Review
Program Ve rification =>
Satisfiability

method Egl (x, y, z: bool)
{

var result : bool;

if (x)
result :=y;
else (x,y,z) is a counterexample iff
result := z; (=X V=y) A (x V —z)
assert result;

Propositional Satisfiability

« How can we check if
¢ is a tautology?
¢ is satisfiable?

* Decidable
* Only finitely many cases to check
+ (Finite-state) model checking

- Efficiency?
* Original NP-Complete problem

* But very good SAT solvers have been developed
over the years ...
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Formal Proofs & Proof Systems

* Exhaustive checking does not work, e.g.,
when we reason about integers:

s Forall x,y,z, (x <y)A(z = “Ty) =>(z<y)
* Need other approaches to proofs

* Goal: Finite reasoning about infinitely
many possibilities

Propositional Logic +

* Variables: x,y,z, ...

* Function symbols: f, g, +,%,
* arity: number of operands
« prefix notation: f(x,y)
* infix notation: x +y
* constant symbols: 0,1, ...

* Predicate symbols: p,q,>,>
* Equality predicate: x =y (Predefined “predicate”
with a Tixed meaning/interpretation)

* Quantification (Universal/Existential)

First Order Logic

aka
Predicate Calculus

Examples

* Natural numbers (Peano arithmetic)
« Constant symbol: 0
* Function symbol: S (successor function)

* Natural numbers:
« Constant symbol: 0
* Function symbol: S (successor function)
* Function symbols: +,x

* Set theory
« Constant symbol: ¢ (optional)
* Predicate symbol: €
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First Order Logic: Syntax

* The set of terms:

T u= f(Tl""Tn) | X

» The set of formula:
¢ =p(ry,,1) | 1=13 |

AP prAGy [PV o [V [Tx. b

First Order Logic ,
Semantics (informally)

* Understanding quantification ...
e Vx.3y. (x <y)
e Jy.Vx.(x <y)

* Conversions between 3 and v
« =3x.¢(x) equivalent to Vx.—¢(x)
« avVx. p(x) equivalent to Ix.—¢(x)
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First Order Logic ,
Semantics (informally)

* Consider natural numbers (0,S, +,X)

* Encode “x isless than or equal to y”’
c3dzy=x+z

* Consider sets (€)

* Encode “x is asubsetofy”
*Vz.ZEX = zZEY

* Encode “z is the union of x and y”’
cYw.(WEx) ©® WeEx)V(WEY)

First Order Log:’c ,
Semantics (informally)

« What do the following mean?
a) IxvVyxPy=y
by Ixvy(x@y=AQG®x=y)
c) VxVyx@y=yDx

* Does (a) hold

« If we consider the set of integers and
interpret @ as integer-addition?

* Find an example of a set and an
operation @ that does not satisfy (a)



First Order Logic: Semantics

« We can interpret terms and formulae ...
. ... given the meaning of the function symbols
and predicate symbols
* A set A (the universe)
* For every function-symbol fof arity n, a function
M[f]: A" > A
representing the interpretation of f

* For every predicate-symbol p of arity n, a function

M[p]: A" - {T,F}
representing the interpretation of p
* (called a structure or interpretation for the
underlying language)
* We will refer to the structure as M

Mathematical Preliminaries

Inductive Definitions

. ng‘:ax =P | ¢1Vy | 1A,
* Semantics
M[p]=T, Mlp,]=T
M =T
* Proof rules (00 02]
* Type systems M+ ¢y, M+ ¢y
M+ ¢y A,
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First Order Logic: Semantics

* Extend the interpretation-function to
define the value M[t] € A for any term t
inductively.

* We write M E ¢ to denote that ¢ holds
true in the interpretation M.

- We define M = ¢ inductively.

Example

« Consider the language with
« function symbols @ and Q@ of arity 2, and
« function (constant) symbols c, and c; of arity 0

* Let M denote the following structure
* The universe is the set of integers
* M[®] is integer-addition
M[Q] is integer-multiplication
* M[co] is O
Mlcy] is 1



Example

*Does M E —3x.(x ® x) @ ¢; = ¢ hold?

« Is there any structure N such that
NEIx.(x®@x) D, =c
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Semantic Concepts

* M is said to be a model for ¢ iff M E ¢

«We say M is a model of a set {1, -}
if M is a model of every ; in the set

¢ is said to be satisfiable if it has a
model

« ¢ is said to be unsatisfiable if it has no
model

* ¢ is said to be valid (or a tautology) if
every interpretation M is a model for ¢

- We write £ ¢ iff ¢ is a tautology

Axiomatic Reasoning

« Consider the language (of group theory)
« one nullary function symbol e
* one unary function symbol I
* one binary function symbol &

* Consider the following “axioms:
s Ay VaVyWVzx @ (B2 =xDy) Dz
c Ay Vx.e@x=x
e Az Vxl(x)Dx=e
c Ay Vx.x@e=x=x
e A"t Vxx@®Ix)=e
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Example Axiomatization

o ° We write {4, A,,As} E ¢ to mean that
Let ¢ denote the formula « Every wmodel of {A,,4,,45} is a model of ¢

VxVyVz.(x@y=xDz)>y=1z . l,e.ai]f/,M E any st[s\'/’uctwe such that M = A;, and M = 4,
« What does ¢ say? and H A Ten e

s Let M be a structure such that * Let W be a set of formula (axioms or axiom
schemas)
CcMEA
* M ¥ A - We write ¥ = ¢ to mean that
*MEA; + Every model of W is a model of ¢
 Thus, ¢is a semantic consequence of ¥
*Does Mk ¢ hold? + A semantic concept ... no easy way to check.

* The theory of W is the set of all ¢ such that ¥ = ¢

Axiomatization Theory Completeness
* Suppose we “axiomatize” M using a set ¥ * For every ¢ (with no free variables)
of formula (axioms) « Either M= @ or M E g
* That is, M =y for every i € ¥ + It is possible that neither W = ¢ nor W i —¢

* That is, M is a model of ¥
* We say that ¥ is complete (or the theory
of W is complete) if

* Problem reduction:
« for every ¢ either ¥ = ¢ or ¥ E —¢
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