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ABSTRACT
Processors such as StrongARM and memory such as SDRAM
enable efficient execution of multiple loads and stores in a
single instruction. This is particularly useful in connection
with register allocation where spill code may need to save
and restore multiple registers. Until now, there has been no
effective strategy for utilizing this to its full potential. In
this paper we investigate the use of SDRAM for optimiza-
tion of spill code. The core of the problem is to arrange
the variables in the spill area such that loading to and stor-
ing from the SDRAM is optimally efficient. We show that
the problem is NP-complete and present a method based
on integer linear programming (ILP) to solve the problem.
We have implemented our approach as an additional phase
in a gcc-based compiler for the StrongARM core of Intel’s
IXP–1200 network processor. Our optimizer, SLA (stack
location allocator), rearranges the scalar variables so that
memory accesses can be made cheaper. Our experimental
results show that our ILP-based method is efficient and that
the code generated for our benchmarks runs 0.8–15.1% faster
than the code produced by the original compiler with –O2
optimization. Our SLA phase is guaranteed to not deterio-
rate the execution-time performance and can be configured
such as not to increase the code size.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code gen-
eration

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Memory layout, integer linear programming, optimization,
SDRAM
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1. INTRODUCTION

1.1 Background
The widening gap between processor speed and memory

speed motivates better compiler techniques for reducing the
number of memory accesses. The idea is that even a small
reduction in memory accesses can give a significant improve-
ment in execution time. One opportunity is given by a
commonly-used memory technology, namely memory with
a 64-bit bus, including RAMBUS QRSL and SDRAM. An
increasing number of processors exploit this memory tech-
nology by allowing loading and storing of multiple registers
in one instruction. Processors in this category include the
Sun MAJC 5200 [17] and several network processors, such
as the IBM PowerPC405 in the PowerNP NP4GS3 [19] and
the Intel StrongARM in the IXP–1200 [2]. Until now, little
has been published work on how a compiler can take advan-
tage of the capabilities for multiple load and store. In this
paper we present a compiler technique for maximizing the
number of multiple load/store instructions, in the context of
the Intel StrongARM in the IXP–1200 network processor.
The Intel IXP–1200 contains a StrongARM processor and

a SDRAM unit along with many other units. On the Strong-
ARM, the register size is 32 bits and the basic load/store
operations (called LDR and STR) operate on one register
at a time. However, the SDRAM has a 64 bit bus, so if we
are using a LDR instruction to load a 32 bit register, we
are wasting half of the bandwidth of the bus. Fortunately,
the StrongARM also allows efficient execution of multiple
loads and stores to and from the SDRAM in a single instruc-
tion (we refer to them as LDM and STM) [24]. If we use
a LDM/STM instruction with two registers, then we save
one full load/store instruction, which is equivalent to saving
around 40/50 cycles [26]. The formats of the LDM/STM
instructions are:

LDM baseRegister, bitVector
STM baseRegister, bitVector

where baseRegister holds a memory address, called the base
address, which we write as [baseRegister], and bitVector de-
notes a subset (possibly all) of the general-purpose registers.
In the first instruction, LDM stands for “load-multiple,” and
the idea is to load several words, starting from [baseRegis-
ter], into the registers denoted by bitVector. In the second
instruction, STM stands for “store-multiple,” and the idea
is to store the registers denoted by bitVector into the mem-
ory, starting from [baseRegister]. A load-multiple instruc-
tion loads the lowest-numbered register from [baseRegister],
the second-lowest register from [baseRegister] + 4, and so
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on. A store-multiple instruction works similarly. For ex-
ample, let us consider loading four items. Loading them
individually, with four LDR instructions, will take 4 × (1
+ 40) = 164 cycles (one cycle of processor time and 40 cy-
cles for the memory access, for each load). Loading them
all together, with one LDM instruction, will take 1 + (2 ×
40) = 81 cycles (the memory access is done in two steps
because the total number of words accessed is twice the bus
width). There is a middle ground here: we can load the four
items in pairs, with two LDM instructions, which will take
2 × (1 + 40) = 82 cycles. As the example indicates, most
of the benefit of multiple loads and stores can be achieved
using double loads and double stores. Hence, in this paper
we will concentrate on double loads and double stores only.
Investigation of triple loads and stores, and beyond, is left
to future work.
Suppose we want to replace the following two LDR in-

structions with one LDM.

LDR addr1 ri

LDR addr2 rj

Let us assume i �= j. The two base addresses addr1 and
addr2 must be contiguous at 4 byte boundaries, that is,
addr2 −addr1 = 4. (If addr1 −addr2 = 4, then swap the two
instructions.) There are two cases depending on whether
i < j or i > j. If i < j, then we replace the two LDRs by
the following code, in which r is a free register:

MOV r addr1
LDM [r] {ri,rj}

In the binary format of the LDM instruction, {ri, rj} is rep-
resented by a bit map of 16 bits with one bit for each of r1

through r16. Thus, {ri, rj} and {rj , ri} denote the same bit
map.
If i > j, then we have an inversion: if we replace the

two loads with LDM like above, then the value from [addr1]
would be loaded into rj and the value from [addr2] would
be loaded into ri. We handle inversions by swapping the
contents of ri and rj , using the standard trick involving three
exclusive-or instructions (called eor on the StrongARM):

eor ri, ri, rj

eor rj , ri, rj

eor ri, ri, rj .

The advantage of using exclusive-or instructions in this fash-
ion is that no extra temporary register is needed. Note
that the exclusive-or instructions operate on registers only,
and hence are much faster than load and store instructions.
Thus, even with three extra exclusive-or instructions, the
resulting code is faster than two single loads.
The case of replacing two store instructions with a store-

multiple instruction is similar to that of load, except for two
differences in the case of an inversion. First, the swapping
of registers is done before the MOV instruction. Second, if
both registers are live after the stores, then, additionally, we
need to swap the contents of the registers after the store-
multiple instruction, resulting in a total of six exclusive-or
instructions.
In this paper we investigate how a compiler can maxi-

mize the number of double loads and double stores, while
minimizing the number of inversions. While this problem
can be tackled at various stages of a compiler, we focus on
the late stages that follow register allocation and spilling,

in the context of the gcc compiler for the StrongARM. We
do that because, once spill code is inserted, the locations of
all the loads and stores in the code are known. The register
allocator will assign some variables to registers and other
variables to stack locations. On the IXP–1200, the gcc com-
piler represents those stack locations on the SDRAM. When
a variable on the stack needs to be loaded and stored, the
gcc compiler first generates only individual load and store
instructions. Only during the peephole optimization phase,
the compiler attempts to combine the load/store instruc-
tions. But the peephole optimizer does these replacements
only if the two loads/stores are accessing consecutive loca-
tions and the registers being loaded/stored are in the same
order (ascending or descending) as that of the memory ad-
dresses that are being accessed. The compiler does not at-
tempt to rearrange the variables, and in case of inversion, no
load-multiple or store-multiple instructions are introduced.
We can do better.
To generate double-load and double-store instructions from

individual-load and individual-store instructions, we need
to (1) be able to move them next to each other and (2)
have them access consecutive memory addresses. The first
of these tasks is a standard code motion problem which must
be done without changing the program behavior. The sec-
ond task is a memory layout problem. To solve it, we can
change the stack layout for the local variables of each proce-
dure. It is now of paramount importance to note how much
we can change the stack layout without changing the be-
havior of the code. When compiling C programs, we make
changes to two parts of the stack layout, namely (1) the stack
area for scalar variables (int, float, double, char, enum) and
(2) the stack area for arguments that are passed in registers
and are saved by the callee (at most 4 in case of the Strong-
ARM). The reason for this choice is that only in these two
cases, the C language standard does not specify the stack
layout [5, Section 6.9.1#9], while it prohibits rearrangement
of the fields inside aggregate types [5, Section 6.7.2.1]. The
good news is that the gcc compiler stores all of the variables
listed in (1) and (2) in one contiguous memory area, irre-
spective of the order in which they are declared. We will
refer to this memory area as the scalar memory area, and
we will use placement function to refer to any permutation
of the locations in the scalar memory area. Intuitively, a
placement function produces a new stack layout by rear-
ranging the variables in the scalar memory area. We now
reformulate our problem into our core challenge, which we
state both as an optimization problem and as a decision
problem for blocks (i.e., sets) of memory accesses.

The Placement Problem: Given a set of
blocks of memory accesses, find a placement func-
tion that leads to maximizing the number of dou-
ble loads and double stores, while minimizing the
number of inversions.

The Placement Decision Problem: Given
a set of blocks of memory accesses and natural
numbers q, r, does there exists a placement func-
tion that leads to at least q double loads and
double stores, and at most r inversions.
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1.2 Our Results
First we characterize the complexity.

Theorem The placement decision problem is NP-complete.

Proof. It is straightforward to show that the placement
decision problem is in NP: a placement function is polyno-
mial in the size of the scalar memory area, and we can check
in polynomial time whether a given placement function leads
to at least q double loads and double stores, and at most r
inversions.
To show NP-hardness, we do a reduction from the hamil-

tonian path problem. Suppose we are given a graph (V, E)
of vertices V and undirected edges E. We can assume, with-
out loss of generality, that for every edge (v1, v2), we have
v1 �= v2. From the graph, we construct a program where
each vertex becomes a stack location and each edge (v1, v2)
becomes a basic block consisting of two consecutive instruc-
tions which access exactly two different stack locations, cor-
responding to v1, v2, and operate on two different registers.
We now claim that the graph has a hamiltonian path if and
only if the program has a placement function which enables
(at least) |V | − 1 double loads/stores and any number of
inversions. To see that, notice that a hamiltonian path and
a placement function essentially are the same thing: they
both order the stack locations. Since the hamiltonian path
problem is NP-complete [8], the placement decision problem
is NP-hard. ✷

Given that the placement decision problem is NP-complete,
we are discouraged from trying to find a polynomial-time al-
gorithm for the placement problem. Instead, we can either
try to find approximate solutions or we can use exact meth-
ods that run in exponential time.
In this paper we present an exact method for solving the

placement problem. Our approach is based on integer linear
programming (ILP) and is therefore an NP algorithm. We
have implemented our method in the gcc 2.95.2 compiler
for the StrongARM and we have experimented with it in
the context of the IXP–1200. Our approach is implemented
in gcc as an additional phase, named SLA (stack location
allocator), that follows immediately after register allocation
and spilling.
Our experimental results show that our ILP-based method

is effective and that the code generated for our benchmarks
runs 0.8–15.1% faster. Considering the fact that we get this
improvement over an already optimized code (compiled with
–O2 option of gcc), this is significant. Most importantly, our
SLA phase of optimization is guaranteed not to deteriorate
the execution time. The StrongARM supports the efficient
implementation of double loads and stores that we consider
in this paper. For machines that break down the double
loads and stores into individual bus transactions for each
register, there would not be any gains in speed.

1.3 Example
Consider the C code in Figure 1. The example illustrates

that if we are accessing scalars that are more than 4 bytes
apart, then the code generated by the standard gcc com-
piler is poor. Notice the calls to the functions bar1, bar2,
and bar3. Each one takes one or more addresses of vari-
ables as arguments; the calls were inserted to ensure that
the compiler reloads the variables after the function call,
because the callee might modify the variables.
The table in Figure 1 shows the locations of the variables

foo(){ int a,b,c,d,e;
bar1(&a,&b,&c);
a=c+a;
bar2(&b,&d);
e=b+d;
bar3(&e);
return a+e; }

var old loc new loc
a fp-20 fp-24
b fp-24 fp-32
c fp-28 fp-20
d fp-32 fp-36
e fp-36 fp-28

Without SLA
1 sub r0, fp, #20
2 sub r4, fp, #24
3 mov r1, r4
4 sub r2, fp, #28
5 bl bar1
6
7 ldr r3, [fp, #-28]
8 ldr r2, [fp, #-20]
9 add r3, r3, r2
10 str r3, [fp, #-20]
11 sub r0, r4
12 sub r1, fp, #32
13 bl bar2
14
15 ldr r3, [fp, #-24]
16 ldr r2, [fp, #-32]
17 add r3, r3, r2
18 str r3, [fp, #-36]
19 sub r0, fp, #36
20 bl bar3
21
22 ldr r3, [fp, #-20]
23 ldr r0, [fp, #-36]
24 add r0, r3, r0

With SLA
sub r0, fp, #24 ;&a
sub r4, fp, #32 ;&b
mov r1, r4
sub r2, fp, #20 ;&c
bl bar1 ;call

sub r2, fp, #24
ldmia r2, {r2-r3} ;load a,c
add r3, r3, r2 ;a=a+c
str r3, [fp, #-24] ;store a.
mov r0, r4
sub r1, fp, #36 ;&d
bl bar2 ;call

ldmia sp, {r2-r3} ;load b,d
add r3, r3, r2 ;e=b+d
str r3, [fp, #-28] ;store e
sub r0, fp, #28 ;&e
bl bar3 ;call

sub r0, fp, #28
ldmia r0, {r0,r3} ;load a,e
add r0, r3, r0 ;a+e

Figure 1: Code without and with SLA

before and after the SLA pass. Notice that a permutation
has been done and that after the SLA phase, the variables
that are accessed together (a and c, b and d, a and e) have
consecutive addresses. In Figure 1 we show the code gener-
ated by the standard gcc compiler and the code generated
by the gcc compiler with SLA for the example C program.
We have omitted the code that stores and restores the callee-
save registers and sets the stack frame. For the code shown
we have sp=fp–36.
The function bar1 expects the addresses of the variables

a, b and c to be passed in the registers r0, r1 and r2, respec-
tively. Because the SLA phase modifies the locations of the
variables, we can see different locations for these variables
in the SLA and non-SLA version of the code (lines 1, 2, 4),
in accordance with the new mapping shown in the table in
Figure 1. We can see similar changes in lines 10, 12, 18, 19.
In lines 7–8 the two loads in the non-SLA version of the

code cannot be merged as the memory accesses are not con-
secutive. In the SLA version of the code, we first set r2
with the address of the a and the two loads are replaced by
one LDM instruction (ldmia). We can see similar changes
in lines 22-23. Finally let us look at lines 15-16. In the
SLA version of the code, we need not insert any ‘add/sub’
instruction as the location first accessed is already there in
register sp.

1.4 Related Work
Various compiler-based techniques have been proposed to

reduce memory latencies, including compiler-directed prefetch-
ing [6] and value prediction [16, 29]. In this paper we pro-
pose a compiler-based technique that uses the StrongARM
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processor’s load-multiple/store multiple instructions, in the
presence of SDRAM memory, by rearranging local variables
to reduce the overhead of memory accesses.
The storage assignment problem was first studied by Bart-

ley [4], and later by many authors [14, 22, 28, 21, 25, 13,
12, 20] in the last decade, for many different types of special
purpose architectures. Traditionally the problem has been
studied from two angles. (i) One range of benefits from good
storage assignment include allocating variables in registers,
reducing the cost of inter-bank copy, and reducing the code
size [21]. Sjödin and Platen [25] present a model for storage
allocation to describe architectures with memories of varying
speed and with several native pointer types. The goal here
is to ensure heavily accessed variables are placed in faster
memory and are accessed with cheap pointers (registers).
They frame the problem as an ILP formulation and use the
solution to allocate non-local-scoped variables. (ii) Another
range of benefits from good storage assignment come from
good allocation of variables in memory after register alloca-
tion. One line of work exploits auto increment/auto decre-
ment indirect addressing modes in DSP processors. The goal
is to reduce the number of explicit instructions to load the
address of variables into the address registers. For exam-
ple, Liao et al [14] present an approach for optimal storage
assignment such that explicit instructions for address arith-
metic are minimized, and, hence resulting in compact code.
Leupers and Marwedel [13] present approximate algorithms
to optimize the utilization of a proposed parallel Address
Generation Units(AGUs) by computing appropriate mem-
ory layouts for scalar variables. Leupers and David [12]
present a genetic algorithm based approach to generate new
offsets to handle different register file sizes and auto incre-
ment ranges. Rao and Pande [22] give techniques based on
approximation algorithms to optimize the access sequence of
variables by applying algebraic transformations on expres-
sion trees. Sudarsanam et al [28] present a formulation of
the storage assignment problem, parameterized by the max-
imum allowable increment limit and the number of address
registers. Panda et al [20] present a heuristic based approach
for storage assignment to data improve cache locality. Our
work goes for yet another advantage of good storage alloca-
tion: better utilization of a 64-bit bus.
Recently, network processors have received considerable

attention. Most software for network processors is writ-
ten directly in machine code because most current compil-
ers cannot achieve wire-speed performance of the generated
code. For complicated applications such as routers with fire-
walls and sniffing capabilities, even carefully crafted machine
code can have trouble keeping up with wire speed. These ob-
servations motivate better optimizing compilers for network
processors, and make almost any performance gain impor-
tant. Our results are a step in this direction. There are a
few other recent projects on compiling for network proces-
sors and exploiting many of their special features. Wagner
and Leupers [30] talk about register allocation for proces-
sors that support bit section referencing. George and Blume
[9] propose a new language and address issues with register
banks and aggregate registers.
There has been widespread interest in using ILP for com-

piler optimizations such as instruction scheduling, software
pipelining, and particularly register allocation [3, 10, 15, 23,
27]. Our work shows that solving ILPs is sufficiently fast for
our per-procedure placement problem.

We have three main contributions. (a) We observe that
the amount of time taken to execute three exclusive-or in-
structions is far less than the time to do two memory ac-
cesses. Hence we introduce the concept of inversions to help
improve performance. However note that the number of
double loads/double stores and the number of inversions are
not linearly correlated. We handle this by prioritizing two
requirements in our objective function. (b) Liao et al [14] as-
sume a fixed evaluation order for each basic block. Rao and
Pande [22] relaxed this assumption by allowing code motion
inside algebraic expression trees. We further relax this by
allowing code motion to take place anywhere inside the basic
block, as long as the dataflow is not affected. This gives us
more opportunities to get consecutive memory accesses next
to each other. (c) We present an exact method using ILP to
solve the storage assignment problem along with inversions.

2. THE SLA ALGORITHM
The SLA algorithm has four phases: model extraction,

constraint generation, constraint solving, and code transfor-
mation.

2.1 Model Extraction
We first extract a model from the program. We use the

following notation for arrays, for example, array {1..n} of
{0,1}, which denotes an array of size n with elements from
{0,1}. The model has eight components:

• vars = {1..n}. This is the set of the n scalar variables
present in the function currently being compiled.

• blocks = {1..k}. A block is an unordered collection of
loads/stores that can be moved together. Each element of
blocks identifies one of the k blocks.

• triples = blocks× vars× vars.
• edge: array {triples} of {0,1}. If edge[b, v1, v2], then the

memory accesses of v1, v2 are candidates to be replaced by
one load/store multiple instruction in block b. For simplic-
ity, we insist that if edge[b, v1, v2]=1, then v1 < v2. We can
guarantee that v1 �= v2, because if we have two consecutive
accesses to the same location, then one of them can be re-
moved (in case of store), or replaced by a mov instruction
(in case of load).

• inv: array {triples} of {-1,1}. For an edge e = (b, v1, v2),
suppose v1, v2 are loaded/stored to/from the registers ri, rj .
If i < j, then inv[e] = 1, else inv[e] = −1. The idea is that
if inv[e] = 1, then we would prefer that the new address
of v1 be smaller than the new address of v2. Similarly, if
inv[e] = −1 then we would prefer that the new address of v1

be greater than the new address of v2. We use inv to help
minimize the number of inversions. We can guarantee that
i �= j, because if the destinations of two loads are the same
register, then we eliminate the first instruction. Similarly,
if the sources of two stores are the same register, then if we
have a free register available then we use that register here
else we do not add an edge for those two instructions.

• cost: array {triples} of {40,50}. Gives the cycle count
for each element of the edge, where cost[e] = 40 if the edge
consists of two load instructions, and cost[e] = 50 if the edge
consists of two store instructions.

• eorCost: array {triples} of {3,6}. Gives the number
of eor instructions that have to be inserted if an inversion
occurs for the edge. In case of a load it is 3, and in case of
a store it is either 6 or 3, depending on whether the source
registers are live after the store or not.
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• w : array {triples} of {1,50}. Gives an estimate of the
execution frequency of each edge. The weight of an edge is
statically assigned as 50 if the instruction corresponding to
the edge is in a loop and 1 otherwise.
The quality of the model generated, and consequently the

resulting code, depends on precise nature and power of code
motion algorithm we use. We use a simple code motion al-
gorithm which tries to move memory accessing instructions,
present within one basic block, next to each other, based on
memory dependencies and anti/output dependencies. We
get the register liveness details, dependence constraints, and
basic block information from the underlying gcc compiler’s
optimization framework.

2.2 Constraint Generation
Once we have done the model extraction, we generate an

ILP from the program model. A solution to the ILP ex-
presses a placement for the local variables.
Variables. The ILP uses the following variables:
• f : array {vars × vars} of {0,1}. In the solution to

the ILP, f represents the desired placement function as a
permutation matrix: if f [v, p] = 1, then the variable v has
the position p.

• diff : array {triples} of integer. In the solution to the
ILP, for an edge e = (b, v1, v2), if f [v1, p1] = 1 and f [v2, p2] =
1, then diff[e] = p2 − p1.

• isPair : array {triples} of {0,1}. If isPair[e] = 1, then
we can introduce a load/store multiple instruction for e.
Objective function. Solving the placement problem con-

tributes to saving cycles in the overall execution. So, our
ILP maximizes an objective function which approximates
the number of saved cycles:X

e∈triples
edge[e]× w[e]× s[e]

We use s[e] to denote the number of cycles that are saved
in one execution of edge e. Note that savings only happen
when isPair[e] = 1. The precise formula for s[e] is:

s[e] = isPair[e]× cost[e] +
isPair[e]× 1

2
× (diff[e]× inv[e]− 1) × eorCost[e].

The first part, isPair[e]× cost[e], expresses that we save the
cost of one load or one store. The second part says that if
diff[e] × inv[e] = −1, that is, if we have an inversion, then
the second part is negative, and we pay eorCost[e].
Notice that the second part of s[e] contains a product

of isPair[e] and diff[e], which makes the objective function
nonlinear. The nonlinearity takes us outside the realm of
ILP, so instead we use the term diff[e]× inv[e]× eorCost[e].
The term diff[e]×inv[e] is in the interval [−(n−1), n−1] and
so it can overwhelm the first part of s[e]. To compensate, we
multiply the first term of s[e] by n, arriving at this definition:

s[e] = n×isPair[e]×cost[e] + diff[e]×inv[e]×eorCost[e].
We have not seen any deterioration in the quality of the final
solution due to this approximation for many hand-coded
examples.
Constraints. We generate the following integer linear con-

straints. The following constraints ensure that f is a per-
mutation matrix.

∀v ∈ vars :
X

p∈vars
f [v, p] = 1 ; ∀p ∈ vars :

X
v∈vars

f [v, p] = 1

The following constraint expresses that we can introduce
a load/store multiple instruction only for edges that are
present in the program model.

∀e ∈ triples : isPair[e] ≤ edge[e].
A vertex can appear only once in a Pair per block. For each
block, the following constraints say that if an edge is counted
as a Pair, then we cannot have any other edge with common
vertices in the same block. Note that these constraints are
per block and do not restrict pairs in different blocks from
having common variables.

∀b ∈ blocks : ∀v1, v2, v ∈ vars (v1, v2, v are different) :

isPair[(b, v1, v2)] + isPair[(b, v1, v)] ≤ 1
isPair[(b, v1, v2)] + isPair[(b, v2, v)] ≤ 1
isPair[(b, v1, v2)] + isPair[(b, v, v1)] ≤ 1
isPair[(b, v1, v2)] + isPair[(b, v, v2)] ≤ 1

The idea of the following constraint is that for all triples e,
if isPair[e] = 1, then |diff[e]| = 1.

∀e ∈ triples : n × isPair[e] ≤ (n+ 1)− diff[e]
n × isPair[e] ≤ (n+ 1) + diff[e]

The following constraint computes diff.
∀e = (b, v1, v2) ∈ triples :

diff[e] =

 X
p2∈vars

f [v2, p2]× p2

!
−
 X

p1∈vars
f [v1, p1]× p1

!

2.3 Constraint Solving
We use AMPL [7] to generate the ILP, and CPLEX [1] to

solve it. The gcc compiler invokes the constraint generator
by providing the data in a file. Once constraints are gener-
ated the constraint generator calls the solver, which returns
the resulting solution to gcc in a file.

2.4 Code Transformation
Finally we use the ILP solution to replace all stack offsets

and introduce double loads and stores in the code.
Offsets. For each instruction: (1) if it is an add or sub

instruction with the stack pointer as the source and an inte-
ger constant as the second operand (offset) then if the offset
is in the scalar memory area, we replace it by the new off-
set computed; and (2) if it is a load/store instruction with
the stack pointer as the base register then if the offset is
in the scalar memory area, we replace it by the new offset
computed.
Double loads/stores. For each edge e where isPair[e] =

1, we replace the corresponding two instructions with a
load/store multiple instruction. If the lowest address of the
loads/stores being merged is not already present in a reg-
ister, then we insert an add instruction to set up the base
register. In the case of inserting an add instruction before
a double store, we need a free register; if we don’t find one,
then we do not do the replacement. In the case of inserting
an add instruction before a double load, we can use one of
the target registers for the two load instructions.
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Benchmark characteristics Compile time (sec) Transformations Execution time (sec)
name funcs lines w/o SLA SLA % worse loads stores eor w/o SLA SLA % imp

GSM 98 8643 5.22 5.90 13.5 18 8 6 0.57 0.55 3.6
EPIC 49 3540 1.34 2.67 99.2 228 30 24 0.65 0.61 6.2

Url 12 790 0.25 0.52 108.0 12 4 0 6.32 6.27 0.8
Md5 17 753 0.27 0.30 14.8 4 0 0 0.75 0.73 2.7
IPChains 76 3453 1.69 2.67 58.0 44 14 9 0.23 0.20 15.1

Classifier 25 2850 2.27 4.73 107.0 26 2 6 2.71 2.70 0.8
Firewall 30 2281 1.84 2.71 47.3 24 0 6 3.49 3.41 2.4

Figure 2: Experimental Results

3. EXPERIMENTAL RESULTS
We have implemented SLA as a phase of optimization in

the gcc 2.95.2 compiler for the StrongARM processor. In
addition, our implementation has a peephole optimization
phase that tries to combine loads/stores of non-scalar vari-
ables without rearranging them, in a way that goes beyond
the peephole phase of gcc.

3.1 Benchmark Characteristics
We have evaluated our implementation using a total of

seven benchmark programs, drawn from three different suites.
Some statistical details about them can be found in Figure 2,
columns 2–3.
Our first two benchmarks are from the MediaBench [11]

suite: GSM is an implementation of the European GSM
06.10 provisional standard for full-rate speech transcoding.
EPIC is an experimental image compression utility.
The second set is a collection of three benchmarks drawn

from the NetBench [18] suite: Url implements a context
switching mechanism called URL-based switching. Md5 is
a message digest algorithm that creates a cryptographically
secure signature for each outgoing packet. IPChains is a fire-
wall application. NetBench has three classes benchmarks:
small, medium and large. The subset we present here in-
cludes a benchmark from each class. Note that we have
presented all the benchmarks from the NetBench and Me-
diaBench suites that we could run on our setup. The rest
of the benchmarks programs could not be run even in the
absence of our optimization.
The third set of two benchmarks were written specifically

for the Intel IXP–1200 processor: Classifier is a network
packet classifier that classifies ARP and TCP packets. Fire-
wall implements a firewall. For each packet received, it ei-
ther drops it or stores it depending on the rules set and the
contents of the packet. Developed by graduate students for
the Network Processors course offered by Douglas Comer at
Purdue University, these programs have two parts. The first
part runs on the StrongARM processors, and the second one
runs on microengines. To be able to time the StrongARM
code alone, we added code to simulate microengine code.
The microengine simulation code supplies network packets
that we collected offline. The source code of these bench-
marks can be obtained from the authors.

3.2 Measurements
We measured the compile time deterioration and the exe-

cution time improvement. Figure 2, columns 4–9, show the
compile time statistics measured on a Pentium i686 machine
running Linux. For each benchmark it gives the time taken

to compile at –O2 level of optimization without and with
SLA, percentage deterioration in compile time, number of
loads/stores replaced with double loads/stores, and number
of eor instructions added. Note that the current peephole-
optimization phase of gcc is switched on by default, at the
O2 level of optimization.
Columns 10–11 in Figure 2 show the execution time statis-

tics in terms of the time taken to execute the benchmark
program compiled without and with SLA. The execution
time reported is the execution time as an average over four
runs on the Intel IXP Network processors. The last column
shows the percentage improvement in execution time. The
figures we show here are from the runs of our programs in
the presence of data cache. We believe that in the absence
of data cache the comparative gains would be bigger.

3.3 Assessment
For our benchmarks, the execution time improvements are

in the range 0.8–15.1%. The geometric average improvement
is 2.8% and the arithmetic average improvement is 4.5%.
The improvement is over a powerful baseline, namely code
generated at –O2 level of optimization. Hence, we believe
the improvement is significant.
The compile time overhead is up to a factor of about two.

For our benchmarks, this amounts to at most one or two
extra seconds. We believe that the compile time overhead is
affordable for a significant improvement in execution time.
Such optimizations can be run for the production builds
and omitted for regular debug builds. Notice that Url and
Classifier have the highest overhead in compile time and
the lowest performance improvement. The long compilation
times are due to a large number of edges in the generated
ILPs. However, for both benchmarks, most of the replace-
ments are done in infrequently executed code, giving a small
performance improvement of 0.8%. So, longer compilation
times do not necessarily entail larger performance gains.
For some benchmarks, there were few replacements and,

yet, there were significant improvements in execution time.
For example, for Md5, even though only four instructions
got replaced, the replacements took place in a frequently
executed function giving a significant performance improve-
ment of 2.7%. So, large performance gains do not always
require many replacements.
For all benchmarks, the number of replaced load instruc-

tions is significantly higher than the number of replaced
store instructions. This was expected because there are
fewer store edges than load edges for each benchmark (we
omit the detailed counts).
The number of inserted exclusive-or (eor) instructions is

moderate and in two cases even zero. However, the two

29



benchmarks for which the most eor instructions were in-
serted also saw the largest performance gains. This suggests
that the ability to handle inversions is important. However,
if code size is a constraint, then we can maximize the number
of double loads and double stores only, and ignore inversions.
This would mean that no exclusive-or instructions would be
inserted, and hence the code generated would always be at
most the size of the code generated without SLA.
The first two applications, the largest of our benchmarks,

show significant improvements. They were run against the
standard data files that come with the benchmarks.
The last two sets of benchmarks are network applications.

They typically have an initialization code, followed by a
main loop where each incoming packet is processed. The
initialization part is run only once, while the main loop is
executed many times. In our measurements, we ensure that
gains made in the initialization part of the code are mostly
amortized away and that gains in the main loop are reflected
well. In Table 2, we report the time taken to process a fairly
high number of packets, namely 5000.
In addition to the numbers reported, we also ran the last

two sets of benchmarks against varying number of input
packets. Leaving aside IPChains, in all these benchmarks,
we found that the SLA phase modifies the initialization part
of the code significantly. Due to this we observed high gains
when the number of packets are in the order of few hun-
dreds. However, when we observed it for longer duration,
these high peaks got amortized away and we noticed more
stabilized gains, due to the replacements done in the main
loops. In case of IPChains, we did not find many replace-
ments in the initialization part of the code, and accordingly
we have observed low gains for very low packet counts. Most
of the replacements in this application were in the main
loop. Due to this, for higher packet counts (around 1000),
we got around 15% improvement and the gain maintained
itself around that level for higher packet counts.

4. CONCLUSION
We have implemented the SLA phase in the gcc compiler

for the StrongARM. The code generated with SLA will al-
ways run faster; for our benchmarks the improvements are
in the range 0.8–15.1%. As the gap between processor speed
and memory latency continues to widen, optimizations such
as SLA will be increasingly important.
We have given an ILP formulation independent of the

compiler’s target processor. We believe our ILP formulation
can be used with little modification as a placement func-
tion for many other targets, such as the Microengines in the
IXP’s, the IBM NP4GS3, or the Sun MAJC 5200.
Our optimization will be beneficial even for processors

with 64-bit registers and a 64-bit memory bus. This is due
to the fact that even in the presence of 64 bit registers, it
would, mosly likely, still be possible to access 32 bit registers
which would hold the smaller data units.

Future Work. The current register allocator present
in gcc works independently of our stack location allocator.
We plan to integrate register allocation and stack location
allocation. The idea is that such a combined phase can do
better than the current set up. Manual inspection of the
code seems to support our conjecture.
The current SLA does the work only for local variables.

We believe that it can be extended to global variables.
Another idea is to extract a more precise program model

using an interprocedural analysis, rather than the intrapro-
cedural analysis that we currently use. The weight of each
edge is currently calculated based on, rather rough, static
execution counts. Our approach might be more efficient if
we instead profile the program and use the dynamic execu-
tion counts.
Another idea for future work is to use heuristics similar to

[4, 14] to find out whether similar performance gains can be
obtained with approximate methods that possibly are faster.
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