Review: First Order Logic

- A language for mathematical assertions
- Includes logical-symbols ∀,∃,=,∧,∨,¬
 The meaning of these symbols is fixed
- Includes non-logical symbols (like ⊕)
 The meaning of these symbols is not fixed. (We can even vary the set V of these symbols as needed.)
- A structure M fixes the meaning of the nonlogical symbols (and the universe of elements).
 Also called an interpretation

Review: First Order Logic

- $M \models \phi$ is same as • *M* is a model for ϕ
 - i.e., " ϕ holds true in the given structure M"
- Let Ψ be a set of assertions $\{\psi_1, \dots\}$
- $M \models \Psi$ is same as
 - *M* is a model for Ψ
 - i.e., "every $\psi_i \in \Psi$ holds true in the given structure M
- $\Psi \models \phi$ is short for
 - Any structure M that is a model for Ψ is also a model for φ

<u>Syntax</u> Review: First Order Logic A formal language for expressing some class of assertions • Suppose $M \models \Psi$ Proofs & Proof Systems Semantics What constitutes a What do we mean • Problem reduction: valid proof by these assertions? of an assertion? (soundness holds) ⇐ $M \vDash \phi$ Does $M \models \phi$? Does $\Psi \models \phi$? (reduction 1) (reduction 2) ⇒? $\Psi \vDash \phi$ $\Psi \vdash \phi$ $\models \phi$ $\vdash \phi$ (completeness may not hold)

Proofs & Proof Systems

- A proof system (or deduction system) is used to define what a valid proof is
- A proof is a tree-like structure
 Leafs: axioms (or axiom instances)
 - Internal nodes: compose sub-proofs using inference rules
 - Root: the theorem that is proven
 - (convenient to draw upside-down)

Proofs & Proof Systems

- A proof-system S is an inductive definition of judgements of the form $\vdash_S \phi$ or $\Psi \vdash_S \phi$
- We use the judgement $\vdash_{S} \phi$ to denote that ϕ can be proven to be valid (in system S)
- The judgement $\Psi \vdash \phi$ denotes that ϕ can be proven given proofs of all $\psi \in \Psi$ (in system S).

Example

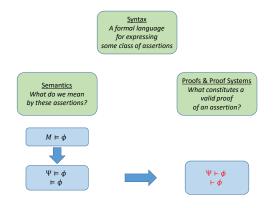
 $\overline{\Psi, \phi \vdash \phi}$

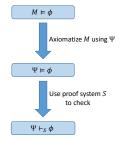
 $\frac{\Psi \vdash \phi_1, \qquad \Psi \vdash \phi_1 \Rightarrow \phi_2}{\Psi \vdash \phi_2} \pmod{\text{modus ponens}}$

 $\frac{\Psi, \phi_1 \vdash \phi_2}{\Psi \vdash \phi_1 \Rightarrow \phi_2}$

 $\frac{\Psi \vdash \phi_1, \quad \Psi \vdash \phi_2}{\Psi \vdash \phi_1 \land \phi_2}$

- Soundness & Completeness
- A proof system is said to be sound if all provable formulae are valid: that is,
 Ψ⊢φ implies Ψ⊨φ
- A proof system is said to be complete if all valid formulae are provable: that is,
 - $\Psi \vDash \phi$ implies $\Psi \vdash \phi$





Godel's Completeness & Incompleteness Theorems

Summary

- By design [of formal proof systems]
 Correctness of a given proof can be easily machine-checked
 - But can be tedious for us to write
 - The set of proofs (for a chosen set of axioms) is recursively enumerable
 - Can automate search for proofs
 - Challenges
 Efficiency
 - Choosing a set of axioms

10/10/2015

Satisfiability Modulo Theories (SMT Solvers)

• Extend SAT solvers to check satisfiability modulo one or more theories

