Program
Veritication

&
Logic

G. Ramalingam
Microsoft Research

Program Correctness

« Software is everywhere ...
* Pacemakers, cars, aivplanes, satellites, ...

* Software bugs => significant consequences

* Program verification
* Important ... though not a panacea!

* What’s a bug?
* I’s not a bug, it's a feature!

10/5/2015

Security experts hack into
moving car and seize control

crwsday, 22 44 2015| 727 AM E

REUTERS

b

> .

souawx [[HACKERS HIJACK MOVING JEEP —
Box M [< §

In a controlled test, they turned on the Jeep Cherokee's radio and
activated other inessential features before rewriting code embedded in
the entertainment system hardware to issue commands through the
internal network to steering, brakes and the engine.

Program Correctness

- Is the following function corvect?

method F (x: int, y: int) {
var z: int;
if (x>y)
z2:=X;
else
z:=y;
return z;

}

Program Correctness

« Is the following function corvect?

// returns the minimum
// of the two arguments
method F (x: int, y: int) {

// returns the maximum
// of the two arguments
method F (x: int, y: int) {

var z: int; Informal var z:int;
if (x>y) Specification if (x>y)
z:=x; z2:=x;
else else
z:=y; z:=y;
return z; Formal return z;

Specification?

Specification Constructs:
Assertions

method F (x: int, y: int) {
var z: int;
if (x>y)
2=
else
zi=y;
assertz>=x;
assertz>=y;
assert (z==x) || (z==vy);
return z;

« Incomplete vs. complete specifications
* Most specifications are incomplete ...
« limits the value of program-verification

10/5/2015

Specification Constructs:
Assertions

method F (x: int, y: int) {
var z: int;
if (x>y)

z:=X;
else

z:=y;
assertz >=x;
return z;

* As documentation
* For dynamic checking
* For static verification

Demo: Dafny

Specification Constructs:

Post-condition

Is this program correct?

method F (x: int, y: int)
returns (z : int)
ensures z >= X;
ensures z >=y;
ensures (z==x) || (z==vy);

{
if (x>y)
z:=X;
else
z:=y;
}

method Sum (N: int)
returns (sum : int)
ensures sum == N*(N+1)/2;
{
vari:=0; sum :=0;
while (i < N) {
i=i+l;
sum :=sum + i;
}
}

Specification Constructs:

Pre-condition

Specification Constructs:

Assume statement

method Sum (N: int)
returns (sum : int)
requires N > 0;
ensures sum == N*(N+1)/2;

{
vari:=0; sum :=0;
while (i < N) {
i=i+1;
sum :=sum + i;
}

}

method Sum (N: int)
returns (sum : int)

assume N > 0;
vari:=0; sum :=0;
while (i < N) {
i=i+l;
sum :=sum +i;
}

assert sum == N*(N+1)/2;

10/5/2015

10/5/2015

Demo Mathematical Proofs

* Prove:

P(n): Ifn > 0, then 5L, i = 2D

* Proof by induction
* Inductive hypothesis: P(k)
* Prove: P(1).
+ Assume P(k) and prove P(k+1).

Specification Constructs:
Loop Invariant Demo

method Sum (N: int)
returns (sum : int)
requires N > 0;
ensures sum == N*(N+1)/2;

vari:=0;
while (i < N)

invariant sum == i*(i+1)/2
{

i=i+l;

sum :=sum +i;

}

}

* A loop invariant serves as an inductive
hypothesis (for a proof-by-induction)

Recursion

* The pre-con

method Sum (N: int)
returns (sum : int)
requires N > 0;
ensures sum == N*(N+1)/2;

if (N<=1)
sum :=1;
else
sum := Sum(N-1) + N;

}

dition/post-condition of a

recursive procedure serves as an inductive
hypothesis (for a proof-by-induction)

The Problem:

Arithme

tic satisfiability

method Eg2 (x, y : int)
returns (z : int)

assume x<y;
z:= (x+y)/2;
assertx<z;

Valid iff for all x, y, z:

(x<y)/\(z=xzﬂ)ﬂ(x<z)

(x,y,z) is a counterexample iff
(x<y)/\(z=#))/\(xgz)

* Counterexamples to assertion can be found
using an arithmetic satisfiability solver

» Related to e

arly 20t Century work in

logic, mathematics, and foundations of

computing

The Problem: .]
How to (dis)prove it?

method Eg1 (x, y, z: bool)

var result : bool;

if (x)
result :=y;
else (x,y,2) is a counterexample iff
result := z; (~x V) A (xV —z)
assert result;

}

* Counterexamples to assertion can be found
using a Boolean satisfiability (SAT) solver

* The original NP-complete problem

Towards Automated Verification

Annotated Program. method Eg2 (x, y : int)
returns (z : int)

{

assume x<y;

z:= (x+y)/2;

assertx<z;

Generation

.

Verification Condition

Valid iff for all x, y, z:
X+
Theorem Prover/ x<y)A (z =) = (x<2)
SAT/SMT Solver 2

'«

Wi
@

10/5/2015

Mathematical Logic:
An Introduction

Key Ingredients

* Axiomatic reasoning

Theorem: (a + b)? = a? + 2ab + b?
Proof:

(a+b)(a+b)
=ala+b)+b(a+b)
=aa+ab + ba + bb

=a? + 2ab + b?

Axioms:

« Distributivity: x(y + z) = xy + xz

« Distributivity: (x + ¥)z = xz + yz

* Commutativity: xy = yx

< Congruence: (x =y) = (x +2) = (y + 2)

* Barber’s paradox & Russell’s paradox
« Correctness & proofs
* Informal proofs vs. formal proofs

* Why “formal” proofs?
. Sgstewxat:c approach
« ... easier to check (for correctness)
+ ... helps avoid mistakes/paradoxes
* .. can automate checking proofs
* ... helps find proofs easier
* .. can automate proof generation

Key Ingredients

« Separation of syntax and semantics

‘Claim'(a+b2:az+2ab+b2 ‘

o
.
What are a
and b?

o
True for integer arithmetic
a, b: integers
+: integer-addition
ab: integer-multiplication

lvxterpretatlons

False for matrix arithmetic
a, b: n X n matrices
+: matrix-addition
ab: matrix-multiplication

10/5/2015

What does
ab denote?

Interpretation-1 Interpretation-2

Key Ingredients

* Syntactic approach to proofs
« symbolic manipulation

Syntax

A formal language
or expressing
Recurving Theme
in
Logic &

Formal Methods in PL

Semantics
What do we mean

by these assertions?

3

Proofs & Proof Systems
What constitutes a
valid proof
of an assertion?

3

o

O

Our attempts to
prove results
about reality,

« Similar to algebraic approaches to
solving word problems

« If Alice is thrice as old as Bob and in
another five years Alice will be twice as
old as Bob, how old are Alice and Bob?

Symbolic
manipulation

x =3y
x+5=2(y+5)
=3y+5=2(y+5)
=23y+5=2y+10
=>y=5

=>x=15

Separation of syntax
& semantics

Axioms? E.g., solving
matrix equations

Propositional Logic

10/5/2015

* A language for (pure) Boolean-expressions

* Boolean variables: p,q,r1, ...

* Boolean operators:

s And: pAgq
*Or:pVvgq
* Not: -p

* Implies: p = q

* Evaluation of Boolean expressions

Propositional Logic: Syntax
« P = a set of propositional variables

* The set of formulas over P is defined by
G ==PlP1VPalps Ao~ | ...

* Define ¢, = ¢, to be shorthand for (—=p) V ¢»)

* Alternatively: take = and — as primitive
operations
« Exercise: Define A and V in terms of = and -

Propositional Logic:
Semantics

*We say M : P - {T,F} is an interpretation
(or truth-assignment)
«We write M = ¢ iff M(¢) =T.
+ M is said to be a model for ¢ iff M & ¢

« ¢ is said to be satisfiable if it has a
model

« ¢ is said to be unsatisfiable if it has no
model

* ¢ is said to be valid (or a tautolo ¥) if
every interpretation M is a model Tor ¢
- We write £ ¢ iff ¢ is a tautology

10/5/2015

Propositional Logic:
Semantics

o Let T and F denote the values true/false
« Given M : P - {T,F}

« We can recursively define (evaluate) the
value M(¢) of any formula ¢

M@1 v $2) [M1/ 92)
T F T T

T

T F F T F
F T T T 3
F F T F F

Examples

» Which of the following are satisfiable?
Which are tautologies?

‘p=>@VQ
‘p=>@AQ
*pA(=p)

* Theorem: ¢ is a tautology iff —¢ is
unsatisfiable

