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Review

Program Verification => 
Satisfiability

method Eg1 (x, y, z: bool)
{

var result : bool;
if (x)

result := y;
else

result := z;
assert result;

}

(𝑥, 𝑦, 𝑧) is a counterexample iff
¬𝑥 ∨ ¬𝑦 ∧ (𝑥 ∨ ¬𝑧)

Semantics
What do we mean

by these assertions?

Syntax
A formal language

for expressing
some class of assertions

• M is a model for 𝜙
• 𝑀 ⊨ 𝜙

• 𝜙 is satisfiable
• 𝜙 is a tautology

• ⊨ 𝜙

Review

Propositional Logic

Propositional Satisfiability

• How can we check if
• 𝜙 is a tautology?
• 𝜙 is satisfiable?

• Decidable
• Only finitely many cases to check
• (Finite-state) model checking

• Efficiency?
• Original NP-Complete problem
• But very good SAT solvers have been developed 

over the years … 

Semantics
What do we mean

by these assertions?

Syntax
A formal language

for expressing
some class of assertions

𝑀 ⊨ 𝜙
⊨ 𝜙

?
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Formal Proofs & Proof Systems

• Exhaustive checking does not work, e.g., 
when we reason about integers:

• For all 𝑥, 𝑦, 𝑧, (𝑥 < 𝑦) ∧ (𝑧 =
𝑥+𝑦

2
) ⇒ (𝑧 < 𝑦)

• Need other approaches to proofs

• Goal: Finite reasoning about infinitely 
many possibilities

First Order Logic
aka

Predicate Calculus

Propositional Logic +

• Variables: 𝑥, 𝑦, 𝑧, …

• Function symbols: 𝑓, 𝑔, +,×,⋅
• arity: number of operands
• prefix notation: 𝑓(𝑥, 𝑦)
• infix notation: 𝑥 + 𝑦
• constant symbols: 0, 1, …

• Predicate symbols: 𝑝, 𝑞,>,≥
• Equality predicate: x = y (Predefined “predicate” 

with a fixed meaning/interpretation)

• Quantification (Universal/Existential)

Examples

• Natural numbers (Peano arithmetic)
• Constant symbol: 0
• Function symbol: 𝑆 (successor function)

• Natural numbers:
• Constant symbol: 0
• Function symbol: 𝑆 (successor function)
• Function symbols: +,×

• Set theory
• Constant symbol: 𝜙 (optional)
• Predicate symbol: ∈
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First Order Logic: Syntax

• The set of terms:

𝜏 ∷= 𝑓 𝜏1⋯ , 𝜏𝑛 | 𝑥

• The set of formula:

𝜙 ∷= 𝑝 𝜏1,⋯ , 𝜏𝑛 | 𝜏1= 𝜏2 |

¬𝜙 𝜙1 ∧ 𝜙2 𝜙1 ∨ 𝜙2 |∀𝑥. 𝜙 | ∃𝑥. 𝜙

First Order Logic

Semantics (informally)
• Consider natural numbers (0, 𝑆, +,×)

• Encode “𝑥 is less than or equal to 𝑦”
• ∃𝑧. 𝑦 = 𝑥 + 𝑧

• Consider sets (∈)

• Encode “𝑥 is a subset of 𝑦”
• ∀𝑧. 𝑧 ∈ 𝑥 ⇒ 𝑧 ∈ 𝑦

• Encode “𝑧 is the union of 𝑥 and 𝑦”
• ∀𝑤. (𝑤 ∈ 𝑥) ⇔ 𝑤 ∈ 𝑥 ∨ (𝑤 ∈ 𝑦)

First Order Logic

Semantics (informally)

• Understanding quantification …
• ∀𝑥. ∃𝑦. (𝑥 < 𝑦)

• ∃𝑦. ∀𝑥. (𝑥 < 𝑦)

• Conversions between ∃ and ∀
• ¬∃𝑥. 𝜙(𝑥) equivalent to ∀𝑥. ¬𝜙(𝑥)
• ¬∀𝑥.𝜙(𝑥) equivalent to ∃𝑥. ¬𝜙(𝑥)

First Order Logic

Semantics (informally)

• What do the following mean?
a) ∃𝑥 ∀𝑦 𝑥 ⊕ 𝑦 = 𝑦

b) ∃𝑥 ∀𝑦 𝑥 ⊕ 𝑦 = 𝑦 ∧ (𝑦 ⊕ 𝑥 = 𝑦)

c) ∀𝑥 ∀𝑦 𝑥 ⊕ 𝑦 = 𝑦 ⊕ 𝑥

• Does (a) hold
• If we consider the set of integers and 
interpret ⊕ as integer-addition?

• Find an example of a set and an 
operation ⊕ that does not satisfy (a)



10/5/2015

4

First Order Logic: Semantics

• We can interpret terms and formulae …
• … given the meaning of the function symbols 
and predicate symbols
• A set 𝐴 (the universe)
• For every function-symbol 𝑓of arity 𝑛, a function

𝑀 𝑓 ∶ 𝐴𝑛 → 𝐴
representing the interpretation of 𝑓

• For every predicate-symbol 𝑝 of arity 𝑛, a function
𝑀 𝑝 :𝐴𝑛 → 𝑇, 𝐹

representing the interpretation of 𝑝
• (called a structure or interpretation for the 

underlying language)
• We will refer to the structure as 𝑀

First Order Logic: Semantics

• Extend the interpretation-function to 
define the value 𝑀 𝜏 ∈ 𝐴 for any term 𝜏
inductively.

• We write 𝑀 ⊨ 𝜙 to denote that 𝜙 holds 
true in the interpretation 𝑀.

• We define 𝑀 ⊨ 𝜙 inductively.

Mathematical Preliminaries

Inductive Definitions

• Syntax

• Semantics

• Proof rules

• Type systems

𝑀 𝜙1 = 𝑇, 𝑀 𝜙2 = 𝑇

𝑀 𝜙1 ∧ 𝜙2 = 𝑇

𝑀 ⊢ 𝜙1, 𝑀 ⊢ 𝜙2

𝑀 ⊢ 𝜙1 ∧ 𝜙2

𝜙 ∷= 𝑃 𝜙1∨ 𝜙2 𝜙1∧ 𝜙2

Example

• Consider the language with
• function symbols ⊕ and ⊗ of arity 2, and
• function (constant) symbols 𝑐0 and 𝑐1 of arity 0

• Let 𝑀 denote the following structure
• The universe is the set of integers

• 𝑀[⊕] is integer-addition
• 𝑀[⊗] is integer-multiplication
• 𝑀[𝑐0] is 0
• 𝑀[𝑐1] is 1
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Example

• Does 𝑀 ⊨ ¬∃𝑥. 𝑥 ⊗ 𝑥 ⊕ 𝑐1 = 𝑐0 hold?

• Is there any structure 𝑁 such that 
𝑁 ⊨ ∃𝑥. 𝑥 ⊗ 𝑥 ⊕ 𝑐1 = 𝑐0

Semantic Concepts

• 𝑀 is said to be a model for 𝜙 iff 𝑀 ⊨ 𝜙

• We say M is a model of a set { 𝜓1, 𝜓2,⋯ }
if M is a model of every 𝜓𝑖 in the set

• 𝜙 is said to be satisfiable if it has a 
model

• 𝜙 is said to be unsatisfiable if it has no 
model

• 𝜙 is said to be valid (or a tautology) if 
every interpretation 𝑀 is a model for 𝜙

• We write ⊨ 𝜙 iff 𝜙 is a tautology

Semantics
What do we mean

by these assertions?

Syntax
A formal language

for expressing
some class of assertions

Proofs & Proof Systems
What constitutes a 

valid proof
of an assertion?

𝑀 ⊨ 𝜙
⊨ 𝜙

Axiomatic Reasoning

• Consider the language (of group theory)
• one nullary function symbol 𝑒
• one unary function symbol 𝐼
• one binary function symbol ⊕

• Consider the following “axioms”:
• 𝐴1: ∀𝑥∀𝑦∀𝑧. 𝑥 ⊕ 𝑦⊕ 𝑧 = 𝑥 ⊕ 𝑦 ⊕ 𝑧

• 𝐴2: ∀𝑥. 𝑒 ⊕ 𝑥 = 𝑥

• 𝐴3: ∀𝑥. 𝐼 𝑥 ⊕ 𝑥 = 𝑒

• 𝐴2
′ : ∀𝑥. 𝑥 ⊕ 𝑒 = 𝑥 = 𝑥

• 𝐴3′: ∀𝑥. 𝑥 ⊕ 𝐼(𝑥) = 𝑒
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Example

• Let 𝜙 denote the formula
∀𝑥 ∀𝑦 ∀𝑧. 𝑥 ⊕ 𝑦 = 𝑥 ⊕ 𝑧 ⇒ 𝑦 = 𝑧

• What does 𝜙 say?
• Let 𝑀 be a structure such that

• 𝑀 ⊨ 𝐴1
• 𝑀 ⊨ 𝐴2
• 𝑀 ⊨ 𝐴3

• Does 𝑀 ⊨ 𝜙 hold?

Axiomatization

• We write 𝐴1, 𝐴2, 𝐴3 ⊨ 𝜑 to mean that
• Every model of 𝐴1, 𝐴2, 𝐴3 is a model of 𝜑
• I.e., if 𝑀 is any structure such that 𝑀 ⊨ 𝐴1, and 𝑀 ⊨ 𝐴2

and 𝑀 ⊨ 𝐴3 then 𝑀 ⊨ 𝜑.

• Let Ψ be a set of formula (axioms or axiom 
schemas)

• We write Ψ ⊨ 𝜑 to mean that
• Every model of Ψ is a model of 𝜑
• Thus, 𝜑is a semantic consequence of Ψ
• A semantic concept … no easy way to check.

• The theory of Ψ is the set of all 𝜑 such that Ψ ⊨ 𝜑

Axiomatization

• Suppose we “axiomatize” 𝑀 using a set Ψ
of formula (axioms)
• That is, 𝑀 ⊨ 𝜓 for every 𝜓 ∈ Ψ

• That is, 𝑀 is a model of Ψ

• Problem reduction:

Does 𝑀 ⊨ 𝜙 ? Does Ψ ⊨ 𝜙 ?
⇐

⇒?

Theory Completeness

• For every 𝜑 (with no free variables)
• Either 𝑀 ⊨ 𝜑 or 𝑀 ⊨ ¬𝜑

• It is possible that neither Ψ ⊨ 𝜑 nor Ψ ⊨ ¬𝜑

• We say that Ψ is complete (or the theory 
of Ψ is complete) if
• for every 𝜑 either Ψ ⊨ 𝜑 or Ψ ⊨ ¬𝜑


