A pattern language

CS3400 - Principles of Software Engineering @ Pattern: “a careful description of a perennial solution to a

Software Engineering for Multicore Systems recurring problem within a ... context.”

@ Origin Christopher Alexander, 1977 in the context of design and
construction of building and town.

@ Patterns in software engineering: Beck and Cunningham (1987),
Gamma, Helm, Johnson, Vlissides (1995).

V. Krishna Nandivada

IIT Madras
@ Pattern Language: a structured method of describing good
design practices within a field of expertise.

A pattern language for parallel programs Finding concurrency in a given problem - deep dive

Finding Concurrency
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How the high level specifications are mapped.
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Decomposition Patterns Task decomposition: An approach

@ |dentify “resource” intensive parts of the problem.

@ Task decomposition: A program to a sequence of “tasks”. @ Identify different tasks that make up the problem. Challenge: write
e Some of the tasks can run in parallel. the algorithms and run the tasks concurrently.
e Independent the tasks the better. @ Sometimes the problem will naturally break into a collection of

(nearly) independent tasks. Sometimes, not!

@ Data decomposition: Focus on the data used by the program. o Q: Are there enough tasks to keep the map all the H/W cores?

Decompose the program into tasks based on distinct chunks of

data. @ Q: Does each task have enough work to keep the individual cores
e Efficiency depends on the independence of the chunks. busy?
@ Q: Are the number of tasks dependent or independent of the
@ Task decomposition may lead to data decomposition and vice number of H/W core?
versa. @ Q: Are these tasks relatively independent?
Q: Are they really independent? @ Instances of tasks: Independent modules, loop iterations.
@ Relation between tasks and ease of programming, debugging a
maintenance.
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Task decomposition: Matrix multiplication example Finding concurrency in a given problem
C - A X B Finding Concurrency
N_1 : ..... l;};': AAAAAAA I‘Z ....... :
: composition ; ‘ :
Cij = > Ak * B : P P
k=0 5 - — i
: o s '
@ “Resource” intensive parts? ST S g
@ Tasks in the problem? R '
@ Are tasks independent? Enough tasks for all the cores? Enough | | : |
work for each task? Size of tasks and number of cores? "“"""”M"'I""""’""
@ Each element C;; is computed in a different task - row major. [ Supporting Structures |
@ Each element C;; is computed in a different task - column major. |

| Implementation Mechanisms |

@ Each element C;; is computed in a different task - diagonals.
@ How to reason about Performance? Cache effect?
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Data decomposition: Design Data decomposition: Matrix multiplication example

@ Besides identifying the “resource” intensive parts, identify the key

data structures required to solve the problem, and how is the data C=AxB
used during the solution. N

@ Q:lsth iti itabl ifi —
Q: Is the decomposition suitable to a specific system or many Cij = Z A % B
systems? =

@ Q: Does it scale with the size of parallel computer?
@ Are similar operations applied to different parts of data,
independently?
@ Are there different chunks of data that can be distributed?
@ Relation between decomposition and ease of programming,
debugging and maintenance.
@ Examples:
o Array based computations: concurrency defined in terms of
updates of different segments of the array/matrix.

e Recursive data structures: concurrency by decomposing the
parallel updates of a large tree/graph/linked list.

“Resource” intensive parts?

Data chunks in the problem?

Does it scale with the size of parallel computers?
Operations (Reads/Writes) applied on independent parts of data?
Data chunks big enough to deem the thread activity beneficial?
How to decompose?

Each row/column of C; ; is computed in a different task.
Each column of C;; is computed in a different task.
Performance? Cache effect? p
Note: Data decomposition also leads to task decomposition a

NE
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Matrix multiplication: Data decomposition. Finding concurrency in a given problem

Finding Concurrency
A A B B eemmessssssassssseaaa. .
C = 1,1 1,2 X 1,1 1,2 Decomposition !
A1 Aop B>y Bop e _ P PP T—
_ (A xBii+ A2 x By Arg X Bip+Aip X Byp : [Data Decomposition | | | i | N :
A2,1 X B1,1 +A272 X 32,1 A271 X B1,2 +A2,2 X 3272 :
i I
Advantages |
@ Can fit in the blocks into cache. | "”’*’"””?"‘I”"""’"” l
@ Can scale as per the hardware. [ Supporting Structures |
@ Overlap of communication and computation. !

| Implementation Mechanisms |
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Dependence analysis for managing parallelism:

Grouping

@ Background: Tasks and Data decomposition has been done.

@ All the identified tasks may not run in parallel.

@ Q: How should related tasks be grouped to help manage the
dependencies?

@ Dependent, related tasks should be (uniquely?) grouped together.

e Temporal dependency: If task A depends on the result of task B,
then A must wait for the results from B. Q: Does A have to wait for
B to terminate?

e Concurrent dependency: Tasks are expected to run in parallel, and
one depends on the updates of the other.

e Independent tasks: Can run in parallel or in sequence. Is it always
better to run them in parallel?

@ Advantage of grouping.
e Grouping enforces partial orders between tasks.
o Application developer thinks of groups, instead of individual ta

@ Example: Computing of individual rows.
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Dependence analysis for managing parallelism:

Ordering

@ Background: Tasks and Data decomposition has been done.
Dependent tasks have been grouped together.

@ Ordering of the tasks and groups not trivial.

@ Q: How should the groups be ordered to satisfy the constraints
among the groups and in turn tasks?
@ Dependent groups+tasks should be ordered to preserve the
original semantics.
e Should not be overly restrictive.
e Ordering is imposed by: Data + Control dependencies.
e Ordering can also be imposed by external factors: network, i/o and
so on.
o Ordering of independent tasks?
@ Importance of grouping.
e Ensures the program semantics.
@ A key step in program design.
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Dependence analysis for managing parallelism: data
sharing

Issues in data sharing

@ Identify the data being shared - directly follows from the
decomposition.

@ If sharing is done incorrectly - a task may get invalid data due to
race condition.

Background: Tasks and Data decomposition has been done.
Dependent tasks have been grouped together. The ordering between
the groups and tasks have been identified.

@ Groups and tasks have some level of dependency among each
other. @ A naive way to guarantee correct shared data: synchronize every

@ Q: How is data shared among the tasks?

@ Identify the data updated/needed by individual tasks - task local
data.

@ Some data may be updated by multiple tasks - global data.

@ Some data may be updated by one data used by multiple tasks -
remote data
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read with barriers.
@ Synchronization of data across different tasks - may require
communication. Options:
e Overlap of communication and computation.
e Privatization.
e keep local copies of shared data.
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One special case of sharing Managing parallelism - design evaluation

@ Accumulation/Reduction: Data being used to accumulate a result; Background: Tasks and Data decomposition has been done.
sum, minimum, maximum, variance etc. Dependent tasks have been grouped together. The ordering between
o Each core has a separate copy of data, the groups and tasks have been identified. A scheme for data sharing

e accumulation happens in these local copies.

: has also been identified.
e sub-results are further used to compute the final result.

@ Example: Sum elements in an array A[1024] @ Of the multiple choices present at different points, we have chosen
e Decompose the array into 32 chunk. one.
e Accumulate each chunk separately. @ Q: Is the chosen path a “good” one?

e Accumulate the sub results into the global “sum”.
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Design evaluation factors Algorithm Structure - deep dive

@ Suitability to the target platform (at a high level)
o Number of cores / HW threads - too few/many tasks?
e Homogeneous/Heterogeneous multi-cores? And work distribution.

I Firding Concurrency |

e Data distribution among the cores - equal/unequal? Alzorithm Structure

e Cost of communication - fine/coarse grained data sharing. e eeeeeienemesans C bmmmeeons wartim Strueture o eeeme e ieeeeememans .

e Amount of sharing - shared memory or distributed memory. | Onganize By Tasks | | Organize By Data Decompesition | | Organize By Flow of Data
o Metrics: simplicity (qualitative) , Efficiency , Flexibility | [ Tusk Paratictin ]} § [ Geometric Decomposition_] | | Pipeline i
o FIeX|b|l|ty Efr fnde cored Fr'ﬂujrrr'rJ [ Recuraive Data | ' IFrm:.r-H.:er Coaordination |E

o Flexible/Parametric over the number of tasks? | - o '

o Flexible/Parametric over the number and size of data chunks? }

e Does it handle boundary cases? | Supporting Structures |

[

. ;

° EfflClency. | Implementation Mechanisms |

e Even load balancing?
@ Minimum overhead? - task creation, synchronization,
communication.
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Algorithm Structure design Task Parallelism

Q: A problem is best decomposed into a collection of tasks that can
) execute concurrently. How to exploit the concurrency efficiently?

I Start |
ST @ Problem can be decomposed into a collection of concurrent tasks.
.—'-'—"'_'_FH-H-F _\_‘-\_‘_\-\_\_‘_‘—‘-— p . .
v e @ Tasks can be completely independent or can have dependencies.
Organize By : I Organize By | Organize By | L
Tasks | 1 Data Decomposition | FlowofData @ Tasks can be known from the beginning (producer/consumer),
ok e N o tasks are created dynamically.
..amear | Recuraire; |, Linear | Recursive  Regular : ! Irregular ; @ Solution may or not require all the tasks to finish.
/- \ / \ / \ Challonces.
'J'u:.sif_ ‘Uu'rde and Geometric Recursive ‘ Pipeline Eb‘t'r:.f-_ﬁrz.;f_-d allenges:
Paradielism] | Conquer | |Decomposition)|  Data Crordinaiion @ Assign tasks to cores - to result in a simple, flexible and efficient
execution.
@ Address the dependencies correcily.
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Factors in efficient Task parallel algorithm design Example: Task parallel algorithm

Machine Job1 Job2 Job3 Job4

M1 4 4 3 5
M2 2 3 4 4
@ Tasks:
@ Enough Tasks to keep the cores busy. o
@ Advantage of creating the tasks should offset the overhead of
creating and managing them. (1) (2)
@ Dependencies i
@ Ordering constraints. o o

@ Dependencies from shared data: synchronization, private data.

@ Schedule: creation and scheduling. )
@ Schedule o o o : o &
@ How are the tasks assigned to cores. AN 7 X
@ How are the tasks scheduled. (1) (1) (1 0 AN () @ @

@ Say Job1 to M1, Job2 to M2, Job3 to M1, Job4 to M2 = 7.
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Solution to Branch and Bound ILP Algorithm Structure design

I Start |
@ Maintain a list of tasks. — T
. . [ 4:—:_::_:'-: ______________ _:_:_:Z_::H. _______
@ Remove a solution from the list. Organize By ! | Organize By | Organise By |
. . . . . . Tasks i 1 Data Decomposition i FlowofData
@ Examine the solution. Either discard it or declare it a h--;;n;;:--* =--;;_—,=v~=;:; —————— ‘;:F::\;—
solution, or add a sub-problem to task list. D Linear | [Rewwrsivel | Linew }iRecwrsive! | Rogalar || Ineguinr)

@ The tasks depend depend on each other through the task-list. AR ) \ AR

Toaask Lieede and Geomelric Recursive Pineli Erent-Based
Paralielism| | Conquer | | Decompusition Data petine Coordinaiion
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Divide and conquer Divide and Conquer pattern: features
sequential [ problem
spiit
. . - up to 2-way concurrency _ﬁ\:h roblem _SLIh roblem
Q: Tasks are created recursively to solve a problem in a divide conquer ’ i iﬁw
strategy. How to exploit the concurrency? [ulﬁ (Cssbprablen ) (Csubr lﬁ ﬁ\ ublen )
up t d-way concurrency solve solve solve solve
@ Divide and Conquer: Problem is solved by splitting it into a (mbuotion ) y"*‘"‘"“’“J (mction ] (Lbrtotion )
number of smaller subproblems. Examples? Y [.“‘L:IJZLM? Fw:.l.'.fff;m]

@ Each subproblems can be solved “fairly” independently. Directly or
further divide and conquer.

sequential [ solution

@ Solutions of the smaller problems is merged to compute the final @ The amount of exploitable concurrency varies.
solution. @ At the beginning and end very little exploitable concurrency.
@ Each divide doubles the concurrency. @ Note: “split” and “merge” are serial parts.

@ Amdahl’s law - speed up constrained by the serial part. Impact?
@ Too many parallel threads?

@ What if cores are distributed? - data movement?
@ Tasks are created dynamically - load balancing?
@ What if the sub-problems are not equal-sized?
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@ Each merge halves the concurrency.




Divide and conquer - example Mergesort

int[] mergesort (int[]A,int L,int H) {
if (H - L <= 1) return;
if (H-L <= T) {quickSort (A, L, H); return;}
int m = (L+H)/2;
Al = mergesort (A, L, m);
A2 = mergesort (A, m+l, H);
return merge (Al, A2);
// returns a merged sorted array.

@ split cost?
@ merge cost?
@ Value of threshold T?
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Geometric decomposition

Q: How can an algorithm be organized around a data structure that
has been decomposed into concurrently updatable “chunks”?

@ Similar to decomposing a geometric region into subregions.

@ Linear Data structures (such as arrays) - can be often
decomposed into contiguous sub-structures.

@ These individual tasks are processed in different concurrent tasks.

@ Note: Sometimes all the required data for a task is present
“locally” (embarrassingly parallel - Task parallelism pattern). And
sometimes share data with “neighboring” chunks.

Challenges

@ Ensure that each task has access to all data it needs.

@ Mapping of chunks to cores giving good performance. Q: Why is it
a challenge?

@ Granularity of decomposition (coarse or fine-grain) - effect on
efficiency? Parametric? Tweaked at compile time or runtime? ¢

@ Shape of the chunk: Regular/irregular? '
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Algorithm Structure design

| Start |
- _'_'_'_,_,_,--"""'- -\_‘-\_‘_\_‘_"‘—'——_ -

e 4:—:_::_:'-: ______________ _:_:_:Z_::H. _______

Organize By : ! Organize By | Organize By :

Tasks ! i Data Decomposition i FlowofData

""" e i R S S e
..... P - S W P
| Linear | Recursive | Linear ::Recursive: : Regular ©  Irregular |

T N T TN / N

Task Ihptde and Geometric Recursive Pineline Event-Based
Parallelism| | Conguer Decomposition Data 7 Coordinaiion
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Geometric decomposition: Matrix multiplication

C = AxB
_ < A A > o < Bi1 Bip >
A1 Az Boi Boo

_ < A11 xBi1+Ai2xBay A1 XBip+Aip2xBop >
Ao1 X Bi1+AcoxBay Ay XBip+ Ao X Bop
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Algorithm Structure design

| Start |
.—'-'—"'_'_FH-H-F -_\_‘-\_‘_\-\_\_‘_‘—‘-—.

_______.-='—:_::_':-: ______________ _:_:_:Z_::H. _______

Organize By : ! Organize By | Organize By :

Tasks ! i Data Decomposition i FlowofData

_____ I TTTTTLsIITTT TTTTT IR

..... P P . S B
. Linear :Recursive | Linear ::Recursive: . Regular : : Irregular .

T N T TN /N

Task INeide and Geometric Recursive Pipeline Event-Based
Parallelism| | Conguer Decomposition Data ¥ Coordinaiion
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Recursive Data Pattern - example Find roots

@ Given a forest of rooted trees: compute the root of each node.

@ Serial version: Do a depth-first or breadth first traversal from root
to the leaf nodes.

@ For each visited node - set the root. Total running time?

Q: Is there concurrency?
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Recursive Data Pattern

Q: How can recursive data structures be partitioned so as that
operations on them are performed in parallel?

@ Linked list, tree, graphs ...

@ Inherently operations on recursive data structures are serial - as
one has to sequentially move through the data structure.

@ For example linked list traversal or traversing a binary tree.

@ Sometimes it is possible to reshape operations to derive and
exploit concurrency.
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Recursive Data structures: Parallel find roots

@ Transformed the original serial computation to one where we
compute partial result and repeatedly combine partial results.
Total Cost = ?

@ Total cost = O(Nlog N)

@ However, if we exploit the parallelism - running time will come
down to O(log N).
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Parallelizing recursive data structures

@ Recasting the problem increases the cost. Find a way to get it
back.

o Effective exploitation of the derived concurrency depends on
factors such as - amount of work available for each task, amount
of serial code ...

@ Restructuring may make the solution complex.
@ Requirement of synchronization - Why?
@ Another example: Find partial sums in a linked list.

0 3 x2 x3 x4 %5 [ x5 xT
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Pipieline pattern

Q: The computation may involve performing similar sets of operations
on many sets of data. Is there concurrency? How to exploit it?

@ Factory assembly line, Network Packet processing, Instruction

processing in CPUs etc.
time

st o1 @] (6] (€] (€1 [E (€
wanesez [0 (6] @] 6] [€] @
pipeline stage 3 Cs
p— ) (2 [ [ © G

@ There are ordering constraints on each operation on any one set
of data: Operation C, can be undertaken only after C;.

@ Key requirement: Number of operations > 1.

V.Krishna Nandivada (IIT Madras) CS3400 (IIT Madras) 39/46

Algorithm Structure design

I Start |
_,_,—'-"'_'-H-H-'_ ) -\_‘-\_‘_\_‘_"‘—-—\_\_ .

[ 4:—:_::_:'-: ______________ _:_:_:Z_::H. _______

Organize By : ! Organize By | Organize By :

Tasks | 1 Data Decomposition I Flow of Data 1

_____ LIt ‘-_—__.}T‘_“:.____f H"___:‘?T‘:.____J

..... o e P . T T

Linear | | Recursive . Linear i ' Ree ursive : Rl-.q.,u]ur : lrn-_';.,ulur
Task L rd: and Lrtur.ud.'nr Recursive Pineline Event-Based
PamH{-Emrr Conguer Decomposition Data 7 Coordinaiion
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Pipeline pattern features

time

i nt ] [2] €] ] ] [
ez (] [6] ) [6] [ 6
pipoline stago 3 c,
R EEEEEE

@ Once the pipeline is full maximum parallelism is observed.

@ Number of stages should be small compared to the number of
items processed.

@ Efficiency improves if time taken in each stage is roughly the
same. Else?

@ Amount of concurrency depends on the number of stages.
@ Too many stages, disadvantage?
@ Communication across stages?
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Pipieline pattern. Issues Overall big picture

I Start |
@ Error handling. — e
g . . . . ——— 4:—:_::_:'-: ______________ _:_:_:Z_::H. _______
o Create a separate task for error handling - which will run exception Organize By | | OrganizeBy | | Organize By !
routines. Tasks i 1 Data Decomposition i FlowofData
. L e I T DT e
@ Processor allocation, load balancing R - P TN P -
Th h dL ¢ Linear ' Recursive. ¢ Linear : Recursive: ¢ Regular ¢ Irregular
(] rou ut an atency. TUyTTT T T R A W T T Ty
gnp y / \ / \ / \
Toaask Lieede and Geomelric Recursive Pineli Erent-Based
Paralielism| | Conquer | | Decompusition Data petine Coordinaiion
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Event based coordination Algorithm Structure design

Challenges | St |
@ Identifying the tasks. — T
entifying the tasks I N S —
@ Identifying the events flow. Organize By ! | OrganizeBy | | Drganize By !
Enforcing th ; deri Tasks | 1 Data Decomposition | i FlowofData
e Enforcing the events ordering. ~ =e=es FsIITTTT T SR i el
o 9 9 PR R D e e e .
@ Avoiding deadlock. i Linear i Recursive. i Linear i Recursive: ' Regular @ Irregular
L SADSAT | hetlelve | TAneAr [ etwEve; LepnAr b lrregaar
e Efficient communication of events. / N / \ / N
. Toask Lieede and Geametric Recursive Fineli Erent-Based
Left for self reading. \Paralielism| | Conquer | | Decomposition Data petine Coordinaiion
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Overall big picture Sources
Finding E
Concurrency | l
@ Patterns for Parallel Programming: Sandors, Massingills.

B @ multicoreinfo.com
Tasks, shared and local data ° Wikipedia

@ fixstars.com

@ Jernej Barbic slides.
@ Loop Chunking in the presence of synchronization.

E Supporting struct.

& I, mecl — @ Java Memory Model JSR-133: “Java Memory Model and Thread

Specification Revision”

Units of execution + new she data

for extracted dependencies Corresponding source code
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