
Efficiency and Expressiveness in UW-OpenMP
Raghesh Aloor

Dept of CSE, IIT Madras

Chennai, TN, India

raghesh@cse.iitm.ac.in

V. Krishna Nandivada

Dept of CSE, IIT Madras

Chennai, TN, India

nvk@iitm.ac.in

ABSTRACT
OpenMP uses the efficient ‘team of workers’ model, where work-

ers are given chunks of tasks (iterations of a parallel-for-loop, or
sections in a parallel-sections block) to execute, and worker (not

tasks) can be synchronized using barriers. Thus, OpenMP restricts

the invocation of barriers in these tasks; as otherwise, the behavior

of the program would be dependent on the number of runtime

workers. To address such a restriction which can adversely impact

programmability and readability, Aloor and Nandivada proposed

UW-OpenMP by taking inspiration from the more intuitive inter-

action of tasks and barriers in newer task parallel languages like

X10, HJ, Chapel and so on. UW-OpenMP gives the programmer an

impression that each parallel task is executed by a unique worker,

and importantly these parallel tasks can be synchronized using a

barrier construct. Though UW-OpenMP is a useful extension of

OpenMP (more expressive and efficient), it does not admit barriers

within recursive functions invoked from parallel-for-loops, because

of the inherent challenges in handing them. In this paper, we extend

UW-OpenMP (we call it UWOmp++) to address this challenging

limitation and in the process also realize more efficient programs.

We propose a source to source transformation scheme to trans-

late UWOmp++C programs to equivalent OpenMPC programs that

are guaranteed not to invoke barriers in any task. Our translation

uses a novel intermediate representation called UWOmpCPS, which

represents a parallel program written in OpenMP in an extended

CPS format (admits parallel-for-loops and barriers). The use of this

intermediate representation leads us to handle recursive functions

within parallel-for-loops efficiently. We have implemented our pro-

posed translation scheme in the ROSE compiler framework. Our

preliminary evaluation shows that the proposed language extension

to allow recursion helps plug an important gap in expressiveness,

without compromising on the efficiency resulting from the ‘team

of workers’ model.

CCS CONCEPTS
• Software and its engineering→ Parallel programming lan-
guages; Compilers; • Computing methodologies→ Parallel pro-
gramming languages.

KEYWORDS
OpenMP, Unique Worker model, Recursive task parallelism

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or affiliate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

CC ’19, February 16–17, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6277-1/19/02. . . $15.00

https://doi.org/10.1145/3302516.3307360

ACM Reference Format:
Raghesh Aloor and V. Krishna Nandivada. 2019. Efficiency and Expressive-

ness in UW-OpenMP. In Proceedings of the 28th International Conference on
Compiler Construction (CC ’19), February 16–17, 2019, Washington, DC, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3302516.3307360

1 INTRODUCTION
The advent of multi-core systems has brought along an increased

interest in task parallel languages like X10 [?], HJ [?], Chapel [?],
OpenMP [?] and so on. These task parallel languages advocate that
the programmers should think in parallel and use the language to

express the parallel logic; not treat parallelism as an afterthought.

For example, in languages like X10, HJ and Chapel, from the point

of view of a programmer, a parallel loop creates many tasks that

can execute in parallel; and the program logic can remain oblivious

to the runtime-threads. Languages like X10, HJ and Chapel also let

the tasks synchronize among themselves.

For example, Consider the code snippets (written in HJ) shown

in Figure 1a; it performs distributed iterative averaging (IA) [?
?] over a one-dimensional array. In HJ, a forall loop is used

to create parallel tasks and a next statement is a barrier used to

synchronize the tasks. The programmer here can visualize each task

as an independent computation (conveniently packaged inside the

function iterAvg) and consider synchronizing these tasks using

barriers at appropriate points. In Figure 1a, all the tasks synchronize

twice in each iteration of the while-loop (see Lines 8 and 13).

Figure 1b shows a variation of IA that uses recursion. Here

each parallel task invokes the recursive function iterAvgR (Line 2,

Figure 1b). Similar to the iterative version, these tasks invoke the

barrier (next) at two positions (Lines 8 and 12) and repeat the com-

putation and synchronization till convergence (Line 5). Compared

to the iterative version, this way of visualizing tasks as recursive

functions may be intuitive and convenient for some programmers.

The codes shown in Figure 1a and Figure 1b support a natural un-

derstanding of the programmer that the number of worker threads

(workers in short) will match the number of tasks. Further, the syn-

chronization happens among the tasks (iterations of the forall
loop) rather than workers. However, in contrast, the OpenMP spec-

ification [?], because of the underlying ‘team of workers’ model,

defines barriers for synchronizing workers, which prevents the

programmer from placing barriers within parallel-for-loops to syn-

chronize its iterations; hereafter we refer to the iterations of the

parallel-for-loops and sections in parallel-sections as tasks. Con-

sequently, the equivalent OpenMP C codes for the code-snippets

shown in Figures 1a and 1b, (e.g., Figures 1c and 1d) are OpenMP

non-conforming. Aloor and Nandivada [?] show that such OpenMP

programs (or equivalent programs in languages like PJ [?], and
JOMP [?]) may produce varying outputs, or even hang, for vary-

ing number of workers; here the expected output is guaranteed,

https://doi.org/10.1145/3302516.3307360
https://doi.org/10.1145/3302516.3307360

CC ’19, February 16–17, 2019, Washington, DC, USA Raghesh Aloor and V. Krishna Nandivada

1 ... // in some function
2 forall (int i: [1..N]) {iterAvg(i);}
3 ...
4 void iterAvg(int i){
5 while(delta>epsilon){
6 newA[i]=(oldA[i-1]+oldA[i+1])/2.0;
7 diff[i]=Math.abs(newA[i]-oldA[i]);
8 next;
9 if (i==1) {
10 delta=sum(diff); iters++;
11 temp=newA;newA=oldA;oldA=temp;
12 } /* if */
13 next;
14 } /* while */ }/*iterAvg*/

(a) Non-recursive version in HJ; oldA and newA are shared

1 ... // in some function
2 forall (int i: [1..N]) {iterAvgR(oldA, newA, i);}
3 ...
4 void iterAvgR(double[] oldA, double[] newA, int i){
5 if (delta<=epsilon) { return; }
6 new[i]=(old[i-1]+old[i+1])/2.0;
7 diff[i]=Math.abs(newA[i]-oldA[i]);
8 next;
9 if (i==1) {
10 delta = sum(diff); iters++;
11 } /* if */
12 next;
13 iterAvgR(newA,oldA,i);
14 } /* iterAvgR */

(b) Recursive version in HJ
1 ... // in some function.
2 #pragma omp parallel
3 { #pragma omp for
4 for(i=0;i<N;i++){iterAvg(i);}
5 }/*parallel*/
6 ...
7 void iterAvg(int i) {
8 while(delta>epsilon){
9 newA[i]=(oldA[i-1]+oldA[i+1])/2.0;
10 diff[i]=fabs(newA[i]-oldA[i]);
11 #pragma omp barrier
12 if (i==1) {
13 delta=sum(diff); iters++;
14 temp=newA;newA=oldA;oldA=temp;
15 } /* if */
16 #pragma omp barrier
17 } /* while */ } /* iterAvg */

(c) Non-recursive version in UW-OpenMP; oldA and newA are shared

1 ... // in some function.
2 #pragma omp parallel
3 { #pragma omp for
4 for(i=0;i<N;i++){iterAvgR(oldA,newA,i);}
5 }/*parallel*/
6 ...
7 void iterAvgR(double *oldA, double *newA, int i) {
8 if (delta<=epsilon) { return; }
9 new[i]=(old[i-1]+old[i+1])/2.0;
10 diff[i]=fabs(newA[i]-oldA[i]);
11 #pragma omp barrier
12 if (i==1) {
13 delta = sum(diff); iters++;
14 }
15 #pragma omp barrier
16 iterAvgR(newA,oldA,i);
17 } /* iterAvgR */

(d) Recursive version in UWOmp++

Figure 1: Variations of IA (iterative averaging) in HJ and OpenMP syntax; delta and iters are shared variables.

only when the number of workers is set to the number of tasks –

potentially inefficient.

The correct way to encode the logic expressed in Figure 1c in

OpenMP is to write conforming [?] OpenMP code where no bar-

rier executes in the body of the parallel-for-loop. While this can

be achieved by some complex code reorganization (inlining the

function, interchanging the loops, and involved loop-distribution),

this may also lead to code bloat and arguably harder to read pro-

grams (cohesive pieces of program logic spread across multiple

parallel-for-loops).

Considering the impact of the restrictive practice of disallowing

barriers within tasks, which can adversely impact programmability,

Aloor and Nandivada [?] propose an extension called UW-OpenMP.

This extension gives the programmer an impression that each par-

allel task has been assigned a unique worker, and importantly

these parallel tasks can be synchronized using a barrier construct

(that is, UW-OpenMP admits barriers within work-sharing con-

structs like parallel-for-loops and parallel-sections). For example,

UW-OpenMP admits codes such as the one shown in Figure 1c, and

runs much faster (97% faster [?]) than the inefficient alternative of

running it as an OpenMP code by setting the number of workers

to N (number of tasks).

Though UW-OpenMP is a more expressive and efficient exten-

sion of OpenMP, it does not admit barriers within recursive func-

tions invoked from parallel-for-loops, because of the inherent chal-

lenges in handling them (cannot be inlined). This can be a limi-

tation for expressing recursive algorithms – a common approach

to realize conciseness, readability, and intuitiveness [? ? ?]. Fur-
ther, once we allow such recursive tasks, it is natural to admit

synchronization therein. For example, consider the recursive ver-

sion of IA (Figure 1d). One may argue that the recursive version is

more succinct and readable than the iterative version
1
. However,

UW-OpenMP does not admit such recursive codes.

Further, in some cases, it may be natural for a programmer to

think each task as a recursive function where all these tasks may

synchronize using barriers. Hence, disallowing the feature of syn-

chronization within recursive functions invoked from parallel-for-

loops limits the scope of the class of algorithms that can be ex-

pressed using UW-OpenMP. In this paper, we extend UW-OpenMP

(we call it UWOmp++) to address this challenging limitation and

in the process also realize more efficient programs.

The set of programs that can be written in UWOmp++ is a su-

perset of the programs that can be written in UW-OpenMP. For

example, the two codes shown in Figure 1c and Figure 1d can be

expressed using UWOmp++. We propose a transformation scheme

from UWOmp++ to OpenMP that avoids the complex bookkeeping

code emitted by the UW-OpenMP translator and generates efficient

OpenMP code. Our translation not only ensures that the semantics

of the generated program is independent of the number of workers,

but also the generated code can still take advantage of the efficient

‘team of workers’ model of OpenMP, in an effective manner.

1
Note: we may use the OpenMP reduction clause (in place of the sum call), inside the

parallel-for-loop; even then, we still need the barriers as shown.

Efficiency and Expressiveness in UW-OpenMP CC ’19, February 16–17, 2019, Washington, DC, USA

Our translation is based on a novel extension to the popular

concept of CPS (Continuation Passing Style [?]) to handle parallel

constructs like parallel-for-loops and barriers. We name this ex-

tension as UWOmpCPS. To the best of our knowledge, we are not

aware of any other variation of CPS that handles parallel-for-loops

and barriers. We first translate the input UWOmp++ code to an

intermediate representation (IR) in UWOmpCPS form and then

translate the generated UWOmpCPS code to equivalent efficient

conforming OpenMP code. For example, for Figure 1c, compared to

the time taken by the code generated by the UW-OpenMP compiler,

our translated code leads to an improvement of 93% on a 64 core

AMD system. Interestingly, our translation of Figure 1d also leads

to similar execution times (not much overhead, that is).

The expressibility and efficiency aspects of UWOmp++ helps to

encode a wide classes of programs (stencil computations, wavefront

parallelization, dynamic programming, and so on [?]), without com-

promising on performance. Note: the claim is not that using barriers

within parallel-for-loops is the only/best way to encode such com-

putations. Instead, the proposed extension (a feature common in

languages like X10, HJ and so on) provides the programmer an

additional way to encode parallelism, that is otherwise missing in

UW-OpenMP (and OpenMP), while continuing to take advantage

of the efficient ‘team of workers’ model of OpenMP.

Our Contributions:
•Wepropose UWOmp++ to admit barriers anywherewithin parallel-

for-loops and a systematic transformation scheme that uses a novel

IR (UWOmpCPS), to generate efficient code.

• We present a series of optimizations to overcome the typical

overheads associated with programs in the extended CPS format.

Further, we present a scheme to generate efficient specialized code

when static scheduling (one of the most popular schemes) is used

in parallel-for-loops.

•We have implemented our proposed translation scheme and the

optimizations in the ROSE Compiler Framework [?].
•We present an evaluation over ten benchmarks (from different

benchmark suites) and show that (i) our generated code takes ad-

vantage of the underlying ‘team of workers’ model, (ii) compared

to the scheme of Aloor and Nandivada [?], our translation leads to

significant improvements, and (iii) the proposed optimizations are

effective.

2 BACKGROUND
We now briefly describe some relevant OpenMP constructs. More

details can be found in the OpenMP specification [?].
Parallel-Region: #pragma omp parallel S: creates a team of work-

ers (set by OMP_NUM_THREADS); each worker executes S.
Parallel-for-loop: A for-loop can be annotated using #pragma omp

for. This is a work-sharing construct and distributes the iterations

of the for-loop among the workers. The scheduling policy (static
– default, dynamic or guided) determines the exact distribution.

Barrier: #pragma omp barrier: is used to synchronize the workers

in the team. No worker can cross a barrier unless all the other

workers execute a barrier.

Hereafter, we abbreviate the above mentioned three pragmas as

#ompparallel, #ompfor and #ompbarrier, respectively.

We now restate four relevant definitions, given by Aloor and

Nandivada [?] that are also applicable for UWOmp++.

Definition 2.1. An OpenMP parallel-for-loop is said to be execut-

ing in UWmodel if a unique worker executes each iteration therein.

Definition 2.2.To distinguishUWmodel from the default OpenMP

execution model (where a worker may execute one or more itera-

tions of a parallel-for-loop), the latter is termed as the One-to-Many
model (in short OM model). A program executing in OM model

(termed as an OM-OpenMP program) cannot invoke barriers inside

work-sharing constructs.

Definition 2.3. In the execution trace of a parallel-region in a

UW-OpenMP program, all the statement instances are grouped by

the iteration number of the parallel-for-loop in which they execute:

the sequence of statements executed by all the parallel-for-loops in

their ith iterations constitutes the ith UW-group. The ith UW-group

is said to have been generated by the ith agent of the UW-OpenMP

parallel region.

Definition 2.4. The ith task of a UW-OpenMP parallel-region is

defined as ith task executing inside any of the constituent parallel-

for-loops. In the execution of a parallel-region in UW-OpenMP, let

bik denote the kth (≥ 1) barrier executed by the ith task. Let Ψi
k

denote the set of statement instances executed before bik . The k
th

phase (Φk) is defined as follows.Φ1 =

⋃
i Ψ

i
1
; andΦk =

⋃
i Ψ

i
k \Ψ

i
k−1,

if k > 1. The statement instances of any phase Φk are said to be

executed in the kth phase of the parallel region.

3 TRANSLATING BARRIERS IN UWOMP++
We now discuss our proposed translation scheme to translate a

program written in UWOmp++ to OM-OpenMP. Our scheme is

based on an extension to CPS (Continuation Passing Style [?]), a
well established intermediate representation (IR) with inherent sup-

port to wait and continue. We first translate the input UWOmp++

program to an IR called UWOmpCPS. A program in UWOmpCPS

is similar to a program in the CPS form, except that the former

may include parallel-for-loops and barriers. In the second step, the

UWOmpCPS program is translated to OM-OpenMP.

During the execution of a UWOmp++ program, in each parallel-

for-loop, each worker executes a unique task. In contrast, in an

OM-OpenMP program, each worker may execute a “chunk” of tasks.

Importantly, in UWOmp++ a barrier can be used to establish syn-

chronization among tasks. To ensure semantics preservation, the

generated OM-OpenMP code must satisfy the following two prop-

erties: (i) if a worker wi (executing a task in a phase ϕk) hits a
barrier, and in the scheduled chunk ofwi , it has at least one task to

execute in the same phase ϕk , thenwi must continue executing one

of those tasks; and (ii) ifwi has no more tasks to execute in phase

ϕk , it needs to wait for other workers to complete the execution of

their scheduled tasks in phase ϕk . To realize the above properties,

the generated code should be able to suspend the tasks at different

barrier statements – while waiting for other tasks to complete the

current phase. Similarly, the generated code should be able to re-

sume the suspended tasks – when all the tasks complete the current

phase. We exploit the power of continuations (in programs in CPS

form) to achieve such kind of suspend and resume operations.

We first extend the notion of CPS to OpenMP programs that have

constructs like barriers, parallel-for-loops, parallel-regions, and use

CC ’19, February 16–17, 2019, Washington, DC, USA Raghesh Aloor and V. Krishna Nandivada

Program ::= (FuncDecl)* MainFunc
MainFunc ::= int main() { ParRegion }
FuncDecl ::= Type ID (Args){(Stmt)* RetStmt}
ParRegion ::= #pragma omp parallel

{ (ParForLoop)* }
ParForLoop ::= #pragma omp for nowait

for(ID=0;ID<ID;ID++){ CallStmt }
BarrierStmt

BarrierStmt ::= #pragma omp barrier
Stmt ::= AssignStmt |CallStmt |

RetStmt | BarrierStmt | Seq(Stmt)

Figure 2: Grammar for mUWOmp++.

the ‘team of workers’ model at runtime. We use this extension to

derive our IR (UWOmpCPS), and translate the input UWOmp++

code to UWOmpCPS. We also present a scheme to translate code

in UWOmpCPS form to OM-OpenMP. The overall transformation

flow is shown below.

UWOmp++ SimplifymUWOmp++
Step 1 Step 2 OM-OpenMPUWOmpCPS

For the ease of explaining the transformations we use a rep-

resentative subset of UWOmp++ called miniUWOmp++ (in short

mUWOmp++), as the input language; in Section 3.5, we discuss how

we translate a general UWOmp++ program to mUWOmp++. We

now describe the input mUWOmp++ language, the UWOmpCPS

IR and the two-step (Step 1 and Step 2) transformation scheme.

3.1 Input Language mUWOmp++
Figure 2 lists the grammar of the mUWOmp++ language. It accepts

a sequence of function declarations followed by the main func-

tion. The body of a function declaration can have an assignment-

statement, a function call, a return-statement, a barrier-statement,

or a statement generated by Seq(X); for a non-terminal X, Seq(X)

denotes the program formed from X closed under the sequential

constructs. The rules for the non-terminals ID (denotes an identi-

fier), CallStmt, Args, AssignStmt and RetStmt are standard, and we

skip those for brevity. The body of the main function consists of a

single parallel-region, which in turn has a sequence of parallel-for-

loops in its body. A parallel-for-loop contains a normalized loop [?],
whose body is a function-call. The FuncDecl production ensures that

each input function returns a value (no “void" functions). Though

we do not discuss the details, parallel-sections are handled similar

to parallel-for-loops.

3.2 The UWOmpCPS IR
The UWOmpCPS IR grammar is given in Figure 3. A program in

UWOmpCPS has a sequence of function declarations (CPSFuncDecl)

followed by the main function. Besides the set of parameters (in

Args), the formal parameters of a (non-main) function declaration in-

clude a parameter of typeClosure . The fields of theClosure are: (i) a
pointer to a function (say pCPS), (ii) type of the closure (explained in

Section 3.3), (iii) a set of free variables used in pCPS (iv) another clo-

surewhich stores the continuation function of pCPS. A function body

consists of a sequence of simple statements followed by a tail call

(given by TailCallStmt). A SimpleStmt can be either an AssignStmt

or an IfStmt. The body of an IfStmt can be a sequence of assignment

statements. In UWOmpCPS, an assignment statement can only

have a simple-expression on the right-hand side. A TailCallStmt

Program ::= (CPSFuncDecl)* MainFunc
CPSFuncDecl ::= void ID(Args, Closure ID){

(SimpleStmt)* TailCallStmt}
MainFunc ::= int main() { CPSParRegion }
CPSParRegion ::= #pragma omp parallel

{ CPSParForLoop }
CPSParForLoop ::= #pragma omp for nowait

for(ID=0;ID<ID;ID++) {
(SimpleStmt)* CPSFunCall }

TailCallStmt ::= CPSFuncCall | CPSIfStmt | CPSBarrierStmt
| CPSParForLoop

SimpleStmt ::= AssignStmt | IfStmt
CPSFunCall ::= ID(ActualParamList, ID);
CPSBarrierStmt ::= #pragma omp barrier (ID)
CPSIfStmt ::= if(SimpleExpr){(AssignStmt)* TailCallStmt}
IfStmt ::= if(SimpleExpr){ (SimpleStmt)*}
SimpleExpr ::= ID <BinOp> ID | <UnaryOp> ID

Figure 3: Grammar for UWOmpCPS.

can be a function-call (CPSFunCall), an if-statement (CPSIfStmt) end-

ing with a TailCallStmt, a parallel-for-loop (CPSParForLoop), or a

barrier-statement in CPS form (CPSBarrierStmt). Note: the last ar-

gument of CPSFunCall is a continuation. A CPSBarrierStmt is a new

type of barrier introduced in UWOmpCPS, which contains a barrier

along with a closure which encapsulates a continuation; each agent

synchronizes on the barrier and then invokes the continuation.

The main function consists of a single parallel-region in CPS

form (CPSParRegion), which in turn contains a single CPSParForLoop.

A CPSParForLoop consists of a series of simple statements, followed

by a function call in CPS form.

The semantics of a UWOmpCPS program is similar to that of

a UWOmp++ program, except in case of nested parallel-for-loops

(not allowed in UWOmp++ or OpenMP): when an agent i encoun-

ters a nested parallel-for-loop, it only executes the ith task (itera-

tion).

3.3 Step 1: mUWOmp++ to UWOmpCPS
We transform a mUWOmp++ program to UWOmpCPS using the

rules in Figure 4. A rule of the form JXK ⇒ Y indicates that the

input code X in mUWOmp++ is transformed to the output code Y
in UWOmpCPS. A right-hand side code with one or more occur-

rences of the J K operator means that these terms need to be further

transformed.

Rules 1 to 10 are standard CPS transformation rules [?]. For
instance, Rule 10 handles a function call fun when it appears as

part of an assignment or a return statement. Say, the input code is

of the form X fun(arдs) Y, where X and Y to refer to arbitrary code
pieces. First, we emit a new function pCPS (using the macromkProc)
that takes two arguments V1 (of type T1, matching the return type

of fun) and a closure K . Then we emit code to create a closure C
using the macromkClsr . The closure C is passed as an additional

argument to funCPS. We explain the functionality ofmkClsr (used
by Rules 1, 10, 12, 14 and 15) by using the invocation in Rule 10

as the example. The macro takes the following four arguments:

(i) the function pointer pCPS (ii) the type of the closure (referred by

C->type) (iii) the free variables in X and Y (given by the function

FV), and (iv) the closureK whose continuation function needs to be

invoked after pCPS is executed. Note: the value ofC->type is set to
one of the following types, based on the first statement (say S1) to

Efficiency and Expressiveness in UW-OpenMP CC ’19, February 16–17, 2019, Washington, DC, USA

1.

Jint main() {S}K
⇒

int main() {

K =mkClsr (id,Te ,null ,null);
JK SK}

2.
JT fun(TypeArдLst)

{S}K
⇒

void funCPS(TypeArдLst,
Closure K){JK SK}

3. JK fun(a1, ...an)K ⇒ funCPS(a1, ...an , K)

4. JK S1; S2K ⇒ S1; JK S2K
// S1 has no call, return or pragmas inside.
5. JK {S}K ⇒ {JK SK}

6.
JK SK
// S is an AssignStmt

⇒ S

7.
JK if(e){S1}

else{S2} YK
⇒

if (e){JK S1K}
else {JK S2K} JK YK

// e, S1 and S2 do not contain any calls.
8. JK if(e){S1} YK ⇒ if (e){JK S1K} JK YK
// e and S1 do not contain any calls.
9. JK return xK ⇒ K x

10.

JK αK
// α is not a RetStmt or
// AssignStmt.
// α=X fun(arдs) Y

// X has no calls.

⇒

// Say T1 is the return type of fun.
mkProc(void pCPS (T1 V1,

Closure K){JK X V1 YK});
C=mkClsr (pCPS ,Tseq ,FV (X,Y),K);

funCPS(arдs ,C)

11.
JK #ompparallel

{S}K
⇒

#ompparallel
{JK SK}

12.

JK
#ompfor nowait
for(Header){

fun(arдs);}
#ompbarrier
SK

⇒

mkProc(void pCPS(

Closure K){JK#ompbarrier
SK});

#ompfor
for(Header) {

C=mkClsr (pCPS ,Tb ,FV (S),K);

funCPS(arдs , C);}

13. JK #ompbarrierK ⇒ #ompbarrier K

14.

JK #ompbarrier
SK

// S is a seq of
// parallel-for-loops.

⇒

mkProc(void pCPS(

Closure K){JK SK})
C=mkClsr (pCPS ,Tpf ,FV (S),K);

#ompbarrier C

15.

JK #ompbarrier
SK

// S is not a seq of
// parallel-for-loops.

⇒

mkProc(void pCPS(

Closure K){JK SK});
C=mkClsr (pCPS ,Tseq ,FV (S),K);

#ompbarrier C

Figure 4: mUWOmp++ to UWOmpCPS Translation.

be executed in pCPS (i) Te (if S1 is empty), (ii) Tb (if S1 is a barrier),

(iii)Tpf (if S1 is a parallel-for-loop) or (iv)Tseq (otherwise). We use

this type-field in Step 2 of our transformation scheme. Note that

Rule 10 enforces left to right processing of functions present inside

any simple statement. Also note that in Rule 6, in the right hand

side, no application of closure K is performed on S. In any function,

finally K will be applied at all return points with the return value

as argument by Rule 9.

Rules 11 to 15 are used to transform various OpenMP constructs

which can appear in the input mUWOmp++ code. Rule 11: The body

of the parallel region S is transformed to JK SK. Rule 12: Here, the
body of first parallel-for-loop is the function call fun(a1, ...,an).
The statement S contains the remaining sequence of parallel-for-

loops. Similar to Rule 10, we create a new function pCPS (using

mkProc) with body JK ompbarrier SK, which is used to create

the closure C (usingmkClsr). The type of the closure C is set to

Tb (first statement inside pCPS here is a barrier). Each task in the

first parallel-for-loop calls the function funCPS, which takes the

16

#ompfor
for(Header) {

C=mkClsr (X);

funCPS(arдs , C);

}

→

#ompfor
for(Header) {

C=mkClsr (X);

K =mkClsr (funCPS ,Tb ,
FV (Header ,arдs),C);

addToRdyWL(K);

}// for

execRdyWL();

17 #ompbarrier K → uwBarrier(K , t id)

Figure 5: UWOmpCPS to OM-OpenMP Translation.

closure C as an additional argument. Rule 13: A barrier in the

mUWOmp++ program is transformed to a UWOmpCPS barrier

that takes a closure K as an argument. Rule 14 and Rule 15 deal

with a barrier followed by a sequence S, where S is a sequence

of parallel-for-loops and S is not a sequence of parallel-for-loops,

respectively. Hence, Rule 14 sets the type of closure to Tpf and

Rule 15 sets it to Tseq . The barrier is then transformed to accept C
as its argument.

3.4 Step 2: UWOmpCPS to OM-OpenMP
Here we transform the code in UWOmpCPS to OM-OpenMP. In

the generated OM-OpenMP code each worker has to execute zero

or more closures. At runtime, we maintain a ready-worklist (rdyWL)
and a pending-worklist (pendingWL) per worker to store the clo-

sures to be executed by that worker. The closures in the rdyWL can

be executed in the current phase Φk . A worker executes closures

only from the rdyWL. The pendingWL contains entries that can only

be executed in the next phase (Φk+1). Note: the semantics of barri-

ers in UWOmp++ ensures that the code executing in phase Φk can

generate closures to be executed only in phases Φk or Φk+1.
We use four helper macros to manipulate worklists of the current

worker: (i) addToRdyWL: adds an entry to rdyWL. (iii) movePndngToRdy:
moves all the entries in pendingWL to rdyWL, (ii) addToPndngWL:
adds an entry to pendingWL, and (iv) execRdyWL: executes the first
closure from rdyWL.

We transform a program in UWOmpCPS to OM-OpenMP using

the two rules shown in Figure 5. A rule of the format X→ Y indicates
that the input code X in UWOmpCPS is transformed to the output

code Y in OM-OpenMP.

A parallel-for-loop in the UWOmpCPS program is transformed

to OM-OpenMP, using Rule 16. In the transformed OM-OpenMP

code, each task creates a new closure K with the following param-

eters: (i) funCPS as continuation function, (ii) Tb as the type of

K , (iii) the free variables of Header and arдs , and (iv) closure C .
The closure K is added to the rdyWL. The generated code ensures

that for each task in the parallel-for-loop (scheduled to a partic-

ular workerW) a closure is added to the ready-worklist (rdyWL
ofW). After adding all the tasks of the parallel-for-loop, the func-

tion execRdyWL (invoked from a parallel-region, and not from the

parallel-for-loop), is executed by each worker (not each task). Note

that execRdyWL should not be invoked fromwithin another parallel-

for-loop (a work-sharing construct), as the rdyWL contains the clo-

sures to be executed by the respective workers and further work-

sharing is not desired. Such a design would have led to OpenMP

CC ’19, February 16–17, 2019, Washington, DC, USA Raghesh Aloor and V. Krishna Nandivada

1 // isAdded[tid] is initialized to 0
2 void uwBarrier(
3 Closure newK, int tid){
4 if (newK->type==Tpf){
5 if (!isAdded[tid]){
6 isAdded[tid]=1;
7 addToPndngWL(newk);}
8 }else{addToPndngWL(newk);}
9 if (rdyWL[tid] is empty){
10 #ompbarrier
11 isAdded[tid]=0;
12 movePndngToRdy();}
13 execRdyWL();}

Figure 6: uwBarrier Code

addToRdyWL

execRdyWL

uwBarrier

Done

Figure 7: Execution flow
of an agent

non-conforming [?] nested parallel-for-loops, if any of the closures
stored in rdyWL contained a parallel-for-loop.

Rule 17 translates each barrier (#ompbarrier K) to a call to the

function uwBarrier (see Figure 6). The function uwBarrier takes
as argument a closure newK containing the continuation of the bar-

rier and the current thread id tid. This continuation can be (1) a

function which has a parallel-for-loop as the first statement in its

body (newK->type = Tpf), or (2) a function which has a statement

other than parallel-for-loop as the first statement in its body. The

code we generate has a property that uwBarrier is executed in each
task. However, in Case (1) the parallel-for-loop should not be exe-

cuted by all tasks, but only once by each worker. So, if newK->type
is Tpf , we store newK in the pendingWL only by the first task of

each worker that calls uwBarrier (done by the code in Lines 5 - 7).

If newK->type is not Tpf then newK is added to pendingWL in all

the tasks, by their corresponding worker (Line 8).

If a worker has finished executing all the code of its assigned

tasks scheduled to be executed in the current phase, then it waits

for the other workers on a barrier (Line 10). Once all the workers

reach the barrier each worker (i) resets corresponding entry in the

isAdded array and (ii) moves all the entries from its pendingWL
to its rdyWL using the function movePndngToRdy (Line 12). This

indicates the beginning of the next phase.

The overall execution of the generated OMOmp++ code by an

agent follows the flowchart shown in Figure 7. The agent starts by

adding the first task to the rdyWL. After that it continuously exe-

cutes tasks from the rdyWL and waits at the uwBarrier (if present)

till all the tasks have been completed.

Note: while executing the OM-OpenMP code, to achieve the

UWOmp++ semantics, the generated code must ensure that an

agent performing computation in the current phase (say Φk), must

(i) store the continuation corresponding to the computation of the

next phase Φk+1, if the agent executes a barrier; and (ii) wait for

all the agents to finish executing the scheduled computations of

Φk , and then start executing the stored continuations of phase

Φk+1. Our implementation of uwBarrier ensures that these two

requirements are met.

Example transformation. For the better understanding of our

transformation scheme, we now describe the steps in transform-

ing a UWOmp++ code shown in Figure 8a to OMOmp++. We now

discuss some of the salient points therein. We process the two func-

tions individually. First, an initial closure KId (identity function) is

applied to the parallel-region as shown in Figure8b. In Figure 8d,

each task in the parallel-for-loop creates a closureC having continu-

ation function pCPS0. The closureC is passed as an extra parameter

to the function fCPS. In the body of pCPS0 the barrier is transformed

such that it accepts the closure K as argument. Figure 8e shows the

final code for the function main. In Figure 8h, we apply rule 10 on

the call to f in the return statement and then rule 17 is applied on

#ompbarrier to get the code in Figure 8i. On Figure 8i, we apply

rule 9 to get the final code in Figure 8j.

3.5 UWOmp++ to mUWOmp++ Simplification
In this section, we discuss howwe transform any general UWOmp++

program to a mUWOmp++ program. We invoke the following steps

until there is no further change.

Step 1. A sequence of statements as the body a parallel-for-loop. The
full body is moved to a separate function and a call to that function

is inserted in the parallel-for-loop.

Step 2. One or more serial-loops inside the code invoked from a
parallel-for-loop. We transform each such serial-loop to a recursive

function and replace the loop with a call to that function.

Step 3. The body of the parallel-region is not a sequence of parallel-
for-loops. Similar to Step 1, we first move the full body to a separate

function (say, xFun). Then, since the code has to be executed by all

the workers, we replace the body of the parallel-region, with the

following code:

#ompfor
for (int i=0;i<omp_num_threads();++i) {xFun(· · ·);}

Note: The arguments to xFun are the list of free variables.

3.6 Correctness of Transformation
Theorem 3.1 Let Suwi,n denote the nth instance of statement S ex-
ecuted by agent i in UW model and Somi,n denotes the instance of
statement S executed by agent i in OM model in the transformed code.
If R →d S denotes that statement S is dependent on R then

1. [Phase-dependence] Suwi,n ∈ Φk ⇒ Somi,n ∈ Φk .
2. [Data-dependence] Ruwi,m →d Suwj,n ⇒ Romi,m →d Somj,n .

Proof. (Sketch) [Phase-dependence]: The barriers present in the

input UWOmp++ code is also present in the generatedOM-OpenMP

code within the uwBarrier function (Line 10 in Figure 6). Our trans-
formation scheme does not introduce or remove any barriers in the

generated OM-OpenMP code. In the generated OM-OpenMP code

a barrier is executed only if the rdyWL of the current workerW is

empty (Line 9 in Figure 6). OtherwiseW executes another entry

(part of a strand corresponding to another agent) in its rdyWL. This
shows that at any point of time the rdyWL ofW contains entries

(parts of strands) to be executed in the current phase, Φk . Thus
there is a one-to-one correspondence between the parts of strand

executed by agent i in Φk in the OM-OpenMP code, with parts of

UW-group executed by agent i in the input UWOmp++ code. This

proves that if Suwi,n ∈ Φk then Somi,n ∈ Φk .

[Data-dependence]: From the above proof of phase-dependence

it is guaranteed that for each Ruwi,m and Suwi,n , the corresponding

statements are also executed in the OM-OpenMP code. Also the

transformation rules listed in Figure 4 do not add any new state-

ments, remove any existing statements, or change the order of the

statements. Thus, no new statements are executed between Ruwi,m

Efficiency and Expressiveness in UW-OpenMP CC ’19, February 16–17, 2019, Washington, DC, USA

(a)

int f(args) {
if (cond) return 1;
S1;
#ompbarrier
return f(args)+1;

}

int main() {
#ompparallel
{
#ompfor nowait
for(Header){f(args);}
#ompbarrier

} }

(b)

int main() {
JKId
#ompparallel
{
#ompfor nowait
for(Header) {f(args);}
#ompbarrier

} K }

// (c) apply rule 11

int main() {
#ompparallel
{ JKId
#ompfor nowait
for(Header){f(args);}
#ompbarrier
K } }

// (d) apply rules 13,12

void pCPS0(Closure ∗K){
#ompbarrier K }

int main() {
#ompparallel
{
#ompfor nowait
for(Header){
C=mkClsr(pCPS0,Tb,FV ,KId);
fCPS(args,C);
} } }

// (e) apply rules 16,17

void pCPS0(Closure ∗K){
uwBarrier(K); }

int main() {
#ompparallel
{
#ompfor nowait
for(Header) {
C=mkClsr(pCPS0,Tb,FV ,KId);
K=mkClsr(fCPS,Tb,FV ,C);
addToRdyWL(K); }

execRdyWL(); } }

// (f)

J int f(args) {
if (cond) return 1;
S1;
#ompbarrier
return f(args)+1;

}K

// (g) apply rule 2

void fCPS(args,Closure ∗K){
JK if (cond) return 1;
S1;
#ompbarrier
return f(args)+1;

K}

// (h) apply rules 7,9,4,15

void pCPS1(int v2,Closure ∗K){
JK
return f(args)+1;
K

}
void fCPS(args,Closure ∗K){
if (cond) K 1;
S1;
C1=mkClsr(pCPS1,Tseq,FV ,K);
#ompbarrier C1;

}

// (i) apply rules 10, 17

void pCPS2(int v3,Closure ∗K){
JK return v3+1;K

}
void pCPS1(int v2,Closure ∗K){
C2=mkClsr(pCPS2,Tseq,FV ,K);
fCPS(args,C2);

}
void fCPS(args,Closure∗K){
if (cond) K 1;
S1;
C1=mkClsr(pCPS1,Tseq,FV ,K);
uwBarrier(C1);

}

// (j) apply rule 9

void pCPS2(int v3,Closure ∗K){
K (v3+1);

}
void pCPS1(int v2,Closure ∗K){
C2=mkClsr(pCPS2,Tseq,FV ,K);
fCPS(args,C2);

}
void fCPS(args,Closure ∗K){
if (cond) K 1;
S1;
C1=mkClsr(pCPS1,Tseq,FV ,K);
uwBarrier(C1);

}

Figure 8: Example Transformation

and Suwi,n , which in turn, implies that dependency between them is

preserved. □

4 GENERATING EFFICIENT OM-OPENMP CODE
The transformation scheme in Section 3 may generate inefficient

OM-OpenMP code due to extensive use of malloc/free calls. In

this section, we present a series of optimizations for reusing the

allocated heap memory to generate efficient OM-OpenMP code. To

explain our optimizations, we first introduce the notion of strands
for OM-OpenMP programs, which like UW-groups and agents (see

Section 2), are runtime entities. Note: The definitions of UW-group

and agent defined for UW-OpenMP programs (Section 2) are also

applicable for UWOmp++ and OM-OpenMP programs.

Definition 5.1. A strand is a UW-group with no explicit return

statements. A UW-group in a UWOmp++ program corresponds

to a strand in the OM-OpenMP program. Note that a strand may

include one or more substrands.
Definition 5.2. A substrand is a maximal sequence of statements

within a strand such that the substrand ends with a tail-call and

has no other tail-calls in it. A strand is composed of a sequence of

one or more substrands.

Let f be a function invoked within a UW-group G in the input

UWOmp++ program. Let S be the corresponding strand executed

in the transformed OM-OpenMP program.

Definition 5.3.We define a projection θ which maps an instance of

a call-statement inG to a set of substrands in S . LetT be a substrand

in S . For a given call-statement Rf (to a function f) in G, we say
T ∈ θ (Rf), if (i) T is of the form ‘S1; tail-call(..);’ and (ii) S1
is present in the execution trace of f , when invoked by Rf .

4.1 Reusing Allocated Memory for Closures
Consider the example in Figure 9. Here, function h is invoked at call-
statement L1 in fun within a UW-groupG in the input UWOmp++

program. In the transformed OM-OpenMP code, say strand S corre-

sponds to the UW-groupG in the input program. Here, θ (L1) = {T1,
T2, T3}. Note that within S , these substrands are interleaved with

the substrands corresponding to the call-statements in h.
Within T1, when iCPS is invoked, a closure C1 is passed as an

additional argument to iCPS; the closure will be used for executing
T2 after all substrands in θ (L1) are executed. The macro mkClsr
(Section 3) allocates memory for C1 in the heap. In general, be-

fore executing the tail-call in any substrand, a malloc call will be
performed. As the number of substrands increases, the number of

malloc/free calls increases – a possible performance bottleneck.

To optimize this, we propose a scheme to allow a substrand to reuse

the memory allocated for the closure of another substrand. Our

scheme depends on the notion of the live range of a closure.
Definition 5.4. A closureC is said to be live at a program point p if

the values stored in the memory locations pointed byC are needed

at a statement reachable from p. The live range of C is the set of

statements at which C is live.

Similar to the idea of register allocation [?], a substrand T2
can reuse the memory allocated for a closure of substrand T1, if
the live ranges of the closures used by T1 and T2 do not overlap.

Figure 10 shows three cases under which two given closures do not

overlap. Case I: In the input UWOmp++ program, for any function

f invoked (at Rf) within a UW-group G, live ranges of closures
of any two substrands in θ (Rf) do not overlap. In the example

shown in Figure 9, the heap memory allocated for the closure C1,

can be reused by T2 for storingC2. Case II: In the input UWOmp++

program, if function д is invoked (at Rд) as a tail call in function f

CC ’19, February 16–17, 2019, Washington, DC, USA Raghesh Aloor and V. Krishna Nandivada

void h(){
S0; Li: i();
S1; Lj: j();
S2; Lk: k()

}
void fun(){

S3; L1: h();
S4; L2: h(); S5;

}

T1: S0; iCPS(C1);
T2: S1; jCPS(C2);
T3: S2; kCPS(C3);

Figure 9: Example code to depict
reuse cases. C1,C2,C3 are closures.
θ (L1)={T1,T2,T3}

I. For any invocation Rf , within a UW-group G,

((T1 ∈ θ (Rf)) ∧ (T2 ∈ θ (Rf)) ∧ (T1 , T2)) ⇒ ¬overlap (T1,T2)

II. For any function invocation Rд , invoked within a function f , which in turn is called at

Rf
((T1 ∈ θ (Rf)) ∧ (T2 ∈ θ (Rд)) ∧ tailcall (д, f)) ⇒ ¬overlap (T1,T2)

III. For any two invocations Rf1 and Rf2 of the same function f within a UW-group G,
((T1 ∈ θ (Rf1)) ∧ (T2 ∈ θ (Rf2)) ∧ ¬recursive (f)) ⇒ ¬overlap (T1,T2)

Figure 10: Conditions under which two substrands T1 and T2 do not overlap, and hence
can share the memory allocated for the closure. Used predicates: (i) overlap (x ,y): live
ranges of closures of x and y overlap (ii) tailcall (x ,y): x is a tail call in y (iii) recursive (x):
x is a recursive function.

(at Rf) then the live ranges of closures of θ (Rf) and θ (Rд) do not

overlap. In Figure 9, when kCPS is invoked, k being a tail call in h,
the live ranges of closures of θ (L1) and θ (Lk) do not overlap and all
the substrands in θ (Lk) can reuse the memory allocated in h, forC1.

Case III: In the input UWOmp++ program, in a UW-groupG , if Rf1
and Rf2 are two function invocations of a non-recursive function

f , then the live ranges of the closures of θ (Rf1) and θ (Rf2) do not

overlap. Since f is non-recursive, Rf1 and Rf2 will be invoked one

after the other and hence no overlap. In Figure 9, where the non-

recursive function h is invoked twice from fun in the UW-groupG ,
it can be seen that live ranges of θ (L1) and θ (L2) do not overlap.

Hence, the invocation of h at L2 can reuse the memory allocated

for the invocation at L1.

4.2 Reusing Memory for Passing Free Variables
Instead of allocating memory every time for passing free-variables

(stored in the closure) to a continuation call, we allocate mem-

ory once per function f to store the free-variables in each of the

substrands in

⋃
∀i (θ (Rfi)), where Rfi indicates the call-statement

that invokes f at different program points. Such a reuse strategy

requires that each such free-variable has a unique index in the one-

time-allocated free-variable array for f . The benefit that we obtain
with such a strategy is that we avoid frequent calls to expensive

mallocs/frees for storing free variables while creating closures
for substrands. This strategy comes at the cost of allocating and

maintaining space for all the variables for each function for the

entire period of program execution. For programs, for which such

a strategy is impractical, we can avoid this optimization. However,

in our evaluation, we did not face such a requirement.

4.3 Optimizing Code for Static Scheduling
In the generated OM-OpenMP code, the linked-list implementation

of worklists induces some overheads. If the parallel-for-loop uses

static scheduling (one of the most popular scheduling policies),

the maximum chunk given to each worker can be known at the

beginning of the parallel-for-loop. We exploit this property of static

scheduling and use an array based worklist implementation. One

array is used per parallel-for-loop per worker. This scheme is far

more efficient than the linked-list based implementation, as we

avoid expensive linked-list operations, and improve cache local-

ity. Further, this allocated memory is re-used for the subsequent

parallel-for-loops, if the size of the existing dynamic array ≥ the

size of the dynamic array required at the later parallel-for-loop.

4.4 Tail-call Optimization
Our transformation scheme relies on the tail-call optimization per-

formed by compilers like GCC (using -foptimize-sibling-calls),
to avoid the costs (such as, allocating/deallocating stack frames at

each call/return, saving/restoring caller and callee save registers, re-

turn jumps, and so on) that are typically incurred during procedure

calls, which can otherwisemake CPS transformation very expensive.

We transform all the functions invoked from the parallel-region to

CPS form, such that they have the same signature – required by

compilers like GCC and LLVM to perform tail-call optimization [?
].

Note: our transformation scheme can also be applied on parallel-

for-loops which use dynamic or guided scheduling. But, we add

all the tasks to the worklist without considering their work load,

which is necessary for dynamic scheduling to be effective. Handling

dynamic scheduling effectively is left as an interesting future work.

4.5 CPS and Its Impact
As briefly alluded to in Section 3, CPS is a well established intermedi-

ate representation (IR) with inherent support to wait and continue,

which is needed in the presence of the barriers inside tasks. Thus

CPSmakes for a natural choice for our implementation. It is thus not

surprising that a similar solution was used by Imam and Sarkar [?
] to implement cooperative scheduling. Some of the other possible

alternatives could be (1) designing compiler translation to trans-

late such recursive task-parallel programs to iterative form – quite

non-trivial (2) redesigning the underlying task implementation to

change its standard behavior of running to completion without

context-switching and allow for context-switching in between –

may lead to "heavier" tasks and consequently significant overheads.

As an additional optimization, to limit the impact of CPS trans-

formation, we can limit our CPS conversion to to only those parts

that include recursive tasks with barriers.

5 EVALUATION
We have implemented our translation in the ROSE [?] compilation

framework and present an evaluation on two different multi-core

systems: an Intel 32 core system (two E5-2670 processors, 64GB

Efficiency and Expressiveness in UW-OpenMP CC ’19, February 16–17, 2019, Washington, DC, USA

Recursive Kernels

Bench [Source] Description I/P Steps

1 IA [?] Distributed Iterative averaging 512 NA

2 LE-LCR [?] Leader election 128K NA

3 KPDP [?] Distributed Knapsack 128K NA

4 LCS[?] Longest common subsequence 2048 NA

5 MCM[?] Matrix chain multiplication 16K NA

Iterative kernels

6 3MM [?] 3 Matrix multiplication 8K NA

7 GEMVER [?] Vector mult, matrix addition 64K NA

8 JACOBI2D [?] 2D Jacobi 32K 1024

9 FDTD2D [?] Finite difference time-domain 16K 1024

10 SOR [?] Successive over-relaxation 32K 1024

Figure 11: Details of the Benchmarks.

RAM, hyper threaded, Cache: L1-32KB, L2-256KB, L3-20MB), and

an AMD 64 core system (four AMD 6376 processors, 512GB RAM,

no hyper threading support, Cache: L1-16KB, L2-2048KB, L3-6MB).

The evaluation is performed on ten benchmark kernels from

various sources (details in Figure 11; source code available online [?
]). These kernels have been categorized into two groups: recursive

(the parallel-for-loop has a recursive function that may invoke a

barrier), and iterative. The later ones are those kernels for which we

did not find intuitive recursive versions. For the recursive kernels,

we have coded two versions: the recursive UWOmp++ code and the

iterative UW-OpenMP code. For the iterative kernels, we have used

the same code for both UW-OpenMP and UWOmp++. The figure

also lists the input sizes and the number of ‘Steps’; for the kernels

that iteratively perform computation till convergence, the column

named ‘Steps’ shows the number of steps used for convergence.

We now present an evaluation to compare the performance of the

code generated by the UWOmp++ compiler compiling UWOmp++

code against that of the code generated by the UW-OpenMP com-

piler [?] compiling equivalent UW-OpenMP code. We divide the

comparison into two parts: evaluation against the recursive kernels

and iterative kernels. We show that in the context of recursive ker-

nels, the proposed UWOmp++ compilation scheme leads to signifi-

cant improvements compared to the corresponding UW-OpenMP

compiled code. We also show that in case of iterative kernels the

performance of both UWOmp++ kernels match the performance

of UW-OpenMP kernel and importantly we do not encounter any

noticeable deterioration. To calculate the improvements we use the

standard formula %Improvement=100×(timeOld−timeNew)/timeOld.

5.1 Evaluation Using the Recursive Kernels
OMOmp++Opt Vs OM-OpenMP. Using the recursive kernels, we
first compare the performance of our generated codes using the tech-

niques discussed in this paper (input UWOmp++ codes) against that

generated by the UW-OpenMP compiler [?] (input UW-OpenMP

codes). We refer to the former codes as OMOmp++Opt and the

latter as OMOmp. The OM prefix indicates that even though the

input is in UW (Unique-Worker) mode, the generated code can be

compiled and run as normal OpenMP code (One worker may be

mapped to Many tasks).

Figure 12a and 12b show the percentage improvement in execu-

tion times of the OMOmp++Opt codes with respect to the OMOmp,

79
.6
3	 90
.6
8	

91
.1
7	

95
.8
4	

10
.8
8	

73
.6
4	

0	

20	

40	

60	

80	

100	

120	

IA	 LE-LCR	 KPDP	 LCS	 MCM	 AVG	

%
			
Im

pr
ov
em

en
t	

Benchmarks	

OMOmp++Opt	Vs	OMOmp	

(a) 32 Core Intel System

93
.4
2	

95
.2
9	

96
.0
5	

95
.4
4	

18
.3
3	

79
.7
	

0	

20	

40	

60	

80	

100	

120	

IA	 LE-LCR	 KPDP	 LCS	 MCM	 AVG	

%
			
Im

pr
ov
em

en
t	

Benchmarks	

OMOmp++Opt	Vs	OMOmp	

(b) 64 Core AMD System

Figure 12: Recursive kernels: Performance improvement of
OMOmp++Opt codes with respect to the OMOmp codes.

on the Intel and AMD systems, respectively. It can be seen that

with respect to the OMOmp codes, the OMOmp++Opt codes run

much faster (on average 73.64% on the Intel system and 79.7% on

the AMD system). It can be seen that except for MCM, the perfor-

mance gains are significantly high for the other recursive kernels.

We realize these improvements because the overheads in our trans-

lated OMOmp++Opt codes are far less as compared to that in the

OMOmp codes. For example: (i) unlike the OMOmp codes, the gen-

erated OMOmp++Opt codes do not include any additional parallel-

for-loops and barriers. (ii) unlike the OMOmp codes, the generated

OMOmp++Opt codes do not use too many space-consuming aux-

iliary variables, data structures and the time-consuming auxiliary

maps for keeping track of the phase information and statement exe-

cution history. (iii) our proposed optimizations are able to overcome

the typical overheads associated with the CPS transformation.

In case ofMCM the gains are slightly lower (10.88% and 18.33% on

the Intel and AMD system, respectively), but not insignificant. We

investigated the reasons for the relatively lowers gains and found

that for the MCM kernel, the relative overheads in the OMOmp

codes, compared to the actual computation are quite less – less

scope for improvement.

Summary: the UWOmp++ compiler not only admits the recur-

sive kernels but also generates more performant codes compared

to the UW-OpenMP compiler.

Impact of the proposed optimizations. To study the overall im-

pact of the optimizations presented in Section 4, we now compare

the behavior of the OMOmp++Opt codes against the unoptimized

codes (generated using the scheme discussed in Section 3, and

referred to as OMOmp++
naive

code). Figures 13a and 13b show

the performance improvement of OMOmp++Opt codes over the

OMOmp++
naive

codes, for the Intel and AMD systems, respectively.

CC ’19, February 16–17, 2019, Washington, DC, USA Raghesh Aloor and V. Krishna Nandivada

86
.8
6	

97
.3
1	

97
.4
9	

3	

17
.6
1	

60
.4
54
	

0	

20	

40	

60	

80	

100	

120	

IA	 LE-LCR	 KPDP	 LCS	 MCM	 AVG	

%
			
Im

pr
ov
em

en
t	

Benchmarks	

OMOmp++Opt	Vs	OMOmp++naïve	

(a) 32 Core Intel System

99
.3
4	

98
.7
8	

99
.2
	

99
.6
5	

14
.1
1	

82
.2
16
	

0	

20	

40	

60	

80	

100	

120	

IA	 LE-LCR	 KPDP	 LCS	 MCM	 AVG	

%
			
Im

pr
ov
em

en
t	

Benchmarks	

OMOmp++Opt	Vs	OMOmp++naïve	

(b) 64 Core AMD System

Figure 13: Recursive kernels: Performance improvement of
OMOmp++Opt code with respect to OMOmp++naive code

For IA, LE-LCR and KPDP, the OMOmp++Opt codes show signif-

icant improvement. In these kernels, our naive scheme introduces

too many malloc/free calls, along with linked-list manipulation

instructions and our proposed optimizations are able to elide them.

And since, in these kernels, these (reduced) overheads are signifi-

cant compared to the rest of the computation, the impact is high. In

case of LCS the improvement in the AMD system is much higher

than that of the Intel system. Here, though the static schedule opti-

mization improves the cache locality, the wavefront access pattern

in LCS and the smaller cache size in the Intel system diminish

the advantages. However, the large cache size in the AMD system

acts favorably. For the MCM kernel, the overheads resulting from

OMOmp++
naive

are not that significant compared to the rest of the

computation and hence OMOmp++Opt has less scope to improve

(17.61% and 14.11% gains on the Intel and AMD system, respec-

tively). Overall, on average, over the OMOmp++
naive

codes, the

OMOmp++Opt codes show 60.5% and 82.2% improvement on the

Intel and AMD systems, respectively. These high improvements

attest to the importance of the proposed optimizations.

5.2 Evaluation against the Iterative Kernels
We have also compared the performance of UWOmp++ generated

code against that of the UW-OpenMP, by considering the iterative

kernels. Figures 14a and 14b show the performance gains of the

OMOmp++Opt codes in comparison with the OMOmp, for the In-

tel and AMD system, respectively. As it can be seen, compared to

the recursive kernels, in the context of iterative kernels, the gains

are less (average 6.79% and 1.59% on the Intel and AMD system,

respectively). The lower gains in the iterative kernels are because

the relative overheads in the OMOmp codes, compared to the actual

computation are quite less. Hence, there is less scope for improve-

ment for the OMOmp++ codes.

8.
04
	

2.
74
	

13
.5
9	

1.
72
	

7.
86
	

6.
79
	

0	
2	
4	
6	
8	
10	
12	
14	
16	

3MM	 GEMVER	JACOBI2D	FDTD2D	 SOR	 AVG	

%
			
Im

pr
ov
em

en
t	

Benchmarks	

OMOmp++Opt	Vs	OMOmp	

(a) 32 Core Intel System

3.
77
	

1.
43
	 2.
1	

-0
.6
7	

1.
32
	

1.
59
	

-1	

0	

1	

2	

3	

4	

3MM	 GEMVER	JACOBI2D	FDTD2D	 SOR	 AVG	

%
			
Im

pr
ov
em

en
t	

Benchmarks	

OMOmp++Opt	Vs	OMOmp	

(b) 64 Core AMD System

Figure 14: Iterative kernels: Performance improvement of
OMOmp++Opt codes with respect to the OMOmp codes.

On the Intel system 3MM, JACOBI2D, and SOR showed non-

trivial amount of gains (7.8% to 13.6%) for OMOmp++Opt. The rest

of the numbers shown in Figure 14 indicate that the performance of

OMOmp++Opt codes matches that of OMOmp. This suggests that

our approach is suitable for both recursive and iterative kernels.

Aloor and Nandivada [?] compare the OM-OpenMP code (that

contain barriers within parallel-for-loops) against the GCC com-

piled code executed in UW-mode (by setting the environment vari-

able OMP_NUM_THREADS set to the number of tasks in the loop).

Overall they show that OM-OpenMP code runs faster than the

UW-mode GCC compiled code (GeoMean 86% faster). While the

recursive kernels listed in listed in Figure 11 cannot be run in UW-

mode, we do not show a comparison even for the iterative kernels

(except for 3MM), as the UW-mode GCC compiled codes fails to

execute - runs out resources, for the chosen input sizes. For 3MM,

the OMOmp++Opt code runs 10.7% and 6.1% faster, on the Intel

and AMD system, respectively.

We have also compared the iterativeOMOmp++Opt codes against

their base OpenMP versions (compiled with GCC, and executed by

setting OMP_NUM_THREADS=#H/W cores). We found that the average

performance difference between the OMOmp++Opt and OpenMP

programswas around 6%.We see that UWOmp++ admits expressive

iterative codes, without incurring much performance penalty.

6 RELATEDWORK
Many prior works extend OpenMP with different types of synchro-

nization constructs. For example, Shirako et al. [?] present a run-
time approach to adopt phasers in HJ to OpenMP. UW-OpenMP [?
] is an extension of OpenMP that admits barriers within parallel-

for-loops. In this paper, we extend UW-OpenMP to admit barriers

inside recursive functions called within parallel-for-loops. In addi-

tion, our translation leads to more performant codes.

Efficiency and Expressiveness in UW-OpenMP CC ’19, February 16–17, 2019, Washington, DC, USA

Nandivada et al. [?] do semantics-preserving transformation of

task parallel loops (in languages like X10 and HJ) in the presence

of synchronization primitives (like HJ Phasers). Aloor and Nan-

divada [?] present a scheme to translate UW-OpenMP codes to

equivalent OM-OpenMP codes. In contrast, we present a system-

atic approach to translate UWOmp++ programs (barriers may be

present anywhere within parallel-for-loops) to OM-OpenMP; this

ensures that the generated code takes advantage of the efficient

‘team of workers’ model of OpenMP.

There have been efforts to use continuations to extend and trans-

late parallel programs. Fischer et al. [?] translate an event-driven

input program with method annotations to CPS format and achieve

event-driven synchronization. Cilk [?] runtime uses continuations

to spawn and synchronize workers. Continuation Passing C [?]
allows the programmers to spawn newworkers to execute a particu-

lar function, put a worker to sleep and wake it up later using library

functions. Li et al. [?] present an alternative way to implement

concurrency in the Glasgow Haskell Compiler, by polling the pool

of suspended continuations to see if blocking can be resolved. To

the best of our knowledge, ours is the first work which uses CPS to

achieve task synchronization within parallel-for-loop in OpenMP.

For HJ programs, Imam et al. [?] present a novel cooperative
scheduling technique (using a help-first policy), based on delimited

continuations [?], to design efficient synchronization constructs.

The cooperative scheduler wraps each spawned task inside a sub-

computation having a well defined boundary, called as one-shot

delimited continuation (OSDeCont). In contrast, we use general

continuations which never need to return and are not bound by

any parallel-for-loop boundary, which allows a much more general

synchronization pattern, where barriers can be used to synchronize

across multiple parallel-for-loops. Unlike a cooperative scheduler,

which converts only a subset of function calls (“suspendable" meth-

ods) to CPS, our approach converts all the function calls to CPS,

while ensuring that the overheads due to CPS are minimal. Impor-

tantly, unlike the scheme of OSDeCont, our scheme is independent

of the runtime scheduling policies like help-first and work-first.

White [?] describes a continuation based implementation of

OpenMP 3.0 tasks. However, UWOmp++ deals with tasks in parallel-

for-loops, which may contain barriers even within recursive func-

tions. White uses liveness analysis to reduce the number of free-

variables shared across continuations. In contrast, we use a fixed

size allocation for storing (live) free variables across functions.

Shao and Appel [?] and Appel and Shao [?] have presented
techniques to optimize memory for closures, in the domain of func-

tional programming. They reduce heap usage for nested functions

by maintaining a shareable record for common variables among

closures. In contrast, we reuse the memory associated with closures

(for reducing mallocs/free calls). Moreover, their scheme relies on

the underlying efficient garbage collector, which is absent in C.

7 CONCLUSION
We proposed an extension (UWOmp++) to UW-OpenMP to admit

barriers in recursive functions called from the iterations (tasks) of

OpenMP parallel-for-loops. This helps programmers use recursion

(an important programming methodology) to specify task paral-

lelism with inter-task synchronization. We also present a transfor-

mation scheme to generate efficient OpenMP code, so the generated

code can continue to take advantage of the underlying efficient

‘team of workers’ model of OpenMP. Our translation is based on

a novel extension of the popular CPS form (termed UWOmpCPS),

which not only helps compile UWOmp++ programs but also in the

process realizes more efficient programs.

	Abstract
	1 Introduction
	2 Background
	3 Translating Barriers in UWOmp++
	3.1 Input Language mUWOmp++
	3.2 The UWOmpCPS IR
	3.3 Step 1: mUWOmp++ to UWOmpCPS
	3.4 Step 2: UWOmpCPS to OM-OpenMP
	3.5 UWOmp++ to mUWOmp++ Simplification
	3.6 Correctness of Transformation

	4 Generating Efficient OM-OpenMP code
	4.1 Reusing Allocated Memory for Closures
	4.2 Reusing Memory for Passing Free Variables
	4.3 Optimizing Code for Static Scheduling
	4.4 Tail-call Optimization
	4.5 CPS and Its Impact

	5 Evaluation
	5.1 Evaluation Using the Recursive Kernels
	5.2 Evaluation against the Iterative Kernels

	6 Related Work
	7 Conclusion

