CS6848 - Principles of Programming Languages Principles of Programming Languages

V. Krishna Nandivada

IIT Madras

- Extensions to simply typed lambda calculus.
- Pairs, Tuples and records

Polymorphism - motivation

- AppTwicelnt $=\lambda f: \operatorname{Int} \rightarrow \operatorname{lnt} . \lambda x: \operatorname{lnt} . f(f x)$

AppTwiceRcd $=\lambda f:(l: \operatorname{lnt}) \rightarrow(l: \operatorname{lnt}) . \lambda x:(l: \operatorname{lnt}) \cdot f(f x)$
AppTwiceOther $=$
$\lambda f:(\operatorname{Int} \rightarrow \operatorname{Int}) \rightarrow(\operatorname{Int} \rightarrow \operatorname{Int}) . \lambda x:(\operatorname{Int} \rightarrow \operatorname{lnt}) \cdot f(f x)$

- Breaks the idea of abstraction: Each significant piece of functionality in a program should be implemented in just one place in the source code.

Polymorphism - variations

- Type systems allow single piece of code to be used with multiple types are collectively known as polymorphic systems.
- Variations:
- Parametric polymorphism: Single piece of code to be typed generically (also known as, let polymorphism, first-class polymorphism, or ML-style polymorphic).
- Restricts polymorphism to top-level let bindings.
- Disallows functions from taking polymorphic values as arguments.
- Uses variables in places of actual types and may instantiate with actual types if needed.
- Example: ML, Java Generics
(let (apply lambda f. lambda a (f a))) (let ((a (apply succ 3))) (let ((b (apply zero? 3)))..
- Ad-hoc polymorphism - allows a polymorphic value to exhibit different behaviors when viewed using different types.
- Example: function Overloading, Java instanceof operator.
- subtype polymorphism: A single term may get many types usin subsumption.

Parametric Polymorphism - System F

- System F discovered by Jean-Yves Girard (1972)
- Polymorphic lambda-calculus by John Reynolds (1974)
- Also called second-order lambda-calculus - allows quantification over types, along with terms.

Type abstraction and application

$$
(\lambda X . e)\left[t_{1}\right] \rightarrow\left[X \rightarrow t_{1}\right] e
$$

Examples

-

$$
i d=\lambda X \cdot \lambda x: X \cdot x
$$

Type of $i d: \forall X . X \rightarrow X$
applyTwice $=\lambda X . \lambda f: X \rightarrow X . \lambda a: X f(f a)$
Type of applyTwice : $\forall X .(X \rightarrow X) \rightarrow X \rightarrow X$

```
System F
```

- Definition of System F - an extension of simply typed lambda calculus.

Lambda calculus recall

- Lambda abstraction is used to abstract terms out of terms.
- Application is used to supply values for the abstract types.

System F

- A mechanism for abstracting types of out terms and fill them later.
- A new form of abstraction:
- $\lambda X . e$ - parameter is a type.
- Application - e[t]
- called type abstractions and type applications (or instantiation).

Extension

- Expressions:

$$
e::=\cdots|\lambda X . e| e[t]
$$

- Values

$$
v::=\cdots \mid \lambda X . e
$$

- Types

$$
t::=\cdots \mid \forall X . t
$$

- typing context:

$$
A::=\phi|A, x: t| A, X
$$

\bullet
-

$$
\text { type application } 1-\frac{e_{1} \rightarrow e_{1}^{\prime}}{e_{1}\left[t_{1}\right] \rightarrow e_{1}^{\prime}\left[t_{1}\right]}
$$

type appliation $2-\left(\lambda X . e_{1}\right)\left[t_{1}\right] \rightarrow\left[X \rightarrow t_{1}\right] e_{1}$
-

$$
\text { type abstraction } \frac{A, X \vdash e_{1}: t_{1}}{A \vdash \lambda X . e_{1}: \forall X . t_{1}}
$$

\bullet
type application $\frac{A \vdash e_{1}: \forall X . t_{1}}{A \vdash e_{1}\left[t_{2}\right]:\left[X \rightarrow t_{2}\right] t_{1}}$

Examples

- $i d=\lambda X . \lambda x: X x$
$i d: \forall X . X \rightarrow X$
type application: id [Int] : Int \rightarrow Int
value application: $i d[\operatorname{lnt}] 0=0:$ Int
- applyTwice $=\lambda X . \lambda f: X \rightarrow X . \lambda a: X f(f a)$

ApplyTwiceInts $=$ applyTwice [Int]
$\operatorname{applyTwice}[\operatorname{Int}](\lambda x: \operatorname{Int} \operatorname{succ}(\operatorname{succ} x)) 3=7$

- Recall: Simply typed lambda calculus - we cannot type $\lambda x . x x$.
- How about in System F?
- selfApp : $(\forall X . X \rightarrow X) \rightarrow(\forall X . X \rightarrow X)$

Booleans

- $\operatorname{tru}=\lambda t . \lambda f . t$
- $\mathrm{fls}=\lambda t . \lambda f . f$
- Idea: A predicate will return tru or $f 1 \mathrm{~s}$.
- We can write if pred s1 else s2 as (pred s1 s2)
- and $=\lambda b . \lambda c . b c \mathrm{fls}$
- or $=$? $\lambda b . \lambda c . b$ tru c
- not $=$?
- pair $=\lambda f . \lambda s . \lambda b . b f s$
- To build a pair: pair v w
- $\mathrm{fst}=\lambda p \cdot p \mathrm{tru}$
- $\mathrm{snd}=\lambda p \cdot p \mathrm{fl} \mathrm{s}$

Church numerals

(Recall) Type inference algorithm (Hindley-Milner)

- $c_{0}=\lambda s . \lambda z \cdot z$
- $c_{1}=\lambda s . \lambda z . s z$
- $c_{2}=\lambda s . \lambda z . s s z$
- $c_{3}=\lambda$ s. λz.s ss z

Intuition

- Each number n is represented by a combinator c_{n}.
- c_{n} takes an argument s (for successor) and z (for zero) and apply s, n times, to z.
- c_{0} and fls are exactly the same!
- This representation is similarto the unary representation we studies before.
- $s c c=\lambda n . \lambda s . \lambda z . s(n s z)$
- $a=\lambda x \cdot \lambda y \cdot x$
- $b=\lambda f$. (f 3)
- $c=\lambda x$. $(+($ head $x) 3)$
- $d=\lambda f$. ((f 3), (f $\lambda y . y))$
- appTwice $=\lambda f . \lambda x \cdot f f x$

"Occurs" check

Input: G: set of type equations (derived from a given program).
Output: Unification σ
(1) failure = false; $\sigma=\{ \}$.
(2) while $G \neq \phi$ and \neg failure do
(1) Choose and remove an equation e from G. Say $e \sigma$ is $(s=t)$.
(2) If s and t are variables, or s and t are both Int then continue.
(3) If $s=s_{1} \rightarrow s_{2}$ and $t=t_{1} \rightarrow t_{2}$, then $G=G \cup\left\{s_{1}=t_{1}, s_{2}=t_{2}\right\}$.
(9) If ($s=$ Int and t is an arrow type) or vice versa then failure $=$ true.
(3) If s is a variable that does not occur in t, then $\sigma=\sigma o[s:=t]$.
(6) If t is a variable that does not occur in s, then $\sigma=\sigma o[t:=s]$.
(3) If $s \neq t$ and either s is a variable that occurs in t or vice versa then failure = true.
(3) end-while.
(4) if (failure = true) then output "Does not type check". Else o/p σ.

- Ensures that we get finite types.
- If we allow recursive types - the occurs check can be omitted.
- Say in $(s=t), s=A$ and $t=A \rightarrow B$. Resulting type?
- What if we are interested in System F - what happens to the type inference? (undecidable in general)
Self study.

