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Abstract. Harnessing parallelism particularly for high performance comput-
ing is a demanding topic of research. Limitations and complexities of automatic
parallelization have led to programming language notations wherein a user pro-
grams parallelism explicitly and partitions a global address space for harnessing
parallelism. X10 from IBM uses the notion of places to partition the global ad-
dress space. The model of computation for such languages involves threads and
data distributed over local and remote places. A computation is said to be place
local if all the threads and data pertaining to it are at the same place. Analysis
and optimizations targeting derivations of place-locality have recently gained
ground with the advent of partitioned global address space (PGAS) languages
like UPC and X10, wherein efficiency of place local accesses is performance
critical.
In this paper, we present a novel framework for statically establishing place
locality in X10. The analysis framework is based on a static abstraction of
activities (threads) incorporating places and an extension to classical escape
analysis to track the abstract-activities to which an object can escape. Using
this framework, we describe an algorithm that eliminates runtime checks that
are inserted by the X10 compiler to enforce place locality of data access. We
also identify place locality checks that are guaranteed to fail. Our framework
takes advantage of the high level abstraction of X10 distributions to reason
about place locality of array accesses in loops as well. The underlying issues,
the framework and its power are illustrated through a series of examples.

1 Introduction

As multi-core systems are gaining popularity, there is a definite need for languages and tools
that can simplify programming high performance machines to exploit the hardware features
to a significant level and achieve higher throughput. X10 [22] is an object-oriented explicitly
parallel programming language being designed at IBM under the DARPA HPCS program
that enables scalable, high-performance, and high-productivity programming for high-end
computer systems.

X10 provides a notion of an activity as an independent execution sequence. An activity
runs at a place. Multiple activities (zero or more) could be running at any one particular place
at any point of time. Notion of activities and places becomes clear through the association
of activities to threads of execution and places to processors in the program. Each place has
a local memory and runs multiple activities. An object created at place p is considered local
to p, and for any activity running at place p′(6= p) the location of the object is considered
remote. X10 restricts accesses to remote memory and a runtime exception is thrown if an
activity accesses remote data; note that X10 disallows migration of objects and activities.



L0: async (FirstPlace) {

L1: final Y y = new Y();

L2: ateach(AllPlaces) {

L3: X x = new X();

L4: ... = x.f;

L5: final Z z = new Z();

L6: async (FirstPlace) {

L7: y.f = z;

L8: ... = y.f.g; }}}

Fig. 1. X10 compiler inserts pcas before L4, L7 and L8.

For any object o, the field o.location yields the place at which the object was created. The
current X10 compiler conservatively inserts a place check assertion (pca) to do a place check
before every object dereference – leading to inefficient code. These checks, if they fail, throw
a runtime exception called BadPlaceException. A pca preceding an object dereference gets
translated to the following runtime code:

if (o.location != here) throw BadPlaceException

Each pca not only introduces additional code but also introduces additional control flow nodes.
Since every object dereference needs to do a place check, the program is peppered with pc-
assertions all around; this has a severe impact on the performance (execution time). The table
below presents an experimental confirmation to this effect by presenting the runtime impact of
pcas (execution time with and without the pcas being disabled) on two of the largest NAS [3]
parallel benchmarks (note that this benchmark suite contains highly parallel applications).

Benchmark Exec Time -pcas (seconds) Exec Time +pcas (seconds)

CG 135 355
LU 22 60

It can be seen that the overhead of checking these assertions is significant. Besides the runtime
impact of these pc-assertions, pervasive presence of asserts makes it hard to analyze and
optimize programs. Also, certain constructs (for example, atomic) in the X10 language require
that no pca is violated in the body of the statement. Our analysis can also be used by the
compiler to enforce such a language guarantee.

We use the snippet of sample X10 program in Fig. 1 to motivate the problem further; we
shall use this program as the running example throughout the paper. The program has been
simplified in syntax for readability. Line L0 creates an activity at FirstPlace that executes the
compound statement L1-L8. Line L1 allocates an object at the current place (FirstPlace).
Line L2 creates an activity at each of the places in the set AllPlaces; each of these activities
execute the compound statement L3-L8. At each place, we create a new local object at L3.
This object is being dereferenced in L4. In L5, we create another local object, and assign it
to a final variable. Another activity is created in L6. This activity runs at FirstPlace and
dereferences objects pointed-to by y (in L7) and y.f (in L8). In this example, there are three
object dereferences, and the current X10 compiler introduces pcas before each of the object
dereferences L4, L7, and L8. However, it can be seen that variable y holds an object at place
FirstPlace and hence, it’s dereference in L7 that happens at place FirstPlace does not need
a preceding pca. Similarly, variable x is local to each activity and holds an object local to
the respective places. Again, there is no need of a preceding pca before L4. However, the one
preceding L8 is needed, in particular, for dereferencing the field g of y.f.

In this paper, we present a static analysis framework to eliminate unnecessary pcas during
compilation and/or identify assertions that will always fail. The analysis thus either leads
to faster code or identifies illegal accesses or leads to programmer productivity (or both). In
other place-based languages like UPC [5] and ParAlfl [10] where remote accesses are legal, such



reasoning can be used to specialize accesses (local and remote). We have manually applied
our analysis on several benchmarks and show that we can eliminate several pcas statically.

Our framework of eliminating pcas statically consists of the following steps: 1. Abstraction
of activities: In order to reason about different object dereferences and their places of creation,
it is important to be able to reason about all the possible activities and places statically. We
define an abstraction for X10 places and use this to design a system for activity abstraction.
2. Extension to the classical escapes-to analysis: For guaranteeing that object dereferences
do not violate pca, we need to guarantee that the object access happens at the place, where
the object is created. This is done by tracking all the object creations and copying. For this
purpose, we extend the traditional escape analysis to incorporate the target activity that the
object can escape and present our escapes-to analysis by analyzing the heap using extensions
to the connection graph [9].
3. Algorithm to detect place locality of programs with arrays: Besides objects, array accesses
constitute the other source of pca insertions. In X10 a distributed array has its slots distributed
across multiple places and each access of an array-slot is restricted to the place where the
array slot resides. This is enforced by a compiler generated pca before the access of each array
element. Reasoning about array accesses involves additional analysis about the values of the
index expressions used for access. We use a constraint-based system to analyse the values
of the index expressions. Further,we extend the escapes-to analysis to reason about array
accesses within X10 loops.

Our contributions are summarized below.
i. Place Locality for Objects: We define a notion of place-locality and present a frame-
work to statically prove locality or non-locality of data. This allows us to identify pcas that
are guaranteed to be either true or false; these identifications have special significance both
to X10 and other PGAS languages.
ii. Place Locality for Arrays: We present a novel constraint based scheme for reasoning
about place locality of X10 arrays distributed over multiple places as an extension to the algo-
rithm described in (i). We present an optimized scheme for solving our generated constraints
with regards to two popular X10 distributions UNIQUE and CYCLIC.

Rest of the paper is organized as follows. First, we present a brief overview of the relevant
constructs of X10 in section 2. The activity abstraction is described in section 3 followed by the
escapes-to analysis in section 4. Section 5 presents a place locality analysis and its’ application
to verify the need of pcas. In section 6, we describe a few case studies. This is followed by
an analysis of distributed arrays and an illustrative example in section 7. Comparison of our
work with related work is presented in section 8 followed by conclusions in section 9.

2 A brief overview of X10 language

In this paper, we confine ourselves to simplified X10 programs that have only simple expres-
sions (similar to the expressions in three-address-codes) and every statement has an associated
label with it. Details about standard X10 can be found in the X10 reference manual [22].

Some of the constructs, we use are as follows. async (p) S creates a concurrent activity
to execute the statmenet S at place p. Every program can be considered as an async statement
which recursively starts off all parallel computation. The place argument is optional, so async

(here) S can be written more compactly as async S.
Any activity can reference only the final variables of its surrounding lexical environment.

Attempt to reference other variables is a static error.
finish S is a structured barrier statement wherein S is executed with a surrounding

barrier such that all activities created (recursively) inside S have to terminate before the
barrier completes.

Parallel computation can be spawned with a future besides an async. The value of expr
can be evaluated remotely and received using (future (p) expr).force(). A future is dif-
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⊤

Fig. 2. Place Lattice

ferent from an async in terms of returning a value; force awaits for the value to become
available before returning.

A distribution is a function from a set of points (called region) to a set of places. X10 has
several pre-defined distributions, such as UNIQUE and CYCLIC. The former associates a set
of points in one-to-one correspondence with the set of places; the latter wraps a set of points
on a set of places in a cyclic fashion.

ateach (point p: D) S is a parallel, distributed loop wherein the statement S is evaluated
for each point p, in the domain of a distribution D, at the place given by D(p). An ateach

can be written in terms of explicit async statements in a loop; however, our rules target
ateachs explicitly for analysis. For this paper, we allow a shorthand for ateach statements
over UNIQUE distributions by simply letting the user list the set of the distribution’s places
X as ateach (X) S.

A distributed array is described by its type and distribution T[D]. Construction of the
array carries out a new operation over this specification e.g., new T[UNIQUE].

3 Activity Representation

Efficient representation of parallel activities(threads) is critical to the complexity of static
analysis of fine-grained parallel programs. At the same time, the precision of a static analysis
would require enumeration of all instances of runtime activities during compile-time and track
all of their interactions. In circumstances where parallel activities are created in loops, it is hard
to estimate the upper bound of the loops during compile-time. To take into account precision
and complexity of compile-time analysis, we describe an abstract activity representation that
efficiently captures both single and multiple runtime activity instances. This work extends the
previous work by Barik [4].

We use the following notation to define abstract-activities
 L : Set of all labels in the program.
P : Set of all abstract places in the program.
AA : Set of abstract-activities in the program.

We first present an abstract representation of the places to aid in the activity representa-
tion. In X10, places are represented by integer place identifiers that range from 0 to M− 1,
where M is the total number of places. We represent the place information of an abstract-
activity using a place lattice shown in Fig. 2. The set of abstract places P is given by

{⊥, {0}, {1} · · · {0, 1}, · · · {1, 2} · · · {0, 1, 2} · · · {0, 1 . . .M− 1}}

It consists of all the possible combinations of {0 · · ·M−1}, besides ⊥, and ⊤. The special place
⊥ indicates an undefined place. This captures the place information of an activity before its’
creation. Singleton sets {0}, {1} · · · {M− 1} correspond to places 0, 1, · · ·M− 1 respectively.
An abstract-activity might be created at multiple places. For example, if an activity is created
in each iteration of a loop (iterating over a set of places Sp), then we say that there exists a
single abstract-activity that represents all of the instances of the activity and this abstract-
activity must run at an abstract place given by Sp. Non-singleton sets are used to represent



the abstract places for such activities and they provide must information. Thus, the abstract
place {0, 1, · · ·M− 1} is used to represent the place of an abstract-activity created at all the
places. The element ⊤ indicates that the activity may be created at more than one place.
Note that, unlike the must-information represented by the other elements of the lattice, ⊤
represents may-information; our place check analysis handles may-information conservatively.

An abstract-activity at ∈ AA is represented by a tuple 〈Label, P laces〉, where Label ∈  L
and Places ∈ P.The label uniquely identifies an abstract-activity. Places denote the abstract-
place where the activity runs. Since, we use program labels to identify an activity, multiple
activities (at different ‘places’) might be mapped to the same abstract-activity. We shall extend
the notion of abstract-activities to suit our array analysis in section 7.

Consider the program shown in Fig. 1. The async statement in line L0 is represented in our
abstract-activity representation by 〈L0, {0}〉, where 0 is the value of the place FirstPlace.
However, the async statement in line L2 is represented by 〈L2, {0, 1, ...,M− 1}〉. Looking at
L6, it may be seen that the async statement is invoked at every place, but the activity is
created only at FirstPlace. We represent the corresponding abstract-activity by 〈L6, {0}〉. 1

Issues in Computing Abstract-Activities Set (AA) for X10

There are two components in the representation of an abstract-activity: label and place.Our
simplified program representation helps us to compute unique labels for each statement and
the expressions there in.

In X10, the target place for an activity can be specified as the return value of any arbitrary
place expression [22]. That is, place expressions can be in terms of arrays, object dereferences
and function calls. For analyzing such non-trivial place expressions we can use techniques
similar to standard global value numbering mechanisms [17] or flow analysis [12]. Even though
the escapes-to connection graph presented in section 4 can be extended to compute the values
of the place expressions, we avoid doing that to keep the paper focused. We use a precomputed
map

pV :  L× V → P,
where V is the set of all variables, and pV (L, v) returns the abstract place value of variable v
at the statement labeled L. Note that, our intermediate language only has simple expressions
and hence, each expression will have an unique label associated with it.

We present an algorithm to compute the abstract-activity set AA in section 4 as part of
the escapes-to analysis (See the rule to handle the Async statement).

4 Escapes To Analysis

Escape analysis in the context of Java like languages consists of determining whether an object
(1) may escape a method - the object is not local to the method, and (2) may escape a thread
- other threads access the object. Escape analysis results can be applied in various compiler
optimizations: (1) determining if an object should be stack-allocatable, (2) determining if an
object is thread-local (used for eliminating synchronization operations on an object). For an
extensive study of escape analysis the reader is referred to [8, 25].

In this section, we describe escapes-to analysis by extending the classical escape analysis
that is needed for analyzing X10-like languages. The key difference lies in computing the set
of threads (activities in the context of X10) to which an object escapes. To our knowledge,
this is the first generalization of the escape analysis that takes into consideration the target
activity to which an object escapes.

1 In general, it may be useful to know if an abstract-activity represents an aggregation of
actual activities, or not. And this can be made part of the activity representation. But for
the scope of this paper we do not seek such detailed information.



In X10, objects are created by activities at various places. Once created, the object is never
migrated to another place during its entire lifetime. Objects created at a local place can be
accessed by all the activities associated with that place.

Definition 1. An object O is said to escape-to an activity A, if it is accessed by A but not
created in A.

We represent the escapes-to information by using a map

nlEscTo ∈ Objs→ P(AA),
where Objs is the set of abstract-objects (we create an unique abstract-object for each static
allocation site). For each object in the program, nlEscTo returns a set consisting of abstract-
activities that the object might escape to; P(S) denotes the power set of S.

Prior escape analysis techniques track the ‘escapement’ of an object based on a lattice
consisting of three values: (1) NoEscape: the object does not escape an activity; (2) ArgEscape:
the object escapes a method via its argument; (3) GlobalEscape: the object is accessed by other
activities and is globally accessible.
Escapes-to Connection Graph (ECG)
We present the escapes-to analysis by extending the connection graph of Choi et al. [8]. We
define an abstract relationship between activities and objects through an Escapes-To Con-
nection Graph (ECG). Apart from tracking points-to information, ECG also tracks abstract
activities in which objects are created and accessed.

An ECG is a directed graph Ge=(N, E), The set of nodes N = NO ∪Nv ∪Na ∪{O⊤, A⊤}
where NO denotes the set of nodes corresponding to objects created in the program, Nv

denotes the set of nodes corresponding to variables in the program, Na is the set of nodes
corresponding to different abstract-activities, O⊤ denotes a special node to summarize all
the objects that we cannot reason about and A⊤ denotes a node corresponding to a special
activity used to summarize all the activities that cannot be reasoned about.

The set of edges E comprises of four types of edges:
• points-to edges: Ep is the set of points-to edges resulting out of assignments of objects to

variables. For x ∈ Nv and y ∈ NO ∪ {O⊤} x
p
→ y denotes a points-to edge from x to y.

• field edges: Ef is the set of field edges resulting from the assignment to the fields of different

variables. For x, y ∈ NO ∪ {O⊤}, x
f,g
→ y denotes a field edge from x to y for field g in x.

• created-by edges: Ec: For each object Oi, created in an abstract-activity Ai, (Oi, Ai) ∈ Ec.

For x ∈ NO ∪ {O⊤} and y ∈ Na, x
c
→ y denotes a created-by edge from x to y.

• escapes-to edge: Ee is the set of edges resulting from accessing of an object at a remote
activity. For x ∈ NO ∪ {O⊤} and y ∈ Na, x

e
→ y denotes an escapes-to edge from x to y.

For simplification, we have omitted the deferred edges used by Choi et al. [8], which are
used to invoke the bypass function in a lazy-manner. However, we invoke the bypass function
eagerly.
Intraprocedural Flow-sensitive analysis
The goal of our escapes-to algorithm is to track the abstract-activities that any object is cre-
ated or accesses in. We present an intra-procedural, flow sensitive, iterative data-flow analysis
(standard abstract-interpretation), that maintains and updates Ge at each program point.
The algorithm terminates when we reach a fix point.
Initialization Our initial graph consists of nodes Nv, O⊤ and A⊤. Our intra-procedural anal-
ysis makes conservative assumptions about the function arguments (including this pointer).
For each v ∈ Va, where Va ⊆ Nv is the set of all the arguments to the current function:

– add (v
p
→ Oai

) to E. The special object Oai
represents the object referenced by the

ith argument passed to the function. Thus, we conservatively assume that each argument
points to an object that is unknown, but not O⊤. This helps us reason about the activities
created at the native place of these objects more precisely.

– add (Oai

c
→ Aai

) to E. For each argument i create a new activity Aai
and use it to

represent the activity that created the object referenced by the ith argument.



(N, E)
L:async(p)

=⇒ (N ∪ {〈L, pV (L, p)〉}, E)

(N, E)
L:a=new T

=⇒ (N ∪ {OL}, E − {(a
p
→ y)|y ∈ N ∧ (a, y) ∈ E} ∪ {(a

p
→ OL), (OL

c
→ Ac)})

(N, E)
L:a=b
=⇒ (N, E − {(a

p
→ y)|y ∈ N ∧ (a, y) ∈ E} ∪ {(a

p
→ z)|z ∈ N ∧ (b

p
→ z) ∈ E})

(N, E)
L:a=b.g

=⇒ (N, E − {(a
p
→ y)|y ∈ N ∧ (a, y) ∈ E}

∪{(a
p
→ z), (x

e
→ Ac)|x, z ∈ N ∧ (b

p
→ x) ∈ E ∧ (x

f,g
→ z) ∈ E ∧ (x

c
→ Ac) 6∈ E})

(N, E)
L:a.g=b

=⇒ (N, E − {(x
f,g
→ y)|x, y ∈ N ∧ (a

p
→ x) ∈ E ∧ (x

f,g
→ y) ∈ E}

∪{(x
f,g
→ z), (x

e
→ Ac)|x, z ∈ N ∧ (a

p
→ x) ∈ E ∧ (b

p
→ z) ∈ E ∧ (x

c
→ Ac) 6∈ E})

(Strong Update).

(N, E)
L:a.g=b

=⇒ (N, E ∪ {(x
f,g
→ z), (x

e
→ Ac)|x, z ∈ N ∧ (a

p
→ x) ∈ E ∧ (b

p
→ z) ∈ E ∧ (x

c
→ Ac) 6∈ E})

(Weak Update).

(N, E)
L:a=f(b)

=⇒ (N, E ∪ {(a
p
→ O⊤)} ∪ {(x

e
→ A⊤)|(b

p
→ z) ∈ E ∧ (z

f,∗
→ x) ∈ E})

Fig. 3. Rules for different instructions.

– for any field dereferenced from O⊤ and Oai
add (O⊤

f,∗
→ O⊤), and (Oai

f,∗
→ O⊤) to E. The

special edge
f,∗
→ denotes all possible field access.

We distinguish objects Oai
and O⊤, and activities Aai

and A⊤, as we want to distinguish a
field referenced from an argument to a field referenced from some unknown object.
Statements and Operations Fig. 3 presents the effects of the relevant X10 instructions on
our analysis. The transformations to the ECG with respect to the labeled construct L:S is
denoted by

(N, E)
L:S
=⇒ (N ′, E′)

where (N ′, E′) denotes the updated graph as a result of the execution of statement S labelled
L. The updates can include the addition of new nodes, addition of new edges, or updates to
existing edges.

In X10, the statements that are of interest to us are: (a) async (p) S; (b) a = new T; (c)
a=b; (d) a.f=b; (e) a=b.f; (f) a = f(b). We now discuss the effect of processing each of these
statements.

Async: An async statement creates an abstract-activity node in the ECG. pV (L, v) returns
the place value of the variable p at the statement L (see section 3). The X10 construct ateach
can be represented using a basic async statement inside a loop. The X10 construct future

which also creates an activity is handled similar to async.
a = new T (): We create an object node OL in the ECG. Since statements are executed

within the scope of an activity, we add a created-by edge from OL to current abstract-activity,
given by Ac (OL is ‘local’ to Ac). Each statement is in the syntactic scope of exactly one
activity. If the current statement is in the syntactic scope of an async labeled L1, then the
current abstract-activity is of the form 〈L1, ∗〉. Note that, for all those cases where we cannot
reason about the current abstract-activity, Ac is set to ⊥. We eliminate any existing points-to

edges of the form (a
p
→ y) ∈ E, for any y ∈ N . We introduce a new points-to edge a

p
→ OL.

a = b: We delete all the existing points-to edges starting at a, and for each points-to edge
that b points to, we add a points-to edge from a.

a = b.g: We process this statement exactly like the copy statement (a = b), above. For
every dereference of an object, we add a new ‘escape-to’ edge from the object to the current
abstract-activity, if the object is not created in the current activity.

a.g = b: Assignments to the fields is a bit more involved because we have to take into
consideration possible weak and strong updates. If there can be multiple points-to edges from
the node a, or if a has a single points-to edge to a node x but multiple activities could be

updating the field g of x in parallel (See may happen analysis [1]) then ∀y ∈ N : (a
p
→ y) ∈ E,

we add a new edge (y
f,g
→ b) to the edge set E (weak update). Otherwise, we process the



A0 = 〈L0, 0〉
A1 = 〈L2,A〉
A2 = 〈L6, 0〉
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Fig. 4. ECG generated by our algorithm for the example shown in Fig. 1 (as seen after
processing the last statement).

statement like the copy statement above - eliminate existing points-to edges and add new
edge (strong update).

a = f(b): Since we are doing intra procedural analysis, we can only make conservative
assumptions about the arguments (that includes the receiver) and the return values of a
function call. We add an escapes-to edge from objects pointed to by the arguments of the
function to A⊤ and a points-to edge from a to O⊤.
Merge Operation: The meet/merge operation of the escapes-to analysis is the union of the
two ECGs emanating from two different control flow paths: Merge((N1, E1), (N2, E2))=((N1∪
N2), (E1 ∪ E2)).

While processing all the above assignment statements and the merge operation, we ensure

the following invariant: if a variable or a field of an object x has a points-to edge (x
p
→ O⊤) or

∃i (x
p
→ Oai

), then 6 ∃y ∈ N − {O⊤, ∀i Oai
} such that (x

p
→ y) ∈ E. We ensure this property

by checking for the special object O⊤ and Oai
while editing the edges of the graph (not shown

in the Fig. 3).
Termination: Our iterative data flow analysis follows the standard method of execution and
stops only after reaching a fixed point. It can be seen that for any node the maximum number
of edges (points-to or escapes-to) is bound by the number of nodes. And in every iteration at
least one new edge is added to the set of edges, compared to any previous iteration. Hence,
after a finite number of iterations we cannot add any more edges and the algorithm will
terminate.
Compute nlEscTo map: Given an ECG at program point l, for each object Oi we populate
nlEscTo (non local escape-to) and PtsTo (points-to) maps:

nlEscTo(l, Oi) = {(〈L, p〉|〈L, p〉 ∈ Na ∧ (Oi
e
→ 〈L, p〉) ∈ E ∧ ¬∃L′ such that (Oi

c
→ 〈L′, p〉)}

PtsTo(l, vi) = {(x|x ∈ No ∧ (vi
p
→ x) ∈ E}

Analysis of the running example Fig. 4 shows the ECG for the example shown in Fig. 1
after processing the last statement.

5 Place Locality

Traditionally, the notion of thread locality is used to denote the access of objects created in
the same thread. In this section, we show that in languages like X10, where each activity
is associated with a place, activity locality provides insufficient information when we reason
about locality of objects with respect to places. Later in the section, we extend the notion of
locality to places.

Fig. 5 illustrates the distinctions between the notion of place locality and activity locality.



finish async (p) { // th0

S0: final global1 = new G();

async (p) {S1: global1.x = new Baz();} // th1

async (p) {S2: global1.x = new Baz();} // th2

async (p.next()) { ... } // th3

async (p) {global1.x.f ++;} // th4

}

Fig. 5. Place local ⇒ Does not require PC assertion

Traditional thread-local analysis would deduce that the object created in statement S0

is not activity (thread) local. Using this information to decide on the locality of the object
being dereferenced would result in insertion of pcas before every dereference of global1 in
th1, th2, and th4. Similar argument would follow for the dereference of global1.x in activity
th4. However, say it is verified that in async th3, global1 is not accessed (that is, the object
accessible by global1 does not escape place p and remains confined to the activities at place-
p). Thus, we can conclude that we do not need a pca before statement S1. This is because
although global1 is accessed in multiple activities, all of the activities execute at the place
of creation (p). An important point to note is that none of these activities escape the object
under consideration outside place p. That is, global1 holds a place local reference (local to
place p) and hence, dereferencing of global1 does not require a preceding pca in th1, th2

and th4 (which execute at place p). Similarly, global.x can hold multiple references but all
are local to place p. Hence, we do not require a pca in th4 for accessing global1.x.f. In the
following section, we propose an analysis that takes the abstraction of places into consideration
while reasoning about the locality of an object.

Given an object Oa, we would like to know if dereference of Oa is done at the place of its
allocation or not. Note that, multiple activities can run at the same place and hence, even if
an object escapes to another activity running at the same place, we still will be accessing the
object locally; thus no place check is required to dereference it. In essence, first we would like
to know if object Oa escapes an activity and if so, to which activity. We get this information
from the escapes-to analysis described in section 4. Further, for each of the dereferencing sites
of object Oa, if we can deduce that the dereference happens at the same place as the place of
allocation of Oa (say p) then we do not need a preceding pca. For each other activity that Oa

can escape to, if we can guarantee that the activity executes only at place p, then we would
not need a pca for any of the dereferences of Oa.

Traditional thread-local algorithms declare an object to be thread-non-local, if it gets
assigned to a global (read static in Java/X10 context) variable or to a field of an object
accessible via any global variable. In comparison, a place-local object can be assigned to a
global g and/or be reachable via fields of objects accessible via a global g′. The constraint is
that globals g and g′ must only be accessible from activities running at only one place. That
is, an object may escape to another activity running at the same place and still be place-local,
as long as it does not escape to an activity running at a different place. Traditional notions
of thread-locality caters to ‘activity-locality’ in X10.

In this section we present (i) the concept of place locality, (ii) an algorithm to deduce
place local information, and (iii) a scheme to apply the place local information to eliminate
useless pcas, and notify guaranteed pca failures.
Definition 1: An object is native to a place p, if it is created at place p.
Definition 2: An object is considered local to place p, if it is native to place p and is accessed
only at place p.
Definition 3: Dereference of an object o at place p is considered safe, if o is local to p.
Remark : Safe dereferences of an object p do not need a preceding pca. Later, we present an
algorithm to eliminate pcas for safe dereferences of objects.



foreach li ∈  L, and vi ∈ V do1

℘[(li, vi)← unknown];2

foreach li ∈  L, and vi ∈ V do3

Say li is part of the activity 〈Lj , pj〉;4

if pj == ⊥ OR pj == ⊤ then5

continue;6

boolean place-local = true ;7

boolean place-non-local = true;8

foreach ok ∈ PtsTo(li, vi) do9

if 〈Lj , pj〉 ∈ nlEscTo(li, ok) then10

place-local=false;11

if 〈Lj , pj〉 6∈ nlEscTo(li, ok) then12

place-non-local=false;13

if place-local then14

℘[(li, vi)← local];15

if place-non-local then16

℘[(li, vi)← place-non-local];17

Fig. 6. Algorithm to identify place local references.

foreach dereference of of x ∈ V at program point li in activity 〈Li, pi〉 ∈ AA do1

if ℘(li, x) == local then2

eliminate pca before li.3

else if ℘(li, x) == nonLocal then4

report that pca before li will always fail.5

Fig. 7. Algorithm to eliminate useless pcas and identify guaranteed pca failures

Algorithm
Fig. 6 presents an algorithm to identify variables that point to only place-local objects.

This algorithm is run after the escape-to analysis is run (i.e., nlEscTo map is populated. See
section 4).

The algorithm presented in Fig. 6 populates the following map.

℘ : ( L× V )→ 〈local, nonLocal, unknown〉

At a program point l, map ℘(l, v) returns local if all the objects pointed-to by variable v are
place local, nonLocal if all the objects pointed-to by v are non-local, and unknown otherwise.
The algorithm first initializes the ℘ map conservatively to indicate that at all program points
the locality of the set of objects pointed-to by all the variables is unknown (Line numbers
1-2). Lines 4-13 identify accesses of variables whose target objects are either guaranteed to be
local or non-local. We update the ℘ map at Lines 15 and 17.

In Fig. 7, we present a simple algorithm to apply place locality information to eliminate
useless place-local-checks and report guaranteed place check failures. For each dereference
(field access or method call) in activity ai, the algorithm eliminates the preceding pca, if all
the objects pointed-to by the variable are place local. Similarly, it reports cases where pca

will always fail. This can be used to alert a user of the access error (in X10 context), or to
specialize the memory access to remote access (in UPC context).
Analysis of the Running Example
Fig. 8 shows a run of the algorithms presented in this section.

It can be seen that out of the four pcas, our algorithm eliminates three of them. The
remaining one assertion (before L8) must be present and cannot be eliminated.



Improvements to the Algorithm
It can be noted that the above presented algorithm does not take into account the possible

control flow between two statements. For example, Fig. 9 presents a case where an object is
created at place p1, and dereferenced at the same place. After that, the object escapes to an
activity executing at place p2. Any dereferencing of the object at place p2 requires a preceding
pca. However, our algorithm would declare object to be non-place-local and would eliminate
neither of the pcas preceding S1 and S2. An analysis aware of may-happen-parallelism [19]
can recognize such idioms and result in more precise results.

6 Examples

Here, we describe four examples that showcases the strengths and drawbacks of our algorithm.
Consider first the example shown in Fig. 5 of section 5. Our analysis identifies that reference

OS0 is place local, and hence, its dereference at th1, th2 and th4 does not require a preceding
pca.

Fig. 10(a) shows a snippet of a program for updating a dynamic linked list, as part of
master-slave work paradigm. The master goes over the list and invokes the slave server if a
boolean flag done is not set. The master also adds nodes regularly to the end of the list. The
slave, when invoked, sets the flag done randomly. Our algorithm attaches a unique abstract
object to each of the arguments and thus, is able to eliminate all the pcas.

Fig. 10(b) shows a snippet of a program of a postorder traversal of a tree. In this example,
Tree is a value class. In X10, value classes have the property that after initialization the fields
of the objects cannot be modified. After recognizing that a Tree object does not change,
similar to the linked list example, we can infer that all the pcas in the function postOrder are
redundant and can be eliminated.

Fig. 10(c) shows an example where an object created at place p0, is assigned to a final
variable z. A field g of z is initialized in place p0. Now, two activities are created which can
run in parallel. In one activity, running at place p1, the object referenced by z.g escapes to
place p1. In the other activity, running at place p0, a field of the object referenced by z.g is
dereferenced. Our algorithm identifies that the object referenced by z.g is created at place
p0 and escapes to place p1. Hence, we declare it as place-non-local, and add pca before the
dereference of z.g.h. However, the key point to note is that even though the object escapes
to another place (p1), none of the fields are updated there. Hence, we do not require a pca

for dereferencing the sub-fields, at p0. Our algorithm needs to be extended to recognize such
idioms.

We have also applied our analysis on the LU NAS parallel benchmark. Our analysis could
not remove most of the pcas as the program consisted of a large number of tiny helper functions
that were invoked at many places. We attributed this to our conservative handling of function
calls. Hence, we applied our analysis on another version of the source file after inlining these
functions. As guessed, we could eliminate all the pcas in this version.

Objs={OL1, OL3, OL5} nlEscTo={((L8, OL5), 〈L6, {0}〉)}

Compute Place Local Information
Iter 1: ℘[(L4, x)← place-local] Iter 2: ℘[(L7, y)← place-local]
Iter 3: ℘[(L8, y.f)← unknown]

Eliminate Place Local Assertion
Eliminate the pca before L4 Eliminate the pca before L7

Fig. 8. Eliminate pcas in the running example, shown in Fig. 1.



finish {

finish async (p1) {global1.x = new G();

S1: ... = global1.x.y}// th0

async (p2) { S2: ... = global1.x.y } // th1

}

Fig. 9. Limitations of of our Analysis: A smarter algorithm can eliminate the pca before S1.

void master() {

// Assert (head != null)

i = 0;

while (true) {

nullable Node tmp = head;

while (tmp != null) {

// goto the end of the worklist.

final node = tmp;

tmp = getNext(node);

boolean status=getStatus(node);

if (status) slave(node); }

final tail = tmp;

i = (i + 1)%NumPlaces;

addNewNode(tail,i); } }

void slave(Node n){

if (random()%2 == 1)

async (n) {n.done = true;} }

void getNext(Node n){

future (n) {n.next}.force();}

void getStatus(Node n){

future (n) {!n.done}.force();

void addNewNode(Node n, int i) {

finish async (i) {

finish async (n) {

n.next = future (i)

{new Node()}.force();

} } }

(a)

value class Tree {

int value;

Tree left, right;

public void postOrder() {

if (left != null) {

future (left)

{left.postOrder() }.force();}

if (right != null) {

future (right)

{right.postOrder()}.force();}

print(value); } }

(b)

async (p0) {

final z = new Z();

z.g = new G();

async (p1) {

final z1 = future (p0) z.g;

... = z1.h // escapes

}

async (p0) {

... = z.g.h.k; } }

(c)

Fig. 10. Three example programs (a)Master slave update program. (b) PostOrder traversal :
traverse a distributed binary tree (c) Dummy copies lead to non-elimination of pca

7 PCA Handling for Distributed Arrays

Arrays in X10 can be distributed over multiple places according to some predefined distribu-
tions provided as part of the language. X10 guarantees that any array slot located at place p
can only be accessed by the activity running at p. Similar to object dereferences, the current
X10 compiler inserts a pca before each array element access to maintain the above guarantee.
In this section, we present a scheme to eliminate the useless pcas and report pcas that are
guaranteed to fail for array accesses.

A distribution can be represented as a map D : X → P, where X is the set of points
(integers for one dimensional regions) over which the distribution is defined. For each point
i, D(i) returns the place of the point i. Similarly, we define the inverse distribution function
D−1 : P → P(X) that maps each place to the corresponding set of points. For example, in
a scenario with k places p0, . . . pk−1, the cyclic distribution over n points can be defined as



(N, E)
L:ateach(point x:A) Stmt

=⇒ (N ∪ {Ac}, E)

(N, E)
L:a=new [A]T

=⇒ (N ∪ {OL, Ac}, E ∪ {(a
p
→ OL), (OL

c
→ Ac)})

(N, E)
L:a=b
=⇒ (N, E − {(a

p
→ y)|y ∈ N ∧ (a, y) ∈ E}

∪ {(a
p
→ z)|z ∈ N,∧(b

p
→ z) ∈ E})

(N, E)
L:ateach(point x:A) {..B[e]..}

=⇒ (N, E ∪ {(x
e
→ Ac)|C1 ∧ (B

p
→ x) ∈ E})

and C1 = ∀(x, pi) ∈ A,∀(B
p
→ z) ∈ E, [e/x] ∈ D−1

z (pi)

(N, E)
L:ateach(point x:A) {..B[e]..}

=⇒ (N, E ∪ {(x
e
→ Af )|C2 ∧ (B

p
→ x) ∈ E})

and C2 = ∀(x, pi) ∈ A,∀(B
p
→ z) ∈ E, [e/x] 6∈ D−1

z (pi)

(N, E)
L:a=f(b)

=⇒ N, E ∪ {(a
p
→ O⊤)}

Fig. 11. Generate ECG for reasoning about pcas before array accesses. Ac = 〈L, A〉.

follows: ∀i ∈ {0..n− 1}, D(i) = i mod k. Similarly the inverse distribution function for cyclic

distribution can be defined as ∀i ∈ {0..k−1}D−1(pi) = {x|x = k×j+i, x ∈ N, 0 ≤ j ≤ (n−1)
k
}.

Fig. 11 presents some additions to the escapes-to analysis presented in section 4, to make
it suitable for reasoning about array accesses. These rules are given to process only arrays and
non-nested loops; these are to be used on top of the rules for non-array operations given in 3.

ateach(point x : A) Stmt: To model ateach loop bodies iterating over a distribution,
we use a new type of abstract-activity of the form: 〈Label,D〉, where Label is the label of the
ateach statement and D is the distribution with respect to the ateach statement. We use a
special abstract-activity A′

⊤ to denote those activities where a specific distribution cannot be
statically determined.

a = new [A] T: An array object distributed over A is considered to be created by an
activity 〈L, A〉. We use ArrObjs to denote the set of all array objects, and map Dx returns
the underlying distribution of the array object x ∈ ArrObjs. Similarly, map D−1

x returns the
underlying inverse distribution map.

L: ateach(point x : A) {...B[e]...}: An array access in the body of an ateach loop
introduces an escape-to edge from object pointed to by B to the activity corresponding to
the loop provided the distribution of the array matches that of the access pattern in the loop
body (given by C1). The index expression e may be data/control dependent on the value of
x. Constraint C1 ensures that for each point x located at place pi in the distribution A, the
array slot number e is located at place pi. To reason about pcas that are guaranteed to fail, we
use another special activity Af , where all the pcas are guaranteed to fail. For such a scenario
(given by C2), we add an escapes-to edge from the objects pointed to by B to Af .

a = b: Assigning an array to another results in the removal of all the existing edges from
a and points-to edges are created from a to all the nodes that b points-to. Note that, the
rules specified for statements of the form a = b.f do not require any special treatment in the
context of arrays.

a = f(b): It may be noted that any array object that is passed as argument doesn’t get
its’ distribution modified. Thus, we need to add only a points-to edge from a to O⊤.

We generate constraints C1 and C2 for each array access in the given program and invoke a
constraint solver (for example, [11]) to derive the ECGs at different program points and then
invoke the algorithm shown in Fig. 12. Unlike scalar variables which may point to different
objects at different program points, the array distribution is an immutable state of the array
and thus, it simplifies our algorithm to remove pcas (compared to the algorithm presented in
section 5).

We now present a optimized scheme for generating and evaluating constraints C1 and
C2. The generation of constraints is illustrated through a subset of a priori defined array
distributions in X10 : UNIQUE and CYCLIC. Note that the above distributions cover some
of the most common idioms of X10 programs including the set of X10 benchmarks presented



foreach access of the array variable v at program point li in activity ai ∈ AA do1

boolean local-access = true;2

foreach oi ∈ PtsTo(li, vi) do3

Say {cp} = nlEscTo(li, oi) ; Say ai = 〈L, D〉 ;4

if Dcp 6= D then5

local-access=false;6

boolean non-local-access = true;7

foreach oi ∈ PtsTo(li, vi) do8

if Af 6∈ nlEscTo(li, oi) then9

non-local-access = false;10

if local-access then11

eliminate pca.12

else if non-local-access then13

report guaranteed pca failure.14

Fig. 12. Algorithm to eliminate useless pcas and identify guaranteed pca failures for
array accesses.

at the HPC Challenge in the fall of 2007 (and won the class II challenge). The presented
techniques can be extended to other distributions as well. We first show that for the above
distributions, the number of elements in the range of x is bounded by the number of places.

Lemma 1. ∀(x, pi) ∈ DA [e/x] ∈ D−1
B (pi) iff ∀pi ∈ places(A) ∃x ∈ points(pi), [e/x] ∈

D−1
B (pi), where points(pi) returns the set of points mapped onto pi.

Proof. Proof omitted for space.

The above lemma makes the constraint solving efficient by reducing the search space. We
take advantage of the lemma and the nature of the distributions to present a simplification to
constraints C1 and C2, for these distributions.

Let I denote the set of simplified (syntactic) index expressions (of the form a × i + b) in
the loop body (linear expressions over i), where i is a loop induction variable. Constraints C1
and C2 for the above two distributions can be reformulated as follows (‘mod’ is the modulo
function) (say M = number of places in the ateach loop):

UNIQUE CYCLIC

C1 ∀i ∈ {0..M− 1}
∧

e∈I
(|e− i| == 0) ∀i ∈ {0..M− 1}

∧
e∈I

(mod(|e− i|,M) == 0)

C2 ∀i ∈ {0..M− 1}.
∧

e∈I
(|e− i| 6= 0) ∀i ∈ {0..M− 1}

∧
e∈I

(mod(|e− i|M) 6= 0)

Constraint C1 (constraint C2) for UNIQUE states that for each index expression, the absolute
value of its difference from i must (must not) be zero. Constraint C1 (C2) for CYCLIC states
that for each index expression, the absolute value of its’ difference from i should (should not)
be a multiple of M.

Illustrative Example: Consider the scenario wherein one set of workers is directed to com-
pute a function f on a test-space using the ateach loop on one half the set of machines and
the second set of workers use the other half to compute the inverse of the result and check
whether the function and its inverse compose to the identity function. The program snippet
only shows the code to create the distributed array of jobs, and code to access the elements
of the array in the two ateach loops.



final int N = NumPlaces/2 - 1;

// Assume NumPlaces > 1

//Places 0..N reflect half the m/c

final job[UNIQUE] jobs =

new (i:UNIQUE(AllPlaces))

{return new job(initNum(i));}

int master() {

finish ateach(i : unique([0..N]))

{ job j = jobs[i]; ...f... }

finish ateach(i : unique([N+1..2*N+1]))

{ job j = jobs[id-N];

...inv_f... } }

Our analysis would find that in the first ateach loop constraint C1 is satisfied, and the
second loop satisfies C2. Thus, our analysis will eliminate the pcas before the array access in
the first loop, and warn about the illegal array access in the second loop.

We have manually applied our analysis on two other NAS parallel benchmarks: Rando-
mAccess, and CG. After inlining different utility functions, we could eliminate all the pcas in
both the benchmarks.

8 Related Work

In this section, we place our work in the context of the existing literature.
Abstraction of runtime components: Abstraction of runtime components like objects
have long been used to help in static analysis [18]. We have extended the thread abstraction
techniques of Barik [4] to reason about the activities of X10 and also presented an abstraction
of places, that is critical to our framework.
Locality of Context: The work that relates most closely to our addressed problem is that
of Chandra et al. [7], who improve upon the works of Zhu and Hendren [26]. They present a de-
pendent type system that can be used by the programmer to specify place locality information.
They further present an inter-procedural type inference algorithm to infer the place locality
information and use it to eliminate useless pcas. We have presented an intra-procedural data
flow analysis based approach to infer place locality information, without depending on the
programmer input. Their unification based approach would lead to conservative results com-
pared to the results we obtain from the escapes-to-graph: our precise representation of places
and activities lead to precise reasoning of activities and objects within loops. The following
example clarifies the same.

ateach (p: A) { final X x = new X(); async (p) {... =x.f;}}
While our algorithm can detect that the dereference of x is place local, their unification
based algorithm cannot detect so. Further, we have partially integrated may-happen-parallel
analysis into our scheme to generate more precise results. Besides elimination of useless pcas
our analysis reports guaranteed failures. It would be interesting to combine our algorithm
with the techniques of Chandra et al. use for inter-procedural analysis.

Barton et al. [5] present memory affinity analysis, whereby local data accesses are statically
identified and that is used to avoid overhead of routing the access through a machine-wide
shared variable directory. Our language setting is more general as unlike in UPC multiple
activities can share the same place. We have presented a scheme that tracks the heap statically
to prove local, non-local properties.

Work involving inference of place information for programs without user specified places is
extensive. For example, false-sharing identification tries to partition data so that a place does
not have to deal with data not used by it and hence, does not pay for it through bus traffic and
cache-coherency costs [13, 15, 23]. These approaches all differ from us since in our framework
activities are explicitly programmed with places, which requires its own set of extensive static
representations, analysis and optimizations.

There has been significant interest in proving the thread locality of data [14, 24, 25, 9]. All
of these approaches limit themselves to identifying if the object can be accessed in any thread
besides the thread of creation. In this paper, we have extended the context of thread locality



further to the ‘place’ of creation. An object whose reference is stored in a global variable and
is accessed in another thread might still be ‘place-local’, provided that all the activities in
which the object might be accessed are created at the same place.
Points-to and Escape Analysis: There has been a wide spread interest and good amount
of research in the area of points-to and escape analysis [2, 8, 25, 21]. They propose different
applications to points-to analysis and different solutions there of. However, we are not aware
of any work that tracks not only if an object escapes a context, but also the target context.

Our Escapes-to Connection Graph (ECG) is inspired from the connection graphs of Choi
et al. [8]. Apart from tracking the points-to information, ECG also tracks abstract activities
in which objects are created and accessed.
Exceptions and Performance: Safe programming languages like Java introduce a lot of
runtime assertions, which may throw a runtime exception, in case the assertion fails. Some well
known runtime exceptions are Null-pointer-exception, array-out-of-bounds exception and so
on. Due to the nature of these assertions un-optimized code is littered with these exceptions.
Researchers have shown that a majority of these can be eliminated statically [6, 16]. Systems
like CCured [20] have a notion of a dynamic (runtime verified) pointers which are expensive
to use. They present a scheme to verify and thus, translate the dynamic pointers to static
(statically, type safe) pointers. In our work, we have shown the elimination of pcas introduced
in X10 (an explicitly parallel language) arising due to places.

9 Conclusion and Future Work

In this paper, we have presented a static analysis framework for conservatively computing the
notion of place locality and have demonstrated the application of the framework for objects
and arrays in the context of X10. Our representation of the abstract activities and places is
general enough to allow us to extend our intra-procedural analysis to inter-procedural analysis.

Our framework supports reasoning about locality of activities, which can be useful for
optimizing the invocation of the activities. We are working towards refining the analysis via
may-happen-parallelism analysis and generalizations of the notion to other features of X10
and experimental validation of the concepts.
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