Hoare Triples

• Syntax: {*P*} *S* {*Q*}

• Intended meaning: If statement S is executed starting in an initial state satisfying P and it terminates, the resulting final state will satisfy Q

Exercise

- Write a specification
- ... for a program S that swaps the values of two variables A and B

Exercise

• Is the following valid?

Program Correctness

- Partial correctness vs. total correctness
- Proving program termination usually harder and requires different techniques

Exercise

• What will really happen if we run this program (in practice today)?

{ n > 0 }
sum := 0;
i := 0;
while (i < n) {
 sum := sum - 1;
 i := i - 1;
}
{ sum == n*(n+1)/2}</pre>

Integers in practice

- Integer variables & arithmetic
 - Classical (standard) theory
 - Reality: 32-bit and 64-bit integers
 - Bit-vector arithmetic theory
 - Modular arithmetic

Arrays

- Specify that an array A is sorted
- How can we model arrays?
- The logic we have considered so far is untyped. We can extend this to a typed version (called many-sorted logic)
 "sort" ≈ "type"
- We will stick to plain untyped logic here

The Array Datatype

• Function symbols used to model arrays

• length (unary)

- length(A)
- We can use Alength as syntactic sugar
- lookup (binary)
 lookup(A,i)
 - We can use A[i] as syntactic sugar
- we can use A[1] as syntactic sugar • update (ternary)
 - update(A,i,v)
 - We can use $A[i \leftarrow v]$ as syntactic sugar
 - same as array A except at index i where it contains
- the value **v**
- isArray (unary)
 type information

Exercise

- Specify that an array A is sorted
- Specify that a program S sorts an input array A
- What are appropriate axioms for the array datatype?

Pointers & Heap

- Memory can be modeled as one (or more) giant array
- Naïve modeling may not be sufficient
 Due to incompleteness
- Separation Logic
- Pointer analysis
- TVLA
 - An abstract-interpretation based approach to verification in the presence of dynamic structures

Hoare Logic

- Inference rules for proving $\vdash \{P\} S \{Q\}$
- Combines
 - Rules for standard mathematical logic with
 - Rules for reasoning about programming language constructs

Hoare Logic Basic Constructs

- Assignment statement: $x \coloneqq e$
- Statement sequencing: S₁; S₂
- Conditional: if (E) then S_1 else S_2
- Iteration: while (e) do S

Statement Sequencing

 $\frac{?}{\vdash \{P\}\,S_1;S_2\;\{Q\}}$

 $\frac{\vdash \{P\}\,S_1\,\{R\}, \quad \vdash \{R\}\,S_2\,\{Q\}}{\vdash \{P\}S_1;S_2\{Q\}}$

Conditional Statement

 $\frac{?}{\vdash \{P\} \text{ if } (E) \text{ then } S_1 \text{ else } S_2 \{Q\}}$

 $\frac{\vdash \{P \land E\} S_1 \{Q\}, \qquad \vdash \{P \land \neg E\} S_2 \{Q\}}{\vdash \{P\} \text{ if } (E) \text{ then } S_1 \text{ else } S_2 \{Q\}}$

Iteration

 $\frac{?}{\vdash \{P\} \text{ while } (E) \text{ do } S \{Q\}}$

 $\frac{\vdash \{P \land E\} S \{P\}, \quad \vdash (P \land \neg E) \Rightarrow Q}{\vdash \{P\} \text{ while } (E) \text{ do } S \{Q\}}$

Assignment

$$\frac{?}{\vdash \{P\} x := E\{Q\}}$$

$$\overline{\vdash \{Q[x \to E]\} x \coloneqq E\{Q\}}$$

4

Exercise

Concurrency

- Try out the assignment rule
- {?} $y \coloneqq 2 * x \{ y > 10 \}$
- {?} $x \coloneqq x + 1 \{x > 10\}$

• Separation Logic