
CS6235 Final Exam: May 11 2023
Maximum marks = 50, Time: 2.00 hrs, Closed Book, Closed Neighbor

Name: Roll:

• Write your roll number on each of the answer sheet.

• The marks of each question is specified next to the question.

• Advise: start each question on a new page.

• True or False questions: Each incorrect True/False answer will lead to a deduction of 0.5 mark.

1. Escape Analysis [5]

• Write a sample Java code, where the flow-sensitive and flow-insensitive thread escape-analysis will give
different results. [2]

• For your written code, mention the thread escape-analysis results for both the flow-sensitive and flow-
insensitive dimensions. [2]

• [True/False] In the absence of thread escape-analysis we can use strong updates on the stores in parallel
Java applications. [1]

2. Deadlock detection [5] Consider the deadlock detection scheme discussed in the class using resource allocation
graph.

• Write an example Java code where the deadlock detection algorithm will give a false positive (that is,
the algorithm reports the presence of deadlock, but the deadlock will not occur in practice). [2.5]

• Show the resource allocation graph at the points where the deadlock is reported. [1.5]

• [True/False] The deadlock detection algorithm has no false negatives. [1]

3. Memory consistency model. [5]

• Give a memory trace that is not consistent as per sequential consistency, but is consistent as per weak
ordering. [2]

• Give a memory trace that is not consistent as per TSO, but is consistent as per PSO. [2]

• [True/False] If a trace satisfies TSO, it is guaranteed to satisfy Weak ordering.

4. Memory consistency model: Programmer’s view [5]

• Give an example that shows that sequential consistency is not easy to use from the programmer’s point
of view. [2]

• For the above example you have written, mention the best consistency (along with an explanation) from
the programmer’s point of view. [2]

• [True/False] A DRF-0 program may not satisfy SC. [1]

5. Data-Race Detection [5]

• Write a Java program and its trace which shows HB based race, but no CP based race. Show the HB
and CP based orderings and give the reasoning for race. [4]

• [True/False] There can be a trace which leads to a CP based race, but not an HB based race. [1]

1



6. Serial program analysis-I. [5]

• Write a program that shows how a context-sensitive points-to analysis is more precise than context-
insensitive points-to analysis. [2]

• Write a program that show how a inter-procedural points-to analysis is more precise than intra-procedural
points-to analysis. [2]

• [True/False] In the most conservative must points-to analysis, each variable points to the empty set. [1]

7. Serial program analysis-II. [5]

• Answer the following question in the context of intra-procedural points-to/alias analysis of Java programs
discussed in the class [1 × 4]:

(i) What is the size of the lattice?

(ii) What is the abstract stack (ρ) initialized to at the beginning of a function?

(iii) Between the abstract stack (ρ) and abstract heap (σ), in general, which one has more number of
elements?

(iv) During the analysis of a function call statement, whose contents (ρ or σ) are guaranteed to not
change, if any?

• If in a function, no variable is defined more than once, flow sensitivity does not improve the precision. [1]

8. MHP Analysis [5].

• Recall the incremental MHP analysis studied in the class. Give an example parallel program written in
a language with finish-async constructs such that if we re-introduce the async constructs, followed by
the finish constructs, then the computed MHP information would be imprecise. [2]

• If we re-introduce the async constructs, followed by the finish constructs, then the computed MHP
information can be unsound. If yes, give an example program. Else prove otherwise. [2]

• [True/False] Flow insensitive points-to analysis requires MHP analysis. [1]

9. Intermediate Representation [5].

• Write a C function with more than 2 statements, such that the number of basic-blocks (excluding the start
and end basic blocks) is equal to the number of “semicolon” terminated statements in the function. [2]

• Write three-address code for the following C code.

// Assume that the array A is declared as

// int A[4][5];

i = 0;

j = 0;

do

do

sum += A[i][j];

j++;

while (j < 5);

i++;

while (i < 4);

• [True/False] The number of nodes in the PEG can be greater than the number of statements of the
program.

10. Liveness analysis

• Write a program, where using the equation in[n] = use[n]∪out[n]−def [n] will lead to incorrect results. [2]

• Write a program, with more than 2 variables, such that each variable is live only at one statement. [2]

• [True/False] If a variable is live-out at a node, it is live-in at each of its successors. [1]

2


