
CS6848 - Principles of Programming Languages
Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

*

Recap

Type rules.
Simply typed lambda calculus.
Type soundness proof.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2 / 31

*

Recursive types

A data type for values that may contain other values of the same
type.
Also called inductive data types.
Compared to simple types that are finite, recursive types are not.

interface I {
void s1(boolean a);
int m1(J a);

}

interface J {
boolean m2(I b);

}

Infinite graph.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3 / 31

*

Recursive types

Can be viewed as directed graphs.
Useful for defining dynamic data structures such as Lists, Trees.
Size can grow in response to runtime requirements (user input);
compare that to static arrays.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4 / 31

*

Equality and subtyping

In Java two types are considered equal iff they have the same
name. Tricky example?
Same with subtyping.
Contrast the name based subtyping to structural subtyping.
Why is structural subtyping interesting?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5 / 31

*

Grammar for recursive types

We will extend the grammar of our simple types.

t ::= t1→ t2|Int |α|µα.(t1→ t2)

where
α is a variable that ranges over types.
µα.t - is a recursive type that allows unfolding.

µα.t = t[α := (µα.t)]

Example: Say u = µα.(α → Int). Now unfold
Once: u = u→ Int
Twice: u = (u→ Int)→ Int
. . .
Infinitely: Infinite tree - the type of u.

A type derived from this grammar will have finite number of distinct
subtrees - regular trees.
Any regular tree can be written as a finite expression using µs.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6 / 31

*

Type derivation example

Type of the lambda term λx.xx.
Use a type u = µα.(α → Int).

φ [x : u] ` x : u→ Int φ [x : u] ` x : u
φ [x : u] ` xx : Int

φ ` λx : u.xx : u→ Int

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 7 / 31

*

Type derivation, example II

Y = λ f .(λx.f (xx))(λx.f (xx))

Y-combinator is also called fixed point combinator or paradoxical
combinator.
When applied to any function g, it produces a fixed point of g.
That is Y(E) = E(Y(E))

Y(E) =β (λx.E(xx))(λx.E(xx))
=β E((λx.E(xx))(λx.E(xx)))
=β E(Y(E))

Useless assignment: For the factorial function
F = λ f .λn.if (zero? n) 1 (mult n (f pred n)), show that
(Y F) n computes factorial n.
Use the definition of factorial function:
Fact n = if (zero? n) 1 (mult n (Fact (pred n))) Ueless assignment II:
Write the Y combinator in Scheme.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8 / 31

*

Type derivation of Y-combinator

Y combinator cannot be typed with simple types.
Use a type u = µα.(α → Int).

φ [f : Int→ Int] ` (λx.f (xx))(λx.f (xx)) : Int
φ ` λ f .(λx.f (xx))(λx.f (xx)) : (Int → Int)→ Int)

If we can get the type of λx.f (xx) to be type u then using
u = u→ Int like above, we can get the premise.
Goal φ [f : Int → Int] ` λx.f (xx) : u

φ [f : Int → int][x : u] ` f : Int → Int φ [x : u] ` xx : Int
φ [f : Int → Int][x : u] ` f (xx) : Int
φ [f : Int → Int] ` λx : u.f (xx) : u

Not all terms can be typed with recursive types either:
λx.x(succ x)

Type soundness theorem can be proved for recursive types as
well.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9 / 31

*

Equality of types

Isorecursive types: µα.t and t[α/µα.t] are distinct (disjoint) types.
Equirecursive types: Type type expessions are same if their
infinite trees match.

Direct comparison is not enough.
Convert a given type into a canonical (normal/standard) form and
then compare.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10 / 31

*

Representation of types - as functions

Denote an alphabet Σ that contains all the labels and paths of the
type tree.
We can represent such a tree by a function that maps paths to
labels — called a term.
Say we denote left by 0 and right by 1,
for the types discussed before: path ∈ {0,1}∗.
And the labels are from the set Σ = {Int ,→}.
A term t over Σ is a partial function

t : {0,1}∗→ Σ

The domain D(t) must satisfy:
D(t) is non-empty and is prefix-closed.
if t(α) =→ then α0, α1 ∈ D(t).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11 / 31

*

Types as functions (contd)

Example.

The term is given by:

t(0n) = →
t(02n1) = >
t(02n+11) = ⊥

A term over Σ is a partial function:
t : w∗→Σ

Define a new partial function t ↓ α:

t ↓ α(β) = t(αβ).
A term t is finite if its domain D(t) is a
finite set – finite types

If t ↓ α has non empty domain⇒ it is
a term and is called the subterm of t
at position α.

t is regular if it has only finitely many
distinct subterms. That is,
{t ↓ α|α ∈ w∗} is a finite set.

A term t is regular ≡ it represents a
recursive type.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12 / 31

*

Types as automata

If t is a term then following are equivalent:
t is regular.
t is representable by a term automata
t is describable by a type expression involving µ.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13 / 31

*

Subtyping

We want to denote that some types are more informative than
other.
We say t1 ≤ t2 to indicate that every value described by t1 is also
describled by t2.
That is, if you have a function that needs a value of type t2, you
can give safely pass a value of type t1.
t1 is a subtype of t2 or t2 is a super type of t1.
Example: C++ and Java.

subsumption
A ` e : t t ≤ t′

A ` e : t′

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14 / 31

*

Rules for subtyping

(reflexive) t ≤ t

transitive
t1 ≤ t2 t2 ≤ t3

t1 ≤ t3

Arrow
t1 ≤ s1 s2 ≤ t2
s1→ s2 ≤ t1→ t2

The subtype relation is reversed (contravariant) for the argument
types.
The subtype relation in the result types - covariant.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15 / 31

*

Special types

(Top)t ≤>

> = Java Object class.
⊥ = Subtype of all the classes - undefined type.

(lambda (x) (zero? x) 4 (error # mesg))

t = Int |⊥|>|t→ t|v|µv.(t→ t)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 / 31

*

Subtyping algorithm for recursive types

Roberto M Amadio. and Luca Cardelli. Subtyping recursive types.
In ACM Symposium on Principles of Programming Languages,
1990. - self reading.
Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach.
Efficient recursive sub-typing. In ACM Symposium on Principles of
Programming Languages, 1993.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17 / 31

*

Parity

The partiy of α ∈ {0,1}∗ is even - if α has even number of zeros.
The partiy of α ∈ {0,1}∗ is odd - if α has odd number of zeros.
Denote parity of α by πα = 0 if even, 1 if odd.
We will definte two orders.

co-variant: ⊥≤0 >
contra-variant: >≤1 ⊥

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18 / 31

*

Type ordering

For two types s, and t, we define s≤ t, iff s(α)≤πα t(α) for all
α ∈ D(s)∩D(t).

→ →

→

⊥

→

⊥ >

>

⊥

≤⊥

A counter example to s≤ t: ∃ a path α ∈ D(s)∩D(t), where
s(α) 6≤πα t(α)

Two trees are ordered if no common path detects a counter
example.

For finite types, we can compare all the paths (cost?) in the tree.
For recursive types?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19 / 31

*

Recap product autoamta

A prduct automata represents interaction between two finite state
machines.

Slide from Thierry Coquand @ University of Gothenburg

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20 / 31

*

Modified product automata

Given two term automata M and N, we will construct a product
automata – (non-deterministic?)
A = (QA,Σ,qA

0 ,δ
A,FA)

where

QA = QM×QN×{0,1}
Σ = {0,1}
qA

0 = (qM
0 ,qN

0 ,0) – start state of A.
δ A : QA×Σ→ QA.
For b, i ∈ Σ, p ∈ QM, and q ∈ QN ,
we have δ A((p,q,b), i) = (δ M(p, i),δ N(q, i),b⊕πi)
(⊕ = xor)
Final states

Recall: s 6≤ t iff
{α ∈ D(s)∩D(t)|s(α) 6≤πα t(α)}
Goal: create an automata, where final states are denoted by states
that will lead to 6≤.

FA = {(p,q,b)|lM(p) 6≤b lN(q)} – l gives the label of that node.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21 / 31

*

Decision procedure for subtyping

Input: Two types s, t.
Output: If s≤ t.

1 Construct the term automata for s and t.
2 Construct the product automaton s× t. Size = ?
3 Decide, using depth first search, if the product automaton accepts

the nonempty set.
Does there exist a path from the start state to some final state?

4 If yes, then s 6≤ t. Else s≤ t.
Compute the time complexity - O(n2)

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22 / 31

*

Example 0

(⊥→>) and (>→⊥) 6≤
((⊥→>)→ (⊥) and ((>→⊥)→ (⊥) ≤

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23 / 31

*

Example 1

µv.(v→⊥) and µu.(u→>)

Term automata

Product automata

Unreachable states
((→V ,>,1)), (→V ,>,0), (⊥,→ u,1), ((⊥,→ u,0)),

µv.(v→⊥) 6≤ µu.(u→>)

Note: Some of the unreachable states are ((final))

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24 / 31

*

Example 2

µu.((u→ u)→⊥) and µv.((v→⊥)→>)

Term automata

µu.((u→ u)→⊥) µv.((v→⊥)→>)

Product automata - derive. Ans: ≤.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 25 / 31

*

Type inference

Goal: Given a program with some types.
Infer “consistent” types of all the expressions in the program.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 26 / 31

*

First order unification

Goal: To do type inference
Given: A set of variables and literals and their possible types.

Remember: type = constraint.

Target: Does the given set of constraints have a solution? And if
so, what is the most general solution?
Unification can be done in linear time: M. S. Paterson and M. N.
Wegman, Linear Unification, Journal of Computer and System
Sciences, 16:158167, 1978.
We will instead present a simpler to understand, complex to run
algorithm.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 27 / 31

*

Definitions

We will stick to simple type experssions generated from the grammar:

t ::= t→ t|Int |α

where α ranges over type variables.

Type substitution, example:

((Int → α)→ β)[α := Int ,β := (Int → Int)] = (Int → Int)→ (Int → Int)

((Int → α)→ γ)[α := Int ,β := (Int → α)] = (Int → Int)→ γ

We say given a set of type equations, we say a substituion σ is an unifier or
solution if for each of the equation of the form s = t, sσ = tσ .

Substituions can be composed:

t(σ o θ) = (tσ)θ

A substituion σ is called a most general solution of an equation set provided that
for any other solution θ , there exists a substituon τ such that θ = σ o τ

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 28 / 31

*

Unification algorithm

Input: G: set of type equations (derived from a given program).
Output: Unification σ

1 failure = false; σ = {}.
2 while G 6= φ and ¬ failure do

1 Choose and remove an equation e from G. Say eσ is (s = t).
2 If s and t are variables, or s and t are both Int then continue.
3 If s = s1→ s2 and t = t1→ t2, then G = G∪{s1 = t1,s2 = t2}.
4 If (s = Int and t is an arrow type) or vice versa then failure = true.
5 If s is a variable that does not occur in t, then σ = σ o [s := t].
6 If t is a variable that does not occur in s, then σ = σ o [t := s].
7 If s 6= t and either s is a variable that occurs in t or vice versa then

failure = true.
3 end-while.
4 if (failure = true) then output “Does not type check”. Else o/p σ .

Q: Composability helps?
Q: Cost?

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 29 / 31

*

Examples

α = β → Int
β = Int → Int

α = Int → β

β = α → Int

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 30 / 31

*

Recap

Structural subtyping
Unification algorithm

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 31 / 31

	Type Systems
	Recursive Types

