125)
= ½(1+ ½(1+0.625))
= ½(1+ ½(1+ ½(1+0.25)))
= ½(1+½(1+ ½(1+½(0+0.5))))
= ½(1+½(1+½(1+½(0+½(1+0.0)))))
= ½+1/22+1/23+0/24 +1/25

= (0.11101)2

Decimal Fraction → Binary Fraction (1)

 0.625 + integer part 1
 × 2

 0.25 + integer part 1
 × 2

 0.5 + integer part 0
 × 2

45

Convert (0.9)10 to binary fraction
0.9
× 2

 0.8 + integer part 0 Repetition

(0.9)10 = 0.11100110011001100 . . . = 0.11100

For some fractions, we do
not get 0.0 at any stage!

These fractions require an
infinite number of bits!
Cannot be represented

exactly!

Decimal Fraction → Binary Fraction (2)

 0.8 + integer part 1
 × 2

 0.6 + integer part 1
 × 2

 0.2 + integer part 1
 × 2

 0.4 + integer part 0
 × 2

05/08/15

16

46

Floating point numbers: radix point can float
 1.20 × 10-1 * 1.20 × 10-1 = 1.44 × 10-2

Floating point system allows a much wider range of

values to be represented

Fixed Versus Floating Point Numbers

Fixed Point: position of the radix point fixed
 and is same for all numbers

E.g.: With 3 digits after decimal point:

 0.120 * 0.120 = 0.014
 A digit is lost!!

47

0.0000747 = 7.47 × 10-5

31.4159265 = 3.14159265 × 101

9,700,000,000 = 9.7 × 109

Binary

(10.01)2 = (1.001)2 × 21

(0.110)2 = (1.10)2 × 2-1

Scientific Notation (Decimal)

48

x ≈ ± q × 2n

 q – mantissa
n – exponent

(-39.9)10 = (-100111.1 1100)2

 = (-1.001111 1100)2 × 25

Using Floating Point Notation
For any number x

Decimal Value of stored number (-39.9)10

 = (-1. 001111 1100 1100 1100 11001) × 25

23 bit

32 bits :

First bit for sign

Next 8 bits for exponent

23 bits for mantissa

= -39. 90000152587890625

