Quiz 2, CS6013

Maximum marks = 60, Time: 60 min

22-Mar-2024

Read all the instructions and questions carefully. You can make any rea-
sonable assumptions that you think are necessary; but state them clearly. There are
total four questions, totalling 60 marks. You will need approximately 10 minutes for
answering a 10 marks question (plan your time accordingly). For questions with sub-
parts, the division for the sub-parts are given in square brackets. Start each question
on a new page. The maximum space allowed for any question is specified at the be-
ginning of the question.

1. [15 marks, 2 pages] Flow Insensitive and Sensitive Analysis.

Consider a sub-graph of a CFG, with three basic blocks B1, B2, and B3, such
that B3 has two predecessors B1 and B2. Using flow-sensitive constant propa-
gation as an example, state how the IN map for B3 is calculated based on the
IN maps of Bl and B2. [5 marks|

In the case of flow-insensitive analysis, (a) give the flow function used to compute
the variable-constant map for a statement of the form x = y + z. [5 marks]
(b) state how is the IN map for any block computed correctly, without having
any knowledge of predecessor and successor information of the basic-blocks. [5
marks| For convenience, you may assume that each basic-block consists of ex-
actly one statement.

2. [15 marks, 2 pages] Simple Constant Propagation.
Consider the following C code.

L1: void foo (int a) {
L2: int %, y, Zz;

L3: x =1;

L4: y = a;

L5: z =1,

L6: p=1;

L7: while (x < y) {
L8: p=p+1;
L9: Z =z ¥ X;
L10: x=x + 1;
Li1: p=p-1;1}

L13: printf ("%d%d%d%d".x, y, z, p); }

For above code, use the simple constant propagation algorithm to show the
variable-constant map at each program point, after each step. Clearly show the
statement processed and the resulting variable-constant map. [10 marks]

Write a C code (without the use of any if-statement or if-else statement) that
shows that constant propagation is not distributive. [5 marks]

3.

[15 marks, 2 pages] Control Tree based Data Flow Analysis.
Consider the following C code.

L1: void foo () {
L2: int x, p;

L3: x =1;

L6: p=1;

L7: while (x < 10) {

L8: p=p*1;

L10: X =x+1;

L12: }

L13: printf ("%d%d",x, p);
Li14:}

For the above C code, draw the CFG (2 marks), control-tree (3 marks). Further,
in the context of constant propagation, write the flow functions for each node in
the control tree and equations to compute the IN value for each node [7 marks].
Use these equations to compute the constants at each statement [3 marks].

[15 marks, 2 page] Interprocedural Analysis.
Consider the following Java code.

1. public class A{

2. public static void main(String[] args){
3. B x;

4. x = new BQ);
5. x.foo();

6. x = new CQ;
7. x.foo();

8. if (*¥) x = new CQ);
9. x.foo();

10. }

11. public void foo(){
12. bar(); }

13. public void bar(){}
14.3}

15.public class B extends A{
16. public void bar(){}
17.}

18.public class C extends B{
19. public void bar(){}
20. public void foo(){}
21.}

(a) Draw the call-graph based on CHA. [5 marks]

(b) Give an example C code, where summary based (context-insensitive) inter-
procedural constant propagation leads to improved precision compared to intra-
procedural constant propagation; also show the obtained constants. [5 marks]
(c) Give an example C code (with loops, but no if-statements/if-else statements),
where conditional constant propagation leads to improved precision compared
to simple constant propagation algorithm; also show the obtained constants. [5
marks]

