# Review Program Verification => Satisfiability



### Review Propositional Logic



# Propositional Satisfiability

### • How can we check if

- φ is a tautology?
- φ is satisfiable?
- Decidable
  - Only finitely many cases to check
  - (Finite-state) model checking
- Efficiency?
  - Original NP-Complete problem
  - But very good SAT solvers have been developed over the years ...











### Formal Proofs & Proof Systems

- Exhaustive checking does not work, e.g., when we reason about integers: • For all x, y, z,  $(x < y) \land (z = \frac{x+y}{2}) \Rightarrow (z < y)$
- Need other approaches to proofs
- Goal: Finite reasoning about infinitely many possibilities

First Order Logic aka Predicate Calculus

## Propositional Logic +

- Variables: x, y, z, ...
- Function symbols: f, g, +,×,·
  - arity: number of operands
    prefix notation: f(x, y)
    infix notation: x + y

  - constant symbols: 0, 1, ...
- Predicate symbols: p,q,>,≥
   Equality predicate: x = y (Predefined "predicate" with a fixed meaning/interpretation)
- Quantification (Universal/Existential)

### Examples

- Natural numbers (Peano arithmetic) • Constant symbol: 0
  - Function symbol: S (successor function)
- Natural numbers:
  - Constant symbol: 0
  - Function symbol: S (successor function)
    Function symbols: +,×
- Set theory
  - Constant symbol: φ (optional)
  - Predicate symbol: €

# First Order Logic: Syntax

• The set of terms:

 $\tau ::= f(\tau_1 \cdots, \tau_n) \mid x$ 

- The set of formula:
  - $\phi ::= p(\tau_1, \cdots, \tau_n) \mid \tau_1 = \tau_2 \mid$ 
    - $\neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \forall x. \phi \mid \exists x. \phi$

### First Order Logic Semantics (informally)

- Consider natural numbers  $(0, S, +, \times)$
- Encode "x is less than or equal to y"
  ∃z. y = x + z
- Consider sets (∈)
- Encode "x is a subset of y"
   ∀z. z ∈ x ⇒ z ∈ y
- Encode "z is the union of x and y" •  $\forall w. (w \in x) \Leftrightarrow (w \in x) \lor (w \in y)$

### First Order Logic Semantics (informally)

- Understanding quantification ...
   ∀x.∃y.(x < y)</li>
  - $\exists y. \forall x. (x < y)$
- Conversions between ∃ and ∀
   ¬∃x.φ(x) equivalent to ∀x. ¬φ(x)
  - $\neg \forall x. \phi(x)$  equivalent to  $\exists x. \neg \phi(x)$

### First Order Logic Semantics (informally)

- What do the following mean?
  - a)  $\exists x \forall y x \oplus y = y$
  - **b**)  $\exists x \forall y (x \oplus y = y) \land (y \oplus x = y)$
  - c)  $\forall x \forall y x \oplus y = y \oplus x$
- Does (a) hold
  - If we consider the set of integers and interpret ⊕ as integer-addition?
- Find an example of a set and an operation ⊕ that does not satisfy (a)

# First Order Logic: Semantics

#### • We can interpret terms and formulae ...

- ... given the *meaning* of the function symbols and predicate symbols
  - A set A (the universe)
  - For every function-symbol f of arity n, a function  $M[f]: A^n \to A$  representing the interpretation of f

  - For every predicate-symbol p of arity n, a function  $M[p]:A^n \to \{T,F\}$  representing the interpretation of p
  - (called a structure or interpretation for the underlying language)
  - We will refer to the structure as M

### First Order Logic: Semantics

- Extend the interpretation-function to define the value  $M[\tau] \in A$  for any term  $\tau$ inductively.
- We write  $M \models \phi$  to denote that  $\phi$  holds true in the interpretation M.
- We define  $M \models \phi$  inductively.

### Mathematical Preliminaries Inductive Definitions

- Syntax  $\phi ::= P \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2$
- Semantics
- $M[\phi_1] = T, \qquad M[\phi_2] = T$  $M[\phi_1 \wedge \phi_2] = T$
- Proof rules
- Type systems

 $M \vdash \phi_1, \qquad M \vdash \phi_2$ 

 $M \vdash \phi_1 \land \phi_2$ 

## Example

- Consider the language with
  - function symbols  $\oplus$  and  $\otimes$  of arity 2, and
  - function (constant) symbols  $c_0$  and  $c_1$  of arity 0
- Let M denote the following structure
  - The universe is the set of integers
    - *M*[⊕] is integer-addition
  - *M*[⊗] is integer-multiplication
  - $M[c_0]$  is 0
  - *M*[*c*<sub>1</sub>] is 1

# Example

- Does  $M \vDash \neg \exists x. (x \otimes x) \oplus c_1 = c_0$  hold?
- Is there any structure N such that  $N \models \exists x. (x \otimes x) \oplus c_1 = c_0$

## Semantic Concepts

- *M* is said to be a model for  $\phi$  iff  $M \models \phi$
- We say M is a model of a set  $\{\psi_1, \psi_2, \cdots\}$ if M is a model of every  $\psi_i$  in the set
- $\phi$  is said to be satisfiable if it has a model
- $\bullet \phi$  is said to be unsatisfiable if it has no model
- $\phi$  is said to be valid (or a tautology) if every interpretation M is a model for  $\phi$
- We write  $\models \phi$  iff  $\phi$  is a tautology



## Axiomatic Reasoning

- Consider the language (of group theory)
  - one nullary function symbol e
  - one unary function symbol I
  - $m{\cdot}$  one binary function symbol  $\oplus$
- Consider the following "axioms":
  - $A_1$ :  $\forall x \forall y \forall z. x \oplus (y \oplus z) = (x \oplus y) \oplus z$
  - $A_2$ :  $\forall x. e \oplus x = x$
  - $A_3$ :  $\forall x. I(x) \oplus x = e$
  - $A'_2$ :  $\forall x. x \oplus e = x = x$
  - $A_3'$ :  $\forall x. x \oplus I(x) = e$

# Example

- Let  $\phi$  denote the formula  $\forall x \forall y \forall z. (x \oplus y = x \oplus z) \Rightarrow y = z$
- What does  $\phi$  say?
- Let M be a structure such that
  - $\bullet \ M \vDash A_1$
  - $\bullet \ M \vDash A_2$
  - $\bullet \ M \vDash A_3$
- Does  $M \models \phi$  hold?

## Axiomatization

- We write {A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>} ⊨ φ to mean that
   Every model of {A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>} is a model of φ
   I.e., if M is any structure such that M ⊨ A<sub>1</sub>, and M ⊨ A<sub>2</sub> and M ⊨ A<sub>3</sub> then M ⊨ φ.
- Let  $\Psi$  be a set of formula (axioms or axiom schemas)
- We write  $\Psi \models \varphi$  to mean that
  - Every model of  $\Psi$  is a model of  $\varphi$
  - Thus, φis a semantic consequence of Ψ
    A semantic concept ... no easy way to check.
- The theory of  $\Psi$  is the set of all  $\varphi$  such that  $\Psi \vDash \varphi$

## Axiomatization

- Suppose we "axiomatize" M using a set  $\Psi$  of formula (axioms)
  - That is,  $M \models \psi$  for every  $\psi \in \Psi$
  - That is, M is a model of  $\Psi$
- Problem reduction:



## Theory Completeness

- For every  $\varphi$  (with no free variables)
  - Either  $M \vDash \varphi$  or  $M \vDash \neg \varphi$
  - It is possible that neither  $\Psi \vDash \varphi$  nor  $\Psi \vDash \neg \varphi$
- We say that  $\Psi$  is complete (or the theory of  $\Psi$  is complete) if
  - for every  $\varphi$  either  $\Psi \vDash \varphi$  or  $\Psi \vDash \neg \varphi$