CS6848 - Principles of Programming Languages

Principles of Programming Languages

@ Type rules.
@ Simply typed lambda calculus.

V. Krishna Nandivada
@ Type soundness proof.

IIT Madras

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 2/31

Recursive types Recursive types

@ A data type for values that may contain other values of the same
type.

@ Also called inductive data types.

@ Compared to simple types that are finite, recursive types are not.

@ Can be viewed as directed graphs.
@ Useful for defining dynamic data structures such as Lists, Trees.

@ Size can grow in response to runtime requirements (user input);
compare that to static arrays.

interface I {
void sl (boolean a);
int ml(J a);

}

interface J {
boolean m2 (I b);
}

@ Infinite graph.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 3/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 4/31

Equality and subtyping Grammar for recursive types

@ We will extend the grammar of our simple types.

°
t==1t = b|nt |o|po.(ry — 1)

@ In Java two types are considered equal iff they have the same where

name. Tricky example? e aisa yariable thgt ranges over types. _
uo.t - is a recursive type that allows unfolding.

@ Same with subtyping.
@ Contrast the name based subtyping to structural subtyping. pot=tlo = (na.r)]
@ Why is structural subtyping interesting?

Example: Say u = pa.(o — Int). Now unfold
@ Once: u=u— Int
@ Twice: u=(u—Int) —Int
o ...
@ Infinitely: Infinite tree - the type of u.
o A type derived from this grammar will have finite number of distinct
subtrees - regular trees. SR
@ Any regular tree can be written as a finite expression using us.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 5/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 6/31

Type derivation example Type derivation, example |l

@ Y = Af . (Axf(xx))(Ax.f(xx))
@ Y-combinator is also called fixed point combinator or paradoxical
combinator.

@ When applied to any function g, it produces a fixed point of g.

@ Type of the lambda term Ax.xx.
@ Thatis Y(E) = E(Y(E))

@ Useatype u=pa.(a—Int).

o
° Ofx:ulbx:u—Int @Px:ulbx:u Y(E) =p (ll(f/lE(xx())();;?lE(xx()) ")
< ul - xx =p E((Ax.E(xx))(Ax.E(xx
Ofx: u] Fxx:Int —y E(Y(E)

OFAx:uxx:u— Int

Useless assignment: For the factorial function

F = Af An.if (zero? n) 1 (mult n (f pred n)), show that
(Y F) n computes factorial n.

Use the definition of factorial function:
Fact n = if (zero? n) 1 (mult n (Fact (pred n))) Ueless assignment II:

Write the Y combinator in Scheme.
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 71731 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 8/31

Type derivation of Y-combinator

Y combinator cannot be typed with simple types.
Use atype u=po.(oc — Int).

O[f : Int — Int | = (Ax.f(xx))(Ax.f(xx)) : Int
O = Af.(Axf(xx))(Ax.f(xx)) : (Int — Int) — Int)

@ If we can get the type of Ax.f(xx) to be type u then using
u=u— Int like above, we can get the premise.
Goal ¢[f : Int — Int]F Ax.f(xx) : u

Off :Int —int][x:u]lFf:Int —Int @[x:u]Fxx:Int
Off : Int — Int][x: u] F f(xx) : Int
Off :Int = Int]F Ax:uf(xx):u
@ Not all terms can be typed with recursive types either:
Ax.x(succ x)
@ Type soundness theorem can be proved for recursive types as §
well.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 9/31

Representation of types - as functions

@ Denote an alphabet X that contains all the labels and paths of the
type tree.

@ We can represent such a tree by a function that maps paths to
labels — called a term.

@ Say we denote left by 0 and right by 1,
for the types discussed before: path € {0,1}*.

@ And the labels are from the set © = {Int ,—}.
@ Aterm rover X is a partial function

t:{0,1}* > %

@ The domain D(r) must satisfy:
e D(t) is non-empty and is prefix-closed.
e if t(a) = — then a0, a1 € D(r).

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 11/31

Equality of types

@ Isorecursive types: pa.t and f[oe/pa.t] are distinct (disjoint) types.
@ Equirecursive types: Type type expessions are same if their
infinite trees match.
e Direct comparison is not enough.
e Convert a given type into a canonical (normal/standard) form and
then compare.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 10/31

Types as functions (contd)

@ Example.
@ Aterm over X is a partial function:
twt =%
\'\ @ Define a new partial function 7 | a:
— T o rla(f)=tap).
f/ \\ @ Aterm ris finite if its domain D(r) is a
—f 1 finite set — finite types
_}"f R“ @ If t | a has non empty domain = it is
VAN T a term and is called the subterm of ¢
at position a.
: l @ tis regularif it has only finitely many
@ The term is given by: distinct subterms. Thgt is,
{t] a]oe € w*} is a finite set.
’(OQ = = @ Atermris regular = it represents a
(ory =T recursive type.
(0 +11) = 1
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 12/31

Sublyping

If ¢ is a term then following are equivalent:

e 1is regular. @ We want to denote that some types are more informative than
@ tis representable by a term automata other.
. : C . We say 1, < 1, to indicate that every value described by ¢, is also
@ 7 is describable by a type expression involving u. ° =12 !
yalyp P g describled by #,.
s N @ That is, if you have a function that needs a value of type #,, you
_{ N _/ \F can give safely pass a value of type 1.
L : .
/ \J _/’ \T @ 1 is a subtype of r, or 1, is a super type of #.
: : @ Example: C++ and Java.
°
. Ale:t <t
subsumption
1 1 AlFe:t
0 —— 1 0 =y T
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 13/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 14/31
Rules for subtyping Special types
o
(reflexive) t <t
o
°
. h<h h<Hh (Top)t <T
transitive
n<t @ T =Java Object class.
° B i :
H<si s<ty @ | = Subtype of all the classes - undefined type.
Arrow o (lambda (x) (zero? x) 4 (error # mesg))

S1 =59 <t —h
@ r=Int|L|T|t— t|v|uv.(t — 1)
e The subtype relation is reversed (contravariant) for the argument

types.
e The subtype relation in the result types - covariant.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 15/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 16 /31

Sublyping algorithn for recursive types

@ Roberto M Amadio. and Luca Cardelli. Subtyping recursive types. @ The partiy of a € {0,1}* is even - if a has even number of zeros.
In ACM Symposium on Principles of Programming Languages, @ The partiy of o € {0,1}* is odd - if & has odd number of zeros.
1990. - self reading. @ Denote parity of @ by 7o = 0 if even, 1 if odd.

@ Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. @ We will definte two orders.

Efficient recursive sub-typing. In ACM Symposium on Principles of o co-variant: 1 <, T
Programming Languages, 1993. e contra-variant: T <; |

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 17 /31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 18/31

Type ordering Recap product autoamta

@ For two types s, and ¢, we define s <1, iff s(at) <zq 1(t) for all @ A prduct automata represents interaction between two finite state

o € D(s)ND(1) machines.
%
— o
/ \ The product of »: p1 and
Po
L T 1 / L
@ A counter example to s <t: 3 a path a € D(s) N D(¢), where
S((X) gmx t(a)) If we start from A, C and after the word w we are in the state A,D
e Two trees are ordered if no common path detects a counter we know that w contains an even number of pps and odd number of
example. pis

@ For finite types, we can compare all the paths (cost?) in the treg
For recursive types?

Slide from Thierry Coquand @ University of Gothenburg

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 19/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 20/ 31

Modified product automata Decision procedure for subtyping

@ Given two term automata M and N, we will construct a product
automata — (non-deterministic?)

A=(0"%,q5,6% F") Input: Two types s, 1.
where Output: If s <1.
° gA :{(?Ai}x o x{0,1} @ Construct the term automata for s and .
] .
o ¢t = (q¥,4Y,0) — start state of A. © Construct the product automaton s x t. Size = ?
0 54 0AXY = 0. © Decide, using depth first search, if the product automaton accepts
Forb,icx,pe o, and ge QV, the nonempty set.
we have 5A((p q),) = (8M(p,i), 8" (q,i),b® mi) e Does there exist a path from the start state to some final state?
(@ = xor)
o Final states © Ifyes,thens £t Else s <t
o Recall: s % ¢ iff Compute the time complexity - O(n?)
{ae D(s)ND(r)[s(e) £ra t()}
@ Goal: create an automata, where final states are denoted by states
that will lead to «£.
={(p,q,b)|™M(p) £» I¥(q)} — I gives the label of that node.
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 21/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 22/31

Example O Example 1

@ uv.(v— L)and pu.(u—T)
Product automata

Term automata 1
_*\ 2 (—’va ""mo)
/_< L /_/ k. 0 1
o (Lo>T)and (T > 1)« po4 O 0
o (L—=T)=(Land ((T—L)—=>(L)< (=v,=wl) (L,T,0)
0 _MJ L0 _,”1 T 1
(L,7,1)

@ Unreachable states
((_>V7T> l))1 (_>V7 T70)1 (l7 —u, 1)1 ((L7 — u70))s
@ w.(v— L)L uu(u—T)
Note: Some of the unreachable states are ((final))

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 23/ 31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 24/ 31

Example 2 Type inference

@ puu.((u—u)— L)yand uv.((v—_L)—T)
@ Term automata

e ((u— u) = 1) pv.((v—L1)—=T)
-q
-~ 7\
/ \ — @ Goal: Given a program with some types.
—* L / \ T @ Infer “consistent” types of all the expressions in the program.
/ \ .
. —

N __}/\l
/N /N T
: : : 1

@ Product automata - derive. Ans: <.

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 25/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 26 /31

First order unifcation

@ We will stick to simple type experssions generated from the grammar:
tz=t—t|Int o
@ Goal: To do type inference where o ranges over type variables.
@ Given: A set of variables and literals and their possible types. @ Type substitution, example:
e Remember: type = constraint.
@ Target: Does the given set of constraints have a solution? And if
so, what is the most general solution?

((Int = o) = B)a:=Int,B:=(Int —Int)]=(Int —»Int)— (Int —Int)

@ Unification can be done in linear time: M. S. Paterson and M. N. (It = a) = Pa:=Int,B:=(nt = a)]=(nt =Int) =y
Wegman, Linear Unification, Journal of Computer and System
Sciences, 16:158167, 1978. @ We say given a set of type equations, we say a substituion o is an unifier or
@ We will instead present a simpler to understand, complex to run solution if for each of the equation of the form s =1, s = 1c.
algorithm. @ Substituions can be composed:

t(co00)=(t0)6

@ A substituion ¢ is called a most general solution of an equation set provided
for any other solution 6, there exists a substituon 7 suchthat0 =c ot <

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 27 /131 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 28/ 31

Unifcation algoritim

Input: G: set of type equations (derived from a given program).
Output: Unification o

Q failure = false; o = {}.
@ while G # ¢ and — failure do

@ Choose and remove an equation e from G. Say ec is (s =1). o= —Int
@ If s and r are variables, or s and r are both Int then continue. B =Int — Int
Q lfs=s;>s,andt=1 —n,then G=GU{s1 =11,50 =12}
@ If (s=Int and ¢ is an arrow type) or vice versa then failure = t rue. a=Int =B
@ If sis a variable that does not occurinr,thenc =00 [s:=1]. B =o—Int
O Ifzis a variable that does not occur in s, then 6 = o o [t :=35s]. -
@ If s#+rand either s is a variable that occurs in ¢ or vice versa then
failure = true.
© end-while.
Q if (failure = true) then output “Does not type check”. Else o/p o.
Q: Composability helps? :
Q: Cost?
V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 29/31 V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 30/31

@ Structural subtyping
@ Unification algorithm

V.Krishna Nandivada (IIT Madras) CS6848 (IIT Madras) 31/31

	Type Systems
	Recursive Types

