
*

CS3400 - Principles of Software Engineering
Software Engineering for Multicore Systems

V. Krishna Nandivada

IIT Madras

V.Krishna Nandivada (IIT Madras) CS3400 1 / 57

*

Part I

Patterns

V.Krishna Nandivada (IIT Madras) CS3400 2 / 57

*

A pattern language for parallel programs

Structure the given problem to expose exploitable concurrency.

Structuring the algorithm to take advantage of potential concurrency.

Helps algorithm to be implemented.

How the high level specifications are mapped.

Goal: Identify patterns in each stage.

V.Krishna Nandivada (IIT Madras) CS3400 3 / 57

*

Overall big picture

V.Krishna Nandivada (IIT Madras) CS3400 4 / 57

*

Finding concurrency and Algorithm Structure

V.Krishna Nandivada (IIT Madras) CS3400 5 / 57

*

Implementation Mechanisms

V.Krishna Nandivada (IIT Madras) CS3400 6 / 57

*

UE management

UE - unit of execution (a process / thread / activity)
Difference between process / thread / activity.
Management = Creation, execution, termination.
Varies with different underlying languages.
Go back to first few lectures for a recap.

V.Krishna Nandivada (IIT Madras) CS3400 7 / 57

*

Synchronization: Memory synchronization and fences

Synchronization: Enforces constraint among parallel events.

done=true;
while(done) ;

done = false;

Value may be present in cache. cache coherence may take care.
Value may be present in a register - Culprit compiler.
Value may not be read. How?

x = y = 0
Thread 1 Thread 2
1: r1 = x 4: x = 1
2: y = 1 r3 = y
3: r2 = x
r1 == r2 == r3 == 0. Possible?

V.Krishna Nandivada (IIT Madras) CS3400 8 / 57

*

Synchronization: Memory synchronization and fences

A memory fences guarantees that the UEs will see a consistent
view of memory.
Writes performed before the fence will be visible to reads
performed after the fence.
Reads performed after the fence will obtain a value written no
earlier than the latest write before the fence.
Only for shared memory.
Explicit management can be error prone. High level: OpenMP
flush, shared, Java - volatile. Read yourself.

V.Krishna Nandivada (IIT Madras) CS3400 9 / 57

*

Syncrhonization: Barriers

Barrier is a synchronization point at which every member of a
collection of UEs must arrive before any member can proceed.

MPI Barrier, join, finish, clocks, phasers
Implemented underneath via passing messages.

V.Krishna Nandivada (IIT Madras) CS3400 10 / 57

*

Phasers1

1Thanks - Jun Shirako
V.Krishna Nandivada (IIT Madras) CS3400 11 / 57

*

Power of Phaser - pipeline parallelism2

2Thanks - Jun Shirako
V.Krishna Nandivada (IIT Madras) CS3400 12 / 57

*

Syncrhonization

Memory fence
Barriers
Mutual exclusion: Java synchronized, omp set lock,
omp unset lock.

V.Krishna Nandivada (IIT Madras) CS3400 13 / 57

*

Implementation Mechanisms

V.Krishna Nandivada (IIT Madras) CS3400 14 / 57

*

Communication

UEs need to exchange information.
Shared memory - easy. Challenge - synchronize the memory
access so that results are correct irrespective of scheduling.
distributed memory - not much need for synchronization to protect
the resources. → Communication plays a big role.

One to one communication :
Between all UEs in one event: Collective communication.

V.Krishna Nandivada (IIT Madras) CS3400 15 / 57

*

Collective communication

When multiple UEs participate in a single communication event, the
event is called a collective communication operation. Examples:

Broadcast: a mechanism to send single message to all UEs.
Barriers : a synchronization point.
Reduction: Take a collection of objects, one from each UE, and
“combine” into a single value;

combined value present only on one UE?
combined value present on all UEs?

V.Krishna Nandivada (IIT Madras) CS3400 16 / 57

*

Serial reduction

Reduction with n items takes n steps.
Useful especially if the reduction operator is not associative.
Only one UE knows the result.

V.Krishna Nandivada (IIT Madras) CS3400 17 / 57

*

Tree based reduction

Reduction with 2n items takes n steps.
What if number of UEs < number of data items?
Only one UE knows the result.
Associative + Commutative or don’t care (example?)

V.Krishna Nandivada (IIT Madras) CS3400 18 / 57

*

Recursive doubling

Reduction with 2× n items takes n steps.
What if number of UEs < number of data items?
All UEs know the result.

V.Krishna Nandivada (IIT Madras) CS3400 19 / 57

*

Implementation Mechanisms

V.Krishna Nandivada (IIT Madras) CS3400 20 / 57

*

Part II

Memory Models

V.Krishna Nandivada (IIT Madras) CS3400 21 / 57

*

Memory Consistency Models

A memory consistency model is
a set of rules governing how the memory systems will process
memory operations from multiple processors.

Order in which memory operations will appear to execute -
determines what value should a read return?

a contract between programmer and system.
Determines what optimizations can be performed for correct
programs.

Affects : Ease of programming, and performance
V.Krishna Nandivada (IIT Madras) CS3400 22 / 57

*

Uniprocessor Memory model

Memory value requirement: Memory operations occur in program
order: read returns the value of the last write in program order.
Simple to reason about.
Compiler optimizations preserve these semantics.
Independent operations can execute in parallel.

V.Krishna Nandivada (IIT Madras) CS3400 23 / 57

*

Strict consistency

Strictest memory model.
Requires that the ‘read’ should get the value written by the last
‘write’.
Requires a Global clock ≡ Halting problem.

V.Krishna Nandivada (IIT Madras) CS3400 24 / 57

*

Sequential consistency

V.Krishna Nandivada (IIT Madras) CS3400 25 / 57

*

Sequential consistency

Result of an execution appears as if:
All operations executed in some sequential order.
Memory operations of each process in program order.
Nothing specified about caches, write buffers.

V.Krishna Nandivada (IIT Madras) CS3400 26 / 57

*

Understanding Program Order. Dekker’s Algorithm

Reads of 1 by Flag1 Flag2 are valid.
Problematic situation

Write buffers with read bypassing.
Overlap or reorder writes/reads by compiler / hardware.
Values in registers.V.Krishna Nandivada (IIT Madras) CS3400 27 / 57

*

Understanding Program Order. Ex 2

Problematic situation
Overlap or reorder writes/reads by compiler / hardware.

V.Krishna Nandivada (IIT Madras) CS3400 28 / 57

*

Write Atomicity

Initially A = B = C = 0
P1 P2 P3 P4
A = 1; A = 2; while (B != 1) ; while (B != 1) ;
B = 1; C = 1; while (C != 1) ; while (C != 1) ;

tmp1 = A; tmp2 = A;
Q: What are the possible values of tmp1 and tmp2?
Q: Can tmp1 = 1 and tmp2 = 2 be possible? How?

Cache coherence protocol must serialize writes to same location.
Writes to same location should be seen in same order by all.

V.Krishna Nandivada (IIT Madras) CS3400 29 / 57

*

Atomicity Ex 2

if ‘read’ returns a new value before all copies see it.
Read others’-write early optimization is unsafe.

V.Krishna Nandivada (IIT Madras) CS3400 30 / 57

*

Sequential Consistency implementation

Implementations of this model must satisfy the following:
Program Order Requirement : The operations of same processor
must be executed in program order
Write Atomicity : All writes appear to be instantaneous (no buffer).
All processors must see all write operations in the same order
(cache coherence).
Easier to implement in architectures with no cache, no write
buffers, blocking reads, .

V.Krishna Nandivada (IIT Madras) CS3400 31 / 57

*

Sequential Consistency - issues

Sequential Consistency constraints
write→ read
write→ write
read→ read, write

Implications (not allowed)
Read others’ write early.
Read own write early.
Unserialized writes to the same location.

Simple model to reason about given parallel programs.
Makes it very hard to modify a parallel program (automatic and
manual)

Processor reordering for performance - write buffers, overlapped
writes, non-blocking reads
Compiler transformations - scalar replacement, register allocation,
instruction scheduling.
Programmer reordering code for aesthetics/SE requirements.

V.Krishna Nandivada (IIT Madras) CS3400 32 / 57

*

Sequential consistency - too strict

Many architectures do not give SC.
Compiler optimizations on SC are limited.
Sofwtware engineering issues.

Give up!
Use weaker models - relax the program order requirement and
write atomicity requirement.

V.Krishna Nandivada (IIT Madras) CS3400 33 / 57

*

Sequential consistency (English)

Memory operations of each process happens in program order.
any valid interleaving of read and write operations is OK.
all processes must see the same interleaving.

V.Krishna Nandivada (IIT Madras) CS3400 34 / 57

*

Sequential consistency examples

P1 W(x)1
P2 W(x)2
P3 R(x)2 R(x)1
P4 R(x)2 R(x)1

Sequentially consistent - as both P3 and P4 see writes in the same
sequential order.

V.Krishna Nandivada (IIT Madras) CS3400 35 / 57

*

Sequential consistency (counter) example

P1 W(x)1
P2 W(x)2
P3 R(x)2 R(x)1
P4 R(x)1 R(x)2

Sequentially inconsistent - as both P3 and P4 see writes in the two
different sequential orders.

V.Krishna Nandivada (IIT Madras) CS3400 36 / 57

*

Sequential consistency (counter) example

P1 P2 P3
x = 1; y = 1 z = 1
print(y,z) print (x,z) print (x,y)

Inconsistent execution:

1. x = 1
2. print (y, z);
3. print (x, z);
4. y = 1;
5. z = 1;
6. print (x, y);

V.Krishna Nandivada (IIT Madras) CS3400 37 / 57

*

Sequential consistency

Result of an execution appears as if:
All operations executed in some sequential order.
Memory operations of each process in program order.
Nothing specified about caches, write buffers.

V.Krishna Nandivada (IIT Madras) CS3400 38 / 57

*

Understanding Program Order. Dekker’s Algorithm

Reads of 1 by Flag1 Flag2 are valid.
Problematic situation

Write buffers with read bypassing.
Overlap or reorder writes/reads by compiler / hardware.
Values in registers.V.Krishna Nandivada (IIT Madras) CS3400 39 / 57

*

Causal Consistency

Slightly weaker than Sequential Consistency Model.
Causally related memory operations : issued by same processor
or access same memory location - are seen by every node in
causal order.
Causal order is transitive.

memory operations that are causally related must have a total order
and
program order for the ones issued by same processor.

Hence such memory operations must be seen in same order by
all processors.
Here, write atomicity has been slightly weakened.
weaker than sequential consistency, which requires that all nodes
see all writes in the same order.

V.Krishna Nandivada (IIT Madras) CS3400 40 / 57

*

Causal consistency (example)

P1 W(x)1 W(x)3
P2 R(x)1 W(x)2
P3 R(x)1 R(x)3 R(x)2
P4 R(x)1 R(x)2 R(x)3

Causally consistent, but not sequentially/strict consistent.
Processors may see different order.
All orders respect causal order (program order and read-write
order).
Has no global order, partial order for each processor.

V.Krishna Nandivada (IIT Madras) CS3400 41 / 57

*

Causal consistency (counter) Example

P1 W(x)1
P2 R(x)1 W(x)2
P3 R(x)2 R(x)1
P4 R(x)1 R(x)2

Violates causal consistency.
Removing the Read from the P2 – makes the execution causally
consistent.

V.Krishna Nandivada (IIT Madras) CS3400 42 / 57

*

PRAM consistency

All processes see memory writes from one process in the order
they were issued from the process.
Writes from different processes may be seen in a different order
on different processes.
no guarantees about the order in which different processes see
writes, except that two or more writes from a single source must
arrive in order, as though they were in a pipeline.

P1 W(x)1
P2 R(x)1 W(x)2
P3 R(x)2 R(x)1
P4 R(x)1 R(x)2

PRAM ≤ Causal ≤ SC ≤ Strict
(Also known as, FIFO consistency, or Processor consistency)

V.Krishna Nandivada (IIT Madras) CS3400 43 / 57

*

Weak Ordering

Divide memory operations into data operations and
synchronization operations
Synchronization operations act like a fence.

All data operations before synch in program order must complete
before synch is executed.
All data operations after synch in program order must wait for synch
to complete.
Synchronizations are performed in program order.
All accesses to synchronization variables are seen by all processes
(or nodes, processors) in the same order (sequentially) - these are
synchronization operations. Accesses to critical sections are seen
sequentially.
All other accesses may be seen in different order on different
processes

Illusion of write atomicy has to be maintained.
Hardware implementation of fence: processor has counter that is
incremented when data op is issued, and decremented when data
op is completed.

V.Krishna Nandivada (IIT Madras) CS3400 44 / 57

*

Weak Ordering

Example 1:
P1 W(x)1 W(x)2 Sync
P2 R(x)1 R(x)2 Sync
P3 R(x)2 R(x)1 Sync

Example 2:
P1 W(x)1 W(x)2 Sync
P2 SyncR(x)2

The programmer has to manage synchronization explicitly.
Weak ≤ PRAM ≤ Causal ≤ SC ≤ Strict

V.Krishna Nandivada (IIT Madras) CS3400 45 / 57

*

Weak consistency (counter) example

P1 W(x)1 W(x)2 Sync
P2 SyncR(x)1

P2 will observe the most recent write of the variable x, which has
the value 2. Thus, it’s not a valid sequence.

V.Krishna Nandivada (IIT Madras) CS3400 46 / 57

*

Release Consistency

A problem with weak consistency: when a synchronization variable is accessed,
we do not know whether it is done because the process is finished writing
shared data or is about to start reading data.
Synchronization instructions divided : Acquire (such as lock) and Release (such
as unlock).
Acquire: Any memory operation after acquire must be executed only after
acquire is completed (and seen by all).

Release :
Release must be executed only when all memory operations
statements are complete.
But accesses after ‘release’ in program order do not have to wait for
release (unless protected by another acquite).

do “acquite” = that writes on other processors to protected variables will be
known
do “release” = that writes to protected variables are exported
and will be seen by other machines when they do a lock (lazy release
consistency) or immediately (eager release consistency)
Total order among all synchronization instructions must be maintained.

V.Krishna Nandivada (IIT Madras) CS3400 47 / 57

*

Weak and Release comparison

Weak: Shared data can be counted on to be consistent only after
a synchronization is done.
Release: Shared data are made consistent when a critical region
is exited.

V.Krishna Nandivada (IIT Madras) CS3400 48 / 57

*

Release Consistency - example

Example:
P1: L W(x)1 W(x)2 U
P2: L R(x)2 U
P3: R(x)1

RC ≤Weak ≤ PRAM ≤ Causal ≤ SC ≤ Strict

V.Krishna Nandivada (IIT Madras) CS3400 49 / 57

*

Delta and Eventual consistency models

Delta consistency: The write operations will propagate through
the shared memory system and all the replicas will be consistent
after a fixed time period δ.

if an object is modified, during the short period of time following its
modification, the read may not be consistent.
after a fixed time period, the modification is propagated and the
read will be consistent.

Eventual Consistency Model : The writes propagates eventually
(we cannot have a fixed bound on the delay)

V.Krishna Nandivada (IIT Madras) CS3400 50 / 57

*

Programmer centric models

Problem with relaxed models is that most of them are based on
the performance optimization that can be performed.
However, from a programmer’s perspective, it is not clear how to
use these effectively.

How to reason about programs for systems with relaxed memory
models
How to use the safety nets minimally, to get the desired semantics
from program

Even Sequential Consistency is not simple enough.
We need models which is simple for the programmer, but provides
enough information about program to apply optimization and get
efficiency.

V.Krishna Nandivada (IIT Madras) CS3400 51 / 57

*

Programmer centric models

Programmers understand their code:
Different operations have different semantics
P1 P2
A = 23; while (Flag != 1) ;
B = 37; . . . = B;
Flag = 1; . . . = A;

Flag = Synchronization; A, B = Data
Can reorder data operations
Distinguish data and synchronization

V.Krishna Nandivada (IIT Madras) CS3400 52 / 57

*

Data Race Free 0 - DRF0

V.Krishna Nandivada (IIT Madras) CS3400 53 / 57

*

Programming with Data Race Free 0 - DRF0

V.Krishna Nandivada (IIT Madras) CS3400 54 / 57

*

Problems with data race free model

It does not define any semantics for programs with data races.
A concern for safe languages like Java, which provide safety for
any program and cannot let the behavior of a program to be
ambiguous.
Either define safe semantics for such programs or identify them
and prevent their execution.
Define higher abstractions for programmers which are inherently
data race free
Expensive for hardware to implement

V.Krishna Nandivada (IIT Madras) CS3400 55 / 57

*

Goals of Memory model

Programmability? - Lost intuitive interface of SC
Portability? - Many different models
Performance? - Can we do better?

Future:
Parallel programs today are inherently non deterministic
We need deterministic outcomes from our parallel programs.
Deterministic Outcomes from Inherent non determinism.
Possible?

V.Krishna Nandivada (IIT Madras) CS3400 56 / 57

*

Sources

Patterns for Parallel Programming: Sandors, Massingills.

multicoreinfo.com

Wikipedia

fixstars.com

Jernej Barbic slides.

Loop Chunking in the presence of synchronization.

Vivek Sarkar’s slides.

Sarita Adve’s slides.

Nimit’s Singhania’s presentation.
http://regal.csep.umflint.edu/ swturner/Classes/csc577/Online/Chapter06/Chapter06.html

Java Memory Model JSR-133: “Java Memory Model and Thread Specification
Revision”

V.Krishna Nandivada (IIT Madras) CS3400 57 / 57

	Patterns
	Patterns
	So far
	Implementation Mechanisms

	Memory Models
	Conclusion

