Axiomatic semantics

CS6848 - Principles of Programming Languages Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

- Operational semantics talks about how an expression is evaluated.
- Denotational semantics - describes what a program text means in mathematical terms - constructs mathematical objects.
- Axiomatic semantics - describes the meaning of programs in terms of properties (axioms) about them.
- Usually consists of
- A language for making assertions about programs.
- Rules for establishing when assertions hold for different programming constructs.

Assertion Language

- A specification language
- Must be easy to use and expressive
- Must have syntax and semantics.
- Requirements:
- Assertions that characterize the state of execution.
- Refer to variables, memory
- Examples of non state based assertions:
- Variable x is live,
- Lock L will be released.
- No dependence between the values of x and y.
- Specification language in first-order predicate logic
- Terms (variables, constants, arithmetic operations)
- Formulas:
- true and false
- If t_{1} and t_{2} are terms then, $t_{1}=t_{2}, t_{1}<t_{2}$ are formulas.
- If ϕ is a formula, so is $\neg \phi$.
- IF ϕ_{1} and ϕ_{2} are two formulas then so are $\phi_{1} \wedge \phi_{2}, \phi_{1} \vee \phi_{2}$ and $\phi_{1} \Rightarrow \phi_{2}$
- If $\phi(x)$ is a formula (with a free variable x) then, $\forall x \cdot \phi(x)$ and $\exists x . \phi(x)$ are formulas.
- Meaning of a statement S can be described in terms of triples: $\{P\} S\{Q\}$
where
- P and Q are formulas or assertions.
- P is a pre-condition on S
- Q is a post-condition on S.
- The triple is valid if
- execution of S begins in a state satisfying P.
- S terminates.
- resulting state satisfies Q.

Examples

- $\{2=2\} x:=2\{x=2\}$

An assignment operation of x to 2 results in a state in which x is 2 , assuming equality of integers!

- \{true $\}$ if B then $x:=2$ else $x:=1\{x=1 \vee x=2\}$

A conditional expression that either assigns x to 1 or 2 , if executed will lead to a state in which x is either 1 or 2 .

- $\{2=2\} x:=2\{y=1\}$
- \{true $\}$ if B then $x:=2$ else $x:=1\{x=1 \wedge x=2\}$ Why are these invalid?
- A formula in first-order logic can be used to characterize states.
- The formula $x=3$ characterizes all program states in which the value of the location associated with x is 3 .
- Formulas can be thought as assertions about states.
- Define $\{\sigma \in \Sigma|\sigma|=\phi\}$, where \models is a satisfiability relation.
- Let the value of a term t in state σ be t^{σ}
- If t is a variable x then $t^{\sigma}=\sigma(x)$.
- If t is an integer n then $t^{\sigma}=n$.
- $\sigma \models t_{1}=t_{2}$ if $t_{1}^{\sigma}=t_{2}^{\sigma}$
- $\sigma \models t_{1} \wedge t_{2}$ if $\sigma=t_{1}$ and $\sigma \models t_{2}$
- $\sigma \models \forall x \cdot \phi(x)$ if $\sigma[x \mapsto n] \models \phi(n)$ for all integer constants n.
- $\sigma \models \exists x . \phi(x)$ if $\sigma[x \mapsto n] \models \phi(n)$ for some integer constant n.

Partial Correctness

- The validity of a Hoare triple depends upon the termination of the statement S
- $\{0 \leq a \wedge 0 \leq b\} S\{z=a \times b\}$
- If executed in a state in which $0 \leq a$ and $0 \leq b$, and
- S terminates,
- then $z=a \times b$.

Soundness

Proof rules

- Skip:

$$
\{P\} s k i p\{P\}
$$

- Assignment:

$$
\{P[t / x]\} x:=t\{P\}
$$

Example: Suppose $t=x+1$
then, $\{x+1=2\} x:=x+1\{x=2\}$
-

$$
\text { Sequencing } \frac{\left\{P_{1}\right\} c_{0}\left\{P_{2}\right\}\left\{P_{2}\right\} c_{1}\left\{P_{3}\right\}}{\left\{P_{1}\right\} c_{0} ; c_{1}\left\{P_{3}\right\}}
$$

-

$$
\text { Conditionals } \frac{\left\{P_{1} \wedge b\right\} c_{0}\left\{P_{2}\right\}\left\{P_{1} \wedge \neg b\right\} c_{1}\left\{P_{2}\right\}}{\left\{P_{1}\right\} \text { if } b \text { then } c_{0} \text { else } c_{1}\left\{P_{2}\right\}}
$$

- $\{x>0\} y=x-1\{y \geq 0\}$ implies

$$
\{x>10\} y=x-1\{y \geq-5\}
$$

- $\{x>0\} y=x-1\{y \geq 0\}$ and
$\{y \geq 0\} x=y\{x \geq 0\}$ implies
$\{x>0\} y=x-1 ; x=y\{x \geq 0\}$
Apply rules of consequence to arrive at universal pre-condition and post-condition

Use of Axiomatic semantics to properties
Step I - choosing the invariants

Prove that the following program:

```
z := 0;
n := Y;
while n > 0 do
    z := z + x;
    n}:=\textrm{n}-1
```

computes the product of x and y (assuming y is non-negative).

Step II - constructing the proof in reverse order

```
```

{z=x * (y-n) ^ n \geq0}

```
```

{z=x * (y-n) ^ n \geq0}
while n > 0 do z := z+x; n := n-1
while n > 0 do z := z+x; n := n-1
{z=x * y}
{z=x * y}
z=x* (y-n) ^n \geq 0 ^ ᄀ (n>0) \# z = x * y
z=x* (y-n) ^n \geq 0 ^ ᄀ (n>0) \# z = x * y
(definition of while)
(definition of while)
(apply the consequence rule)
(apply the consequence rule)
{z=x * (y-n) ^ n \geq 0}
{z=x * (y-n) ^ n \geq 0}
while n > 0 do z := z+x; n := n-1
while n > 0 do z := z+x; n := n-1
{z=x* (y-n) ^n\geq0^\neg(n>0)}

```
```

{z=x* (y-n) ^n\geq0^\neg(n>0)}

```
```

- Want to show the following Hoare triple is valid: $\{y \geq 0\}$ above-program $\{\mathrm{z}=\mathrm{x} * \mathrm{y}\}$
- Invariant for the while loop:
$P=\{z=x *(y-n) \wedge n \geq 0\}$

Step II - constructing the proof in reverse order

```
(any iteration)
\(\{(\mathrm{z}+\mathrm{x})=\mathrm{x} *(\mathrm{y}-(\mathrm{n}-1)) \wedge(\mathrm{n}-1) \geq 0\}\)
z : \(=\mathrm{z}+\mathrm{x}\);
\(\{\mathrm{z}=\mathrm{x} *(\mathrm{y}-(\mathrm{n}-1)) \wedge(\mathrm{n}-1) \geq 0\}\)
\(\mathrm{n}:=\mathrm{n}-1\)
\(\{\mathrm{z}=\mathrm{x} *(\mathrm{y}-\mathrm{n}) \wedge \mathrm{n} \geq 0\}\)
\(\mathrm{z}=\mathrm{x} *(\mathrm{y}-\mathrm{n}) \wedge \mathrm{n} \geq 0 \wedge \mathrm{n}>0 \Rightarrow\)
    \(\{(\mathrm{z}+\mathrm{x})=\mathrm{x} *(\mathrm{y}-(\mathrm{n}-1)) \wedge(\mathrm{n}-1) \geq 0\}\)
(consequence)
\(\{\mathrm{z}=\mathrm{x} *(\mathrm{y}-\mathrm{n}) \wedge \mathrm{n} \geq 0 \wedge \mathrm{n}>0\}\)
\(\mathrm{z}:=\mathrm{z}+\mathrm{x} ; \mathrm{n}:=\mathrm{n}-1\)
\(\{\mathrm{z}=\mathrm{x} *(\mathrm{y}-\mathrm{n}) \wedge \mathrm{n} \geq 0\}\)
```


Step II - constructing the proof in reverse order

```
Useless assignment
```

```
(pre-loop code)
{z=x*(y-y) ^ y \geq 0}
n := y
{z=x*(y-n) ^ n \geq 0}
{0 = x* (y-y) ^ y \geq 0}
z := 0
{z = x* (y-y) ^ y \geq 0}
```

$\{y \geq 0\}$
z := 0; n := y
$\{z=x *(y-n) \wedge n \geq 0\}$
$\{\mathrm{y} \geq 0\}$ above-program $\{\mathrm{z}=\mathrm{x} * \mathrm{y}\}$

- Axiomatic Semantics
- Proof rules
- Proving the semantics of the multiplication routine.

More proofs

```
while (x != y) do
if (x <= y)
then
y := y-x
else
x := x-y
```

Derive that
$\vdash\{\mathrm{x}=\mathrm{m} \wedge \mathrm{y}=\mathrm{n}\}$ above-program $\{\mathrm{x}=\operatorname{gcd}(\mathrm{m}, \mathrm{n})\}$
Hint: Start with the loop invariant to be $\{\operatorname{gcd}(x, y)=\operatorname{gcd}(m, n)\}$

- Proving that the factorial (using loops) computes factorial
- Proving that the \exp (using loops) computes $\exp (\mathrm{M}, \mathrm{N})$.

Connection between axiomatic and operational semantics

Validity

- Semantics of Valid assertions
- Soundness
- Completeness

Validity via Partial correctness

- $\{P\} c\{Q\}$: Whenever we start the execution of command c in a state that satisfies P, the program either does not terminate or it terminates in a state that satisfies Q.
- $\forall \sigma, P, Q, c \vDash\{P\} c\{Q\}$
if
$\forall \sigma^{\prime}$:
$\sigma \triangleright P \vdash\langle$ true,$\sigma\rangle \wedge$

$$
\sigma \triangleright c \vdash \sigma^{\prime}
$$

then
$\sigma^{\prime} \triangleright Q \vdash\left\langle\right.$ true,$\left.\sigma^{\prime}\right\rangle$

Validity

Derivations and Validity

Validity via total correctness

- $[P] c[Q]$: Whenever we start the execution of command c in a state that satisfies P, the program terminates in a state that satisfies Q.
- $\forall \sigma, P, Q, c \vDash[P] c[Q]$
if $\sigma \triangleright P \vdash\langle$ true, $\sigma\rangle$
then
$\exists \sigma^{\prime}$:
$\sigma \triangleright c \vdash \sigma^{\prime} \wedge$
$\sigma^{\prime} \triangleright Q \vdash\left\langle\right.$ true,$\left.\sigma^{\prime}\right\rangle$
- note the square brackets (not curly brackets).
- We use $\vdash A$ to indicate that we can prove (derive) the assertion A.
- We use $\vdash\{A\} c\{B\}$ to indicate that we can prove the partial correctness assertion $\{A\} c\{B\}$.
- We wish that $\models\{A\} c\{B\}$ iff $\vdash\{A\} c\{B\}$.

Soundness

Completeness

- All derived triples are valid.
- If $\vdash\{P\} c\{Q\}$, then $\vDash\{P\} c\{Q\}$.
- Any derivable assertion is sound with respect to the underlying operational semantics.
- Soundness is guaranteed from our proof rules.
- All derived triples are derivable from empty set of assumptions.
- If $=\{P\} c\{Q\}$, then $\exists \sigma^{\prime}$
init-state $\triangleright\{P\} c\{Q\} \vdash\left\langle\right.$ true,$\left.\sigma^{\prime}\right\rangle$.
- Harder to achieve (in general) - complete only if the underlying logic is complete if $(\models A)$ then $\vdash A$.

Acknowledgements

- Suresh Jagannathan
- George Necula
- Internet.

