
Compile-Time Concurrent Marking Write Barrier Removal

V. Krishna Nandivada∗

UCLA Computer Science Dept.
Boelter Hall

Los Angeles, CA 90095-1596
nvk@cs.ucla.edu

David Detlefs
Sun Microsystems Inc.

1 Network Dr.
Burlington, MA 01803-2756
david.detlefs@sun.com

Abstract

Garbage collectors incorporating concurrent marking
to cope with large live data sets and stringent pause time
constraints have become common in recent years. The
snapshot-at-the-beginning style of concurrent marking has
several advantages over the incremental update alternative,
but one main disadvantage: it requires the mutator to exe-
cute a significantly more expensive write barrier. This paper
demonstrates that a large fraction of these write barriers
are unnecessary, and may be eliminated by static analysis.

1 Introduction

This paper presents several static analysis techniques
that allow elimination of many write barriers supporting the
snapshot at the beginning (henceforth SATB) style of con-
current garbage collection [24]. This section motivates this
problem, and gives a quick summary of results.

The Java programming language is the first garbage-
collected language to achieve widespread commercial pop-
ularity. This has presented extremely challenging require-
ments to garbage-collection implementors: some applica-
tions have multiple gigabytes of live data, and must run
continuously for months or years with maximum garbage
collection pauses measured in milliseconds. A common so-
lution to this problem is to employ concurrent collection,
in which garbage collection and the user program (the mu-
tator, in GC parlance) execute simultaneously [17, 18, 5].
This approach allows the live data in large heaps to be traced
without long pauses.

In any concurrent garbage collector, the mutator must
inform the collector of pointer updates performed during
collection. The three collectors cited above are all based
on the mostly-parallel technique of Boehm, Demers, and

∗Work done while at Sun Microsystems.

Shenker [6], which is an example of the incremental update
form of mutator/collector interaction. That is, the mutator
informs the collector of locations modified, and the collec-
tor re-examines them. In the alternate SATB style of con-
current marking, the collector marks the objects reachable
in a logical snapshot of the object graph taken at the start
of marking. The mutator helps to track this logical snap-
shot by noting actions that might unlink subgraphs of the
original snapshot graph.

SATB marking has a major advantage over incremental-
update marking. Objects allocated during marking, while
implicitly marked, are not part of the snapshot object graph,
and need be examined by the marker. In most programs,
a large proportion of modifications are initializations of
newly-allocated objects. SATB marking can safely ig-
nore such modifications, while incremental-update collec-
tors must examine them. In our system, pause times nec-
essary to complete SATB marking are sometimes more
than an order of magnitude smaller than corresponding
incremental-update pauses. A number of recent concurrent
collectors use the SATB style [3, 2, 10].

On the other hand, SATB marking also has a significant
drawback with respect to the incremental update style: the
cost of the collector/mutator interaction. In the incremental
update style, a common approach is to use a card-marking
write barrier [12], which can cost as few as two extra in-
structions per pointer write. SATB barriers are more expen-
sive. In the Garbage-First collector [10] we used for our
experiments, the “inline” portion of the barrier first checks
whether marking is in progress. If so, it reads the pre-write
value of the field, and checks whether that value is non-
null; if so, it calls an out-of-line routine to add the value
to a thread-local buffer. Logged values are read and pro-
cessed by a concurrent marking thread. These steps require
between 9 and 12 RISC instructions for each barrier. The
dynamic cost depends on what fraction of the time marking
is in progress, and what fraction of overwritten values are
null. Section 4.5 shows measurements of the cost of the
SATB barriers.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

The goal of this paper is to minimize the effects of this
drawback, thus allowing the strengths of SATB marking to
show through. In particular, we introduce two static analy-
ses, based on abstract interpretation, that together prove that
a significant fraction of object reference writes require no
SATB-related write barriers. Both identify pre-null writes,
writes to heap locations guaranteed to contain null before
the write. The first does so for fields of objects, the second
for elements of (object reference) arrays. These analyses
are performed after inlining.

The rest of this paper is organized as follows. Section
2 presents an analysis that identifies pre-null writes to ob-
ject fields. Section 3 describes an extension that identi-
fies pre-null writes to array elements. Section 4 presents
our experiments on the efficacy of these optimizations: in
some benchmarks, as many as 1/2 of all dynamically ex-
ecuted barriers may be eliminated. Section 4 also specu-
lates on techniques that might eliminate further write barri-
ers. Finally, section 5 discusses related work, and section 6
presents conclusions.

2 Eliminating barriers for object field writes

The first analysis eliminates barriers for some writes to
object fields, in particular, for pre-null writes that can be
proven to overwrite null. In the overwhelming majority
of such cases, the field is null because the object has been
recently allocated, and the allocator zeros fields. The writes
is therefore an initializing write.

This may seem at first glance to be a relatively simple
problem. However, tracking values of fields of heap ob-
jects with precision requires tracking aliasing via a pointer
analysis. Further, since we are working in a multi-threaded
language, we must be aware of the possibility that ob-
jects accessible by multiple threads might be modified asyn-
chronously: Therefore, we also perform an escape analysis,
in the style of [23, 8], to determine when locally-allocated
objects become accessible to other threads. Actually, it
turns out that the write barrier problem requires greater
precision than escape analysis. Generally, escape analysis
wishes simply to determine whether allocation sites pro-
duce objects that ever escape after allocation. In contrast,
we can eliminate a write barrier to an eventually-escaping
object if the the write occurs before the object has escaped.
Tracking object escapedness at each program point requires
a more precise analysis. If a compiler already implements
sophisticated pointer and/or escape analysis, our techniques
may be incorporated as an extension to the existing analysis.

The analysis is a flow-sensitive, intra-procedural itera-
tive dataflow analysis (aka an abstract interpretation) that
computes the possible reference values that might flow into
fields of objects before those fields are modified by putfield
instructions. In standard fashion, this pass analyzes basic

blocks with modified start states, propagating changes to
successor blocks, until a fixed point is reached. The analysis
result allows us to identify pre-null pointer writes, and elim-
inate their write barriers. For clarity, we present the analysis
over the well-known Java Virtual Machine (JVM) bytecode
instruction set, though our actual implementation processes
an internal just-in-time compiler intermediate form.

2.1 Abstract Value Space

In this section we describe the value space over which
the analysis is defined. A Ref is an abstract object reference.
When analyzing a method, we create two Ref values for
each allocation site id. Rid/A represents a reference to the
object most recently at id, and Rid/B summarizes all ref-
erences to objects allocated at id previously in the method
execution. The predicate unique(Rid/A) is true (and false
for all Rid/B Refs), indicating that Rid/A denotes a single
concrete reference. As we shall see in section 2.4, we allow
strong update for stores to fields of unique references. We
also track the thread-locality of Refs, whether a Ref may be
accessible to threads other than the one that allocated it.

We also create abstract reference values to denote initial
values of arguments of reference types: Rarg(i) is the initial
value of argument i. We assume that such argument values
are non-unique, because of possible aliasing with other ar-
guments, and non-thread-local. There is an exception for a
constructor: the implicit this argument (i.e., Rarg(0)) of
a constructor is considered unique and thread-local in the
initial state, as discussed further in section 2.3.

Finally, we create a single abstract reference value
GlobalRef to denote all objects allocated outside the ana-
lyzed method, and not passed to it as arguments.

The analysis computes a RefVal, a set of possible Ref val-
ues or a bottom/uninitialized element ⊥rv , for each variable
at each program point. A variable known to contain (only)
null is mapped to the empty set of Ref.

Given these types, we define a program state as a 4-tuple
of an abstract environment ρ, an operand stack stk, a non-
local reference set NL, and an abstract store σ:

ρ ⊆ Var �→ RefVal
stk ⊆ Stack< RefVal >
NL ⊆ Ref
σ ⊆ Ref × FieldId �→ RefVal

The environment ρ maps local variables to the sets of
possible reference values they contain. Similarly, the stk
tracks the state of the JVM operand stack. Together, we will
refer to ρ and stk as the local state. The set NL is the set of
reference values known to be non-thread-local. The store σ
maps reference-value/object-field identifier pairs to the set
of possible reference values that the field (of the given ob-
ject) may contain.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

2.2 Merging States

When we process a basic block, we merge the final pro-
gram state of the block into the initial state of each of the
block’s successors (marking them as changed if necessary).
When we merge two program states, we compute the ele-
mentwise merge of the tuples. The set of local variables in
the method under analysis is fixed, and bytecode verifica-
tion ensures that operand stacks agree at join points, so two
parts of the local state may be merged elementwise. The
non-local reference set NL is merged by set union. The set
of reference values and field identifiers is fixed and finite,
so the range of the σ map can be merged at all points in the
domain. The RefVal type, which is the range of ρ, stk, and
σ, forms a lattice. For any two non-bottom elements in the
lattice, the meet operation is defined as the union of the two
sets. The meet of any element x with ⊥rv is x. Non-bottom
elements are ordered by the subset relation.

2.3 Initial States

As is normal in a dataflow analysis, the initial states
of the maps at all program points (except for the method
entry point) map everything to the bottom element of
the map’s range. The NL set is initialized to the sin-
gleton set {GlobalRef}. Further, all references reach-
able via GlobalRef are collapsed into GlobalRef: ∀f :
σ(GlobalRef, f) = {GlobalRef}.

It remains to define the initial state at method entry. This
initial state differs in constructors and non-constructors. In
non-constructors, for each non-argument local variable x
of reference type, ρ(x) = ⊥rv . For each argument refer-
ence type local variable y (including the this variable)
we set ρ(y) = {GlobalRef}. The operand stack stk is
initialized to the empty stack. Constructors are treated in
a similar fashion, except for the initial value of ρ(this),
which is set to {Rarg(0)}. The bytecode verifier enforces
the constraint that fields of a newly-allocated object may
not be accessed before some constructor for the object has
been executed (if some such constructor exists); further, the
reference itself cannot have been stored in a global loca-
tion. So on entry to a constructor for class T, we assume
that Rarg(0) is not a member of NL, and that the fields de-
fined in type T are null for the object being constructed:
∀f : σ(Rarg(0), f) = {}.

2.4 Effects of operations

Below we show the effect of several relevant bytecode
instructions, by showing the state tuple resulting from the
start state < ρ, σ, NL, stk >. We use the notation [stk : vi]
to denote pushing the vector vi = v0, ..., vn onto the stack
stk.

< ρ, σ, NL, stk > load(x) =⇒
< ρ, σ, NL, [stk : ρ(x)] >

< ρ, σ, NL, [stk : val] > store(x) =⇒
< ρ[x ← val], σ, NL, stk >

< ρ, σ, NL, stk > getstatic(f) =⇒
< ρ, σ, NL, [stk : {GlobalRef}] >

< ρ, σ, NL, [stk : val] > putstatic(f) =⇒
< ρ, σ, AllNonTL(NL, val, σ), stk >

< ρ, σ, NL, [stk : obj] > getfield(f) =⇒
< ρ, σ, NL, [stk :

⋃
ot∈obj lookup(σ, ot, NL, f)] >

< ρ, σ, NL, [stk : obj, val] > putfield(f) =⇒
if obj = {r} ∧ unique(r) :

< ρ, σ[(r, f) ← val],
AllNonTLCond(NL, obj, val, σ), stk >

else:
< ρ, σ[∀ot ∈ obj : (ot, f) ← σ(ot, f) ∪ val],

AllNonTLCond(NL, obj, val, σ), stk >

< ρ, σ, NL, [stk : vi] > invoke(m(ai) : T) =⇒
if T is a reference type:

< ρ, σ, nAllNonTL(NL, vi, σ),
[stk : {GlobalRef}] >

else:
< ρ, σ, nAllNonTL(NL, vi, σ), stk >

The load and store instructions access and update
local variables. The getstatic and putstatic in-
structions perform corresponding operations on static fields.
Reference values stored into static variables “escape.” The
getstatic instruction always returns {GlobalRef}, and
storing a reference value via putstatic causes it (and
any reference reachable from it) to escape. This is the pur-
pose of AllNonTL(NL, RS, σ), which returns the result of
extending the non-locality set NL with the Ref set RS and
all Refs (transitively) reachable (in σ) via fields of refer-
ences in RS.

The getfield and putfield instructions operate on
fields of heap objects. The getfield bytecode retrieves
the value of a field — note that both the obj reference and
the result of a field lookup are sets, so the result is the union
of the lookup result for each member of obj. (The func-
tion lookup(σ, r, NL, f) returns {GlobalRef} if r is in NL
(is non-thread-local), and otherwise returns σ(r, f).)

The interpretation of putfield is complicated by the
distinction between strong and weak update semantics. If
the putfield updates a field of a single abstract refer-
ence value that is unique (denotes a single runtime value),
then strong update can be used. Otherwise, the new val is
merged into the previous contents via set union. Storing a
reference value into a heap location via putfield may
also cause the value to escape, if the object into which the
value is stored is itself possibly non-thread-local. The func-

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

tion AllNonTLCond(NL, RS, val, σ) is used to update the
non-locality set appropriately; this returns NL if the inter-
section of RS and NL is empty, and otherwise returns the
result of extending NL with Refs transitively reachable from
vals via σ.

Somewhat similarly, passing a reference value as an ar-
gument to a method (via the invoke instruction) may
cause it to escape, so our handling of invoke updates the
non-locality set via the function nAllNonTL(NL, vi, σ),
which is simply the union of AllNonTL(NL, vi, σ) for all
the vi in vi.

Our analysis is performed after inlined method bodies
are expanded, since this conservative treatment of argu-
ments of non-inlined methods (and our current lack of inter-
procedural techniques) is detrimental to the precision of the
analysis. For example, every allocation is followed by the
invocation of a constructor on the allocation’s result: if the
constructor is not inlined, the allocated object is considered
to escape immediately. (Fortunately, constructors are usu-
ally simple enough to be inlined, and we have not found this
to be a practical problem.)

We must also consider reads and writes to object arrays,
since these provide another mechanism by which references
may escape a thread. For this purpose, we treat an object
array as an object with a single field felems that “collapses”
all elements of the array. Because of this, all array updates
are treated as weak updates.

< ρ, σ, NL, [stk : arr, ind] > aaload =⇒
< ρ, σ, NL, [stk :

⋃
at∈arr σ(at, felems)] >

< ρ, σ, NL, [stk : arr, ind, val] > aastore =⇒
< ρ, σ[∀at ∈ arr : (at, felems) ←

σ(at, felems) ∪ val],
AllNonTLCond(NL, arr, val, σ), stk >

Next we consider the effects of the newinstance in-
struction, which allocates a new object. Recall that we
associate two abstract reference values with an allocation
site at instruction id: one (Rid/A) to denote the most re-
cently allocated object, and another (Rid/B) to denote all
previously allocated objects. An allocation at the site will
associate Rid/A with a newly allocated object, but first it
must merge attributes previously associated with Rid/A into
Rid/B , since it becomes part of the set of previously allo-
cated objects.

< ρ, σ, NL, stk > id : newinstance(cl) =⇒
< rngSubst(ρ,Rid/A ← Rid/B),

tranfer(σ, Rid/A,Rid/B),
replS(NL, Rid/A ← Rid/B),
[rngSubst(stk,Rid/A ← Rid/B) : {Rid/A}] >

We accomplish the removal of Rid/A as follows. To up-
date NL, we use replS, which returns a set like NL but with
Rid/A removed, and with Rid/B added if Rid/A had origi-
nally been a member. We use rngSubst to perform similar
replacement in the ranges of the local state maps ρ and stk,
and transfer to updating the heap state σ. These functions
are defined formally in our technical report [16].

This use of two reference values for each allocation site
is the way in which our analysis is more precise than “tradi-
tional” escape analysis. To motivate the need for this extra
precision, consider the following example (p1 and p2 are
arbitrary predicates):

class Foo { public String s; }
Foo f1 = null; Foo f2 = null;
while (p1) {
f1 = new Foo(); // F1
f1.s = "hi1"; // W1
if (p2) f2 = new Foo(); // F2
f2.s = "hi2"; } // W2

If we denote all values produced at an allocation site with
a single name, then we must use weak update: if we used
strong update, we’d improperly “prove” that no barrier is
necessary at W2. If we use weak update, however, we will
not be able to prove that the barrier at W1 is unnecessary.
Reserving a name for the most-recently allocated object al-
lows assignments to fields of that object to use strong up-
date. The use of two names per allocation site is suggested,
but not explored, by Whaley and Rinard [23]. Corbett [9]
also uses this technique, but only for allocation sites that oc-
cur within loops. Most-recently-allocated nodes are merged
into summary nodes at the end of loops. In contrast, our
method of merging as a side effect of allocation avoids any
need to identify loops. Finally, the shape analysis of Sagiv
et al. [20] gets similar precision via different means.

As is normal in an abstract interpretation, we iterate un-
til there are no statements whose input states have changed.
Any change is by virtue of a merge; since we are working
over finite lattices (there are a finite number of abstract ref-
erences, bound by the program size), it is possible to bound
the worst-case execution time as O(n5). Tighter bounds
may be possible, and in practice, performance is much bet-
ter than this bound might suggest: this bound calculation
considers the number of local variables, maximum operand
stack size, and number of distinct Ref values all as O(n),
when they are typically small fractions of n. Section 4.4
gives data on the variation of analysis time with code size.

When we process putfield(f) instructions, we also
note whether the instruction requires a write barrier: if the
pre-instruction state < ρ, σ, NL, [stk : o] > has the property
that ∀ot ∈ o : ot /∈ NL ∧ σ(ot, f) = {}, then the SATB
write barrier may be omitted. The last such judgment (at the
fixed point of the analysis) is correct.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

3 Eliminating barriers for array element
writes

The Java language specification states that a newly al-
located array of an object type has all elements set to null.
Therefore, just as with object field writes, the first (initial-
izing) writes to such array elements do not require SATB
barriers. However, proving that an array element write is
initializing is somewhat more involved than proving the cor-
responding property for field writes.

The rest of this section describes an extension to the pre-
vious analysis that proves that writes to array elements are
pre-null. The analysis uses abstract interpretation to infer
linear relationships between integer state components.

3.1 Motivating array example

We first show a simple motivating example. Consider the
following method:

public static T[] expand(T[] ta) {
T[] new_ta = new T[ta.length*2];
for (int i = 0; i < ta.length; i++)

new_ta[i] = ta[i];
return new_ta; }

All the writes to the array variable new ta in the for loop
of the above example are initializing writes. In the bench-
marks we studied, a significant number of array writes are
initializing writes in loops similar to this. Therefore, the as-
pirations of the analysis we describe in this section do not
extend far beyond such simple examples.

Eliding the SATB barriers from the stores in the for
loop above requires inference of the loop invariant:

∀j : i ≤ j < new ta.length : new ta[j] = null .

We accomplish this inference by tracking the uninitialized
portion of each array, and also by tracking the values of
integer local variables. The next section shows how we do
this formally.

3.2 Analysis extensions for arrays

This section details how we extend the previous analysis
to track object array stores. We modify some of the previous
state components, and add some new ones:

Value : Refs | IntVal | ⊥
ρ ⊆ Var �→ Value
σ ⊆ Ref × FieldId �→ Value
stk ⊆ Stack< Value >
Len ⊆ Ref �→ IntVal
NR ⊆ Ref �→ IntRange

We extend the abstract state by tracking integer, as well
as reference, values; this is reflected in the redefinition of
the ranges of ρ, σ, and the stk stack.

An IntVal is a linear combination of integer terms. These
terms may be integer constants or the product of an integer
coefficient and an integer unknown. An unknown may be
constant (have the same value in all states; denoted ci), or
variable (may represent different values in different states;
denoted vi). We allow IntVals to have at most one term in
a variable unknown, one constant term, and zero or more
terms in constant unknowns: au + k0c0 + ... + kncn + b.
We perform symbolic arithmetic on IntVals when it makes
sense, but certain operations (for example, addition of
IntVals involving different variable unknowns) produce the
top value �iv as their result. (Method calls with integer
return types return �iv , since different invocations might
return different values.) An IntRange represents a subse-
quence of the sequence of valid indices of an array. There
are several kinds of IntRange. A full IntRange is a (closed)
integer interval, bounded by two IntVals: [iv1..iv2]. This is
used only to represent an array’s uninitialized indices imme-
diately after the array’s allocation. There are two varieties
of half-open ranges: [iv..] denotes the sequence of indices i
of r such that i ≥ iv, and a [..iv] denotes the sequence of in-
dices i of r such that i ≤ iv. The lattice ordering on ranges
obeys the following rules: [i..j] is below [i..] and [..j]; [i..]
is below [j..] if i < j and [..i] is below [..j] if j < i (smaller
ranges are larger in the lattice). The empty range, denoted
[], is the top element of the range lattice.

The new map Len maps references to arrays to their
lengths. The map NR (for null range) maps object array ref-
erences to IntRanges representing subranges of their valid
indices known to be null.

As discussed, the various ranges here all form lattices;
it should be fairly straightforward to see how these lattices
merge. The overall merge operation on states is somewhat
more complicated than a simple merge of all the state com-
ponents, however; this is detailed later, in section 3.5.

3.3 Effects of operations in array analysis

We now show the effect of some operations on the new
state components.

< ρ, σ, NL, [stk : n], Len, NR >
id : newarray(cl) =⇒

< ..., Len[Rid/A ← n],
NR[Rid/A ← [0, n − 1]] >

The newarray instruction is very similar to newin-
stance: it updates the first four state components (not
shown) in the same way. In addition, it records the length
of the newly allocated array, and notes that the entire range
of valid indices currently maps to null.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

Next we reconsider the aastore instruction, which
writes to an element of an object array.

< ρ, σ, NL, [stk : arr, ind, val], Len, NR >
aastore =⇒

< ..., Len,
NR[∀at ∈ arr : at ← contract(NR(at), ind)] >

Again, the first four state components are updated as be-
fore. Additionally, the NR map is updated to reflect that the
astore may have written into the null range of the array,
causing it to “contract.” The contract function embodies a
set of simple heuristics, essentially recognizing stores at ei-
ther end of the uninitialized range:

contract([au + b..x], au + b) = [au + (b + 1)..]
contract([x..au + b], au + b) = [..au + (b − 1)]

otherwise : contract([x..y], i] = []

3.4 Initial conditions in array analysis

We now discuss initial conditions. We create a con-
stant unknown ci for each integer input parameter i, and
set ρ(i) = ci in the initial state. We also create a distinct
constant unknown ci to represent the length of every input
parameter of array type, and record this equality in the ini-
tial Len map: Len(Rarg(i)) = ci.

3.5 Merging in array analysis

Now we describe the special rules for merging states;
these rules are the core technique that allows us to infer the
required invariant. Before doing so, let us consider the op-
eration of the analysis described so far on our simple moti-
vating example. The allocation of the new array

T[] new_ta = new T[ta.length*2];

updates the program state as shown:

< · · · , Len(Rarg(k)) = c0, NR(Rid/A) = [0..2 ∗ c0 − 1] >

where c0 is the length of ta (the 0th argument of expand),
and Rid/A represents the result of the allocation. Next we
enter the for loop:

for (int i = 0; i < ta.length; ++i)
new_ta[i] = ta[i];

In the preamble of the loop, we store 0 in local variable i,
recording this in ρ. The assignment to new ta[i] corre-
sponds to an aastore bytecode, and causes the uninitial-
ized range of new ta to contract to [1..].

Now control flow takes us back to the loop head. We
need to merge the current program state into the program

state recorded when we first visited the loop head; these
two states are:

< · · · , ρ(i) = 1, · · · , NR(Rid/A) = [1..] > and

< · · · , ρ(i) = 0, · · · , NR(Rid/A) = [0, 2 ∗ c0 − 1] > .

Before going further, we define the concept of integer
state components. These components include the integer-
valued elements of ρ and stk, as well as IntVals that ap-
pear as bounds of uninitialized ranges. When we merge two
states S1 and S2, we merge these values component-wise.
If an integer component has different values i1 and i2 in the
two states, we can always merge them to �iv , but we can
also choose to express the value of the component in the
merged state as a function of a new variable unknown v.

This becomes useful when different state components
can expressed as functions of the same variable unknown.
In our example, we wish to discover that the lower bound
of the uninitialized range of new ta varies with the same
stride as the loop variable i.

Figure 1 shows how IntVals are merged to accomplish
this aim. The merge intvals function takes three argu-
ments:

U ⊆ int �→ V arUnknown
µ1 ⊆ V arUnknown �→ IntV al
µ2 ⊆ V arUnknown �→ IntV al

These maps are initially empty, but are modified by
merge intvals. U maps integer constant “strides” to
generated variable unknowns that vary with the given stride.
The µ maps are substitutions for variable unknowns, map-
ping the variables to the values they represent in each input
state; the existence of these mappings justifies the use of the
variable in the merged state to express the values in both the
input states.

In more detail, when merging two distinct constants, we
create (or look up) a variable unknown that is assumed to
vary by the appropriate difference in consecutive execu-
tions, remembering what value the variable represents in
each of the merged states. Otherwise, one of the merged
IntVals has a non-zero variable unknown term. If that vari-
able has already been assigned a value, and substituting
that value makes the merged IntVals equal, then the merged
value is unchanged; if the substituted value is not equal,
then we must merge to �iv . If the variable is not yet mapped
by the substitution, then we attempt to extend the substitu-
tion with a mapping for the variable that makes the merged
IntVals equal, using the match function described below. If
this fails, we must merge to �iv .

The function match(i1, i2) is called only when i1 has a
non-zero variable unknown term a1v1, and succeeds only
when i2 has a non-zero variable unknown term a1v2 with
the same coefficient a1, in which case it returns an IntVal
that expresses v1 as the sum of v2 and a constant expression.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

1 IntVal merge intvals(i1: IntVal, i2: IntVal,
2 U : int → VarUnknown,
3 µ1: VarUnknown → IntVal,
4 µ2: VarUnknown → IntVal) {
5 if (i1 = �iv ∨ i2 = �iv) return �iv;
6 else if (i1 = i2) return i1;
7 else {
8 if (var term(i1) = 0)
9 i1, i2 ← i2, i1; µ1, µ2 ← µ2, µ1;
10 let δ = i2 − i1 in
11 if (int const(δ) ∧ var term(i1) = 0) {
12 if (U [δ] = null) {
13 let v = new VarUnknown in
14 U [δ] ← v; µ1[v] ← i1; µ2[v] ← i2;
15 return v;
16 } else {
17 let v = U [δ]; d = (i1 − µ1(v)) in
18 assert var term(d) = 0;
19 return v + d;
20 }} else {
21 let (a1v1 = var term(i1)) in
22 if (a1 �= 0) {
23 if (µ2[v1] �= null) {
24 if (µ2[i1] = i2) { return i1; }
25 else { return �iv; };
26 } else {
27 let s = match(i1, i2) in
28 if s �= null {
29 µ2[v1] ← s; return i1;
30 } else return �iv;
31 } else return �iv;
32 }}

Figure 1. Procedure for merging integer state
components

We now return to our example. When we merge the end-
of-loop state back into the loop head state, we discover that
the ρ(i) components differ by the constant 1. We there-
fore create a new variable unknown v, record this as U [1],
and set µ1(v) = 0 (the value of ρ(i) in the first merged
state.) Later (though the order does not matter), we merge
the uninitialized ranges for Rid/A. Since the new range is
a half-open range and the other range is full, we merge to
the half-open range. The left bound is determined by merg-
ing the corresponding integer components 0 and 1. These
vary with a delta (1) for which a variable v has already been
recorded, so we substitute v for this component in the merge
state. So we obtain:

< · · · , ρ(i) = v, · · · , NR(Rid/A)) = [v..] >

Now we iterate the loop again. At the end of the loop
body, the state is

< · · · , ρ(i) = v + 1, · · · , NR(Rid/A)) = [v + 1..] >

which we merge into the previous state of the loop head.
Now when we merge the values of ρ(i), we find that while
these terms have a constant difference 1, they have non-zero
variable terms, and are therefore led to line 27, where the
match function computes the substitution µ2[v] = v + 1,
which justifies returning i1 = v as the result of the merge.
Later we merge v and v + 1 again, this time as the low
bounds of the uninitialized range for Rid/A). This time we
find that there is already a substitution for v, and go to line
24. Fortunately, the substitution makes µ2[i1] = i2, and we
can again return v as the result. We have correctly inferred
that the low bound of the uninitialized range and the value
of the loop variable i are the same.

Our technique finds all integer state components that
vary with the same “stride” in the first iteration of the loop,
and makes the provisional assumption that they vary with
that stride in all iterations. Such assumptions may of course
be incorrect. When they are, the technique is still safe, since
it validates that the assumptions lead to a fixed point of the
analysis. When the fixed-stride assumption is erroneous,
the validation iteration will merge such components to �iv ,
which will then allow a fixed point (with less information)
to be reached.

3.6 Overflow

Any analysis that applies reasoning about abstract math-
ematical integers to concrete fixed-width machine integers
must always worry about overflow. For example, in our
case, we might worry that integer overflow might allow an
index to “wrap around,” and update a previously-initialized
array element without a barrier. This turns out not to be
a problem in our case, because of safety properties of the
target language. The conservative definition of contract dis-
ables optimization unless the array elements are initialized
in order: if element i was last initialized, contract loses all
information unless i + 1 or i− 1 is the next element initial-
ized. The uninitialized range of an array must contract in
the same way on all paths leading to a control flow merge
point (such as a loop head), or else it will merge to the empty
range at that point. Therefore, an array store site whose bar-
rier has been eliminated must be executed with a negative
index, producing an array bounds exception, before it can
possibly be executed with an index value that has wrapped
around to a positive value.1

4 Evaluation

In this section, we evaluate the effectiveness of these
analyses. We discuss the benchmarks we use for evaluation,

1To get this completely correct, the analysis should handle the rare
methods that catch array bounds exceptions specially, for example, by not
eliminating array barriers at all in them.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

detail the effectiveness of the optimization, and explores the
compile-time cost of the analysis. Finally we consider fur-
ther techniques (not yet implemented) that might eliminate
more barriers.

4.1 Benchmarks

We present results from 5 of the 7 programs in the
SPECjvm98 benchmark suite (omitting two benchmarks
with very little heap or pointer manipulation). These are
jess, an expert-systems shell; db, a small database program;
javac, a compiler; mtrt, a multi-threaded ray-tracer; and
jack, a compiler-compiler. We also present results for jbb,
the SPECjbb2000 benchmark, run with 8 warehouses for a
two-minute timing interval.

While the SPECjvm benchmarks are not very large pro-
grams, and use relatively small heaps, they do represent a
range of programming styles, and we believe that they are
useful test cases for this evaluation.

4.2 Results

This section gives our results. We have done this
work in the “client” just-in-time (JIT) compiler of the Java
HotSpot Virtual Machine, and perform measurements on
a machine with eight 750Mhz UltraSPARC III processors.
(The experimental platform will be relevant for later mea-
surements of compile times.)

Table 4.2 shows the number of barriers executed dynam-
ically in JIT-compiled code, the percentage of those execu-
tions that can be eliminated by analysis, the breakdown of
the compiled barrier executions into field and array stores,
and the percentage of executions of each kind of barrier that
can be eliminated. In our instrumentation of the code gener-
ated for a pointer store, we also counted, for each compiled
store, the number of associated barrier executions in which
the pre-value of the updated location was null. We call a
store site whose pre-value is never (dynamically) non-null
potentially pre-null. Counting potentially pre-null sites is
both a useful correctness check (our analysis should only
eliminate barriers at potentially pre-null store sites!) and
also provides an upper bound on the possible effectiveness
of the pre-null technique. The last column lists the percent-
age of compiled barrier executions that are for potentially
pre-null stores.

The percentages in Table 4.2 are of total JIT-compiled
barrier executions; in all cases, non-compiled barrier execu-
tions (because not all methods are JIT-compiled) comprise
fewer than 3% of executed barriers, and in most cases con-
siderably fewer.

In our technical report [16] we also show static counts
of eliminated barriers. The dynamic results are obviously
more important in determining the effect of the analysis on

the running time of the programs, but static results are also
important, since they determine the effect of the analysis on
compiled code space (which may also indirectly improve
running time via instruction cache effects).

In general, our results show that our analyses can elimi-
nate a significant fraction, though not a consistent majority,
of barriers – roughly between 1/4 and 2/3, with the excep-
tion of db’s dynamic result. Our results are significantly
better for object fields than for arrays: in two of five cases,
we are unable to prove any array stores to be initializing
(and in a third, those proven initializing account for a negli-
gible fraction of total executed array stores.) However, the
optimization is not in vain: in mtrt, for example, the major-
ity of eliminated barrier executions are for array stores.

When we compare the actual percentage of barriers elim-
inated with the upper bound of the potential sites, we
find we are obtaining a fairly large fraction of the benefits
achievable by these techniques. In the the dynamic results
of table 4.2, we eliminate at least 2/3 of all executions of
potentially pre-null barriers in all cases except db and jbb,
and eliminate almost 1/2 for jbb.

Comparing our static and dynamic results, we found that
(as one might expect) the percentage of stores executed
dynamically that are array stores is usually higher, some-
times considerably, than the corresponding static percent-
age. Therefore, since we have less success in finding initial-
izing array stores, our dynamic elimination rate is generally
lower than the static elimination rate.

4.3 Detailed Evaluation

We further analyzed our results for individual store sites.
For each benchmark, we sorted the results, and consid-
ered the most-frequently-executed store sites whose barri-
ers were not eliminated. This consideration suggests fur-
ther work that would allow a significant number of addi-
tional SATB barriers to be eliminated. These techniques are
detailed in our technical report [16], and some of them are
briefly summarized here.

Null-or-same analysis. We noticed that several
frequently-executed store sites, while not pre-null, had a
related property that should allow elimination of their as-
sociated write barrier. For these sites, we can prove (cur-
rently by inspection, not via automated tools) that the
write either overwrites null, or else writes the value the
field already contains. Obviously, no SATB barrier is re-
quired in either case. An important example occurs in
Hashtable.hasMoreElements:

Entry e = entry;
...
while (e == null && i > 0) {

e = t[--i];
}
entry = e; // Frequently executed

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

benchmark Total % elim % Potential Field/ Field Array
×106 pre-null Array % elim % elim

jess 7.9 50.5 75.0 51/49 99.7 0.0
db 30.1 10.2 28.2 10/90 99.4 0.0
javac 19.9 32.8 38.5 92/ 8 33.9 20.5
mtrt 3.0 61.9 91.6 41/59 72.0 54.7
jack 10.7 41.0 54.0 74/26 55.5 0.0
jbb 297.8 25.6 53.4 69/31 37.0 0.0

Table 1. Analysis results: dynamic

The “frequently executed” store requires no barrier. Stores
of this form account for 15% of the write barriers executed
in javac, 14% for jack, and 4% in jbb.

We are currently considering how best to incorporate this
observation into our analysis.

Array rearrangements. Another class of optimiza-
tions suggested by examination of frequently-executed store
sites concerns write barriers within blocks of code (usually
loops) that rearrange the elements of an object array, possi-
bly overwriting some elements. If such a rearrangement oc-
curred atomically with respect to the collector’s tracing of
the array, then only the overwritten elements (if any) would
need to be logged. These updates might be a small frac-
tion of the writes. Of course, the arrangement does not
actually occur atomically; to nevertheless get some bene-
fits from this observation, we can restrict the direction in
which the collector scans object arrays, or try to detect mu-
tator/collector interference.

Let us give a concrete examples. The top two stores in
db, together accounting for more than 70% of stores, seem
initially unpromising, since neither is potentially pre-null;
in fact, no executions observe a null previous value. But
these stores occur in a sorting routine, and are part of an
an idiom that swaps two elements in an array. This swap is
a permutation of the array elements. (And the outer loops
in which these swaps occur are compositions of permuta-
tions, and so are also permutations.) Another set of ex-
amples occurs in the jbb benchmark, where some of the
most frequently-executed store sites are in loops that delete
a single element of an object array, by moving all higher
elements down by one index. Taken as a whole, such a
loop overwrites only one reference value: if it ran atomi-
cally with respect to the collector’s scanning of the array,
only the overwritten value would need to be logged.

If we inform the compiler of the order in which the col-
lector scans object array elements, then one of the two bar-
riers in the swap pattern may be eliminated. In the case
of the move-down loop, barriers may be eliminated if the
direction of collector array scanning agrees with the direc-
tion of object movement. Here we propose using bits in the
object array header to allow the code generated for the mu-

tator loop to inform the collector of the required scanning
direction.

A more general approach is to use an optimistic concur-
rency control protocol, detecting mutator/collector interfer-
ence dynamically and correcting for it as necessary. We
would devote bits in the header of an object array to indi-
cate the tracing state of the array, one of untraced, tracing,
and traced. The concurrent marker would update this state
information as it traces arrays. The compiler would recog-
nize the copy-loop idiom of the example, and generate code
to log the overwritten a[index] value and read the tracing
state before and after the loop. If the states indicate that the
marker may have done any tracing of the array concurrently
with the loop, then the mutator places the entire array on a
special retrace list, requiring the collector to trace it again
(perhaps with mutators stopped, to prevent livelock). This
approach is more general because it applies to any array
rearrangement code pattern. For example, we could elim-
inate both barriers in the swap idiom with this approach.
We could amortize the cost of the check by hoisting them
outside of the loop in which the swaps occur.

All of the arguments in this section consider muta-
tor/collector concurrency, but not mutator/mutator concur-
rency. It turns out that (as far as we can tell) unsynchronized
writes to the same array by multiple mutator threads invali-
date both classes of optimization discussed above: they al-
low heap locations to be overwritten without being logged,
which compromises the correctness of the SATB marking
algorithm. So if we apply these techniques, we must do so
only when no unsynchronized writes are possible: perhaps
we can prove that the program obeys a locking discipline in
accessing the array, or that the array is thread-local; or the
compiler might generate code to obtain a special lock dur-
ing loops that eliminate barriers (this approach raises con-
tention and deadlock issues that require some care).

4.4 Inlining Level and Compilation Time

Inlining exposes more information to static analyses like
the ones we describe in this paper. An “inline limit” param-
eter of this compiler determines the maximum bytecode size

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

of an inlined method. Of course, more aggressive inlining
increases compile time as well.

Figure 2 shows the effect of the inline limit on analysis
effectiveness and compilation time. without our analysis
(B), with the field analysis only (F), and with both the field
and array analysis (A). (Note that the compilation time scale
is logarithmic.)

0.1

1.0

10.0

C
om

p.
 t

im
e

(s
ec

)

B = baseline
F = field
A = + array

B

B

B

B
B

BF

F

F

F
F

F
A

A

A

A
A

A

Inline = 200
Inline = 100
Inline = 35

jess db javac mtrt jack jbb
0.0

20.0

40.0

60.0

80.0

%
 e

lim
in

at
ed

F

F

F F
F

F

A

A

A

A

A

A

Figure 2. Compile-time cost and analysis ef-
fectiveness as a function of inlining level

While the analysis time becomes comparable to the rest
of compilation time for the larger examples, note that this
compilation time is for a “client” JIT compiler intended to
produce medium-quality code quickly. The “server” com-
piler produces high-quality code, but is approximately an
order of magnitude slower; this analysis would fit well into
the goals and compilation budget of such a compiler. The
100-bytecode inlining level gains essentially all the analysis
results, and adds much less compilation time than the 200-
bytecode inlining level. This is the inlining level used for
the results in Table 4.2.

Figure 3 shows the effect of the two levels of analysis
on compiled code size, at inlining level 100. Each column
is labeled with the compiled code size before the optimiza-
tion. To ensure comparability across runs with different op-
timization modes, code sizes were summed only for meth-
ods compiled in all runs for a benchmark. This excluded at
most 1% of compiled methods.

Write barrier elimination decreases compiled code size
by between 2 and 6%. Array analysis has smaller impact
than it does on dynamic elimination rates, since array bar-
riers usually occur in loops, which magnifies their dynamic
impact.

jess db javac mtrt jack jbb
0.0

2.0

4.0

6.0

co
de

 s
iz

e
%

 d
ec

re
as

e

299 KB

72 KB

768 KB

162 KB

313 KB

777 KB
Field + Array
Field only

Figure 3. Analysis effect on code size, for var-
ious inlining levels

4.5 End-to-end performance

In our current system, the effect of all this work is rather
small, because the SATB barrier is expensive only when
marking is in progress, which is a small fraction of total
running time. However, in the future we plan to incremen-
talize marking, spreading it out over longer periods. To see
why, consider an application running on a two-processor
machine. Currently marking might run for 5 consecutive
seconds every 25 seconds, requiring designers planning for
worst cases to assume that they get only one processor for
considerable periods. The alternative approach might per-
form the marking in 50 msec increments distributed evenly
over these 25 seconds. The incremental approach allows de-
signers to assume the machine has a constant 1.8 processors
available.

Table 4.5 shows end-to-end throughput on the jbb
benchmark for three different modes of operation.2 The
no-barrier mode eliminates all SATB barriers (we run all
tests with a heap sufficiently large to require no mark-
ing). The always-log mode simulates the future work de-
scribed above, by eliding the check for whether marking is
in progress and always logging non-null pre-values. Write
barrier elimination is disabled. Finally, the always-log-elim
mode is like always-log, but enables write barrier elimina-
tion. Each result is the average of 5 runs; higher is better.
In this mode, SATB barriers cost about 2.5% in end-to-end
performance; this percentage would be greater if we use the
more-optimizing compiler. Eliminating 25% of the barriers
in jbb gets back approximately that fraction of this cost.

Note again that for reasons of implementation simplicity
this work has been done with the “client” JIT compiler of
the Java HotSpot VM, which is aimed at producing code
quickly. Using a more highly-optimizing compiler, such as
the Java HotSpot VM’s “server” compiler, would magnify
the cost of SATB barriers, and increase the importance of
eliminating them.

2We use jbb because its relatively longer running times make it easier
to reliably detect small performance differences.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

Barrier Throughput Relative to
mode no-barrier
no-barrier 29968 1.000
always-log 29218 0.975
always-log-elim 29503 0.984

Table 2. jbb end-to-end barrier cost

5 Related Work

Vecchev and Bacon [22] present a dynamic limit study
suggesting the potential for elimination of write barriers
supporting concurrent marking. Their main observation is
that the lifetime of a pointer to an object is often contained
within the lifetime of another pointer to to the same object,
allowing barriers associated with creation or deletion of the
shorter-lived pointer to be elided. While suggestive, this
work does not provide an analysis to prove that the observed
dynamic properties hold on all executions.

Barth [4] presents a static analysis to eliminate write bar-
riers in a reference-counting collector. This includes the ob-
servation that a reference-count decrement is unnecessary
for an initializing write to a newly allocated object, where
the overwritten field is known to contain null. However, no
algorithm is given for taking advantage of this observation,
and the algorithms that are given assume programs with no
procedure calls in single-threaded systems.

Zee and Rinard [25] and Shuf et al. [21] present tech-
niques for removing write barriers supporting remembered
set maintenance in garbage collection. Hosking et al. [13]
describe techniques for reducing the number of write barri-
ers required for tracking updates to a persistent store. In all
cases, the purpose and form of the removed write barriers
are very different from ours, as are the analysis techniques.

There is a large literature on pointer and shape analysis
(see, e.g., [14, 7, 20] and escape analysis (see, e.g., [23, 8]).
No previous work that we know of has considered the rela-
tionship between shape or escape analysis and elimination
of SATB write barriers. It is interesting to compare the anal-
ysis we present with escape analyses. As discussed in sec-
tion 2, our analysis must be more precise to eliminate bar-
riers for stores to objects that are currently thread-local but
later escape. Section 2.4 discussed previous work related to
our use of two abstract reference values per allocation site.

There has been considerable previous work on bounding
ranges of integer variables [19, 15]. This is not sufficient
for our purposes, since we need to know relationships be-
tween values in particular states. This analysis could be
accomplished by identifying loop induction variables [1, p.
644][11] and their strides, and the values of the induction
variables on entry to the loop, but it is interesting to note
that our method requires no identification of loop structure.
We know of no previous work that identifies uninitialized

subranges of arrays, nor that accomplishes the inference of
integer state components with common strides as part of an
abstract interpretation.

6 Conclusions and Future Work

Concurrent techniques are attractive for preventing
garbage collection from excessively impacting applications
with large live data working sets and (soft) real-time re-
quirements. Experience has shown that SATB concurrent
marking requires considerably shorter pauses than incre-
mental update techniques. One barrier to the acceptance
of SATB techniques has been the greater cost, in execu-
tion time and compiled code space, of the write barriers
that must be executed at each pointer store. We have pre-
sented static analyses that prove these barriers unnecessary
in many cases.

These analyses gave moderately good results for our
benchmarks, but our measurement infrastructure allowed
us to identify the most-frequently executed individual store
sites whose barriers were not eliminated. Our investigation
of the corresponding source code in section 4.3 revealed
several interesting paths for future work to improve these
results. Some of these are more detailed static analyses.
Others suggest ways in which the collector/mutator interac-
tion could be modified to allow more barriers to be elimi-
nated.

Finally, one perhaps-reasonable reaction to this work is
that the amount of effort required is out of proportion with
the specific benefit provided. However, there are many
problems within compilation that can make use of analyses
that reveal this much information about a compiled method:
these analyses could augment alias analysis; determination
of exact types for, e.g., devirtualization of virtual calls; dis-
covery of array indexing properties for bounds check re-
moval; escape analysis for stack allocation and/or lock eli-
sion — the list is long. So our view is that these analyses
should be part of an integrated static analysis framework
that provides a variety of information to inform subsequent
compilation steps, of which SATB write barrier removal is
just one.

7 Trademarks

Java and HotSpot are trademarks or registered trade-
marks of Sun Microsystems, Inc. in the United States
and other countries. All SPARC trademarks are used un-
der license and are trademarks or registered trademarks of
SPARC International, Inc. in the US and other countries.
Products bearing SPARC trademarks are based upon an ar-
chitecture developed by Sun Microsystems, Inc.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
Mass., 1986.

[2] Hezi Azatchi, Yossi Levanoni, Harel Paz, and Erez Petrank.
An on-the-fly mark and sweep garbage collector based on
Sliding views. In OOPSLA’03 ACM Conference on Object-
Oriented Systems, Languages and Applications, Anaheim,
CA, November 2003.

[3] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time
garbage collector with low overhead and consistent utiliza-
tion. In Conference Record of the Thirtieth Annual ACM
Symposium on Principles of Programming Languages, ACM
SIGPLAN Notices, New Orleans, LA, January 2003.

[4] Jeffrey M. Barth. Shifting garbage collection overhead to
compile time. Communications of the ACM, 20(7):513–518,
July 1977.

[5] BEA. Bea weblogic jrockit. the Server JVM.
URL. http://www.bea.com/products/weblogic/server/
jrockit wp 052303 final.pdf.

[6] Hans-J. Boehm, Alan J. Demers, and Scott Shenker. Mostly
parallel garbage collection. In Proceedings of the ACM SIG-
PLAN ’91 Conference on Programming Language Design
and Implementation, pages 157–164, Toronto, ON, Canada,
June 1991. ACM Press.

[7] David R. Chase, Mark Wegman, and F. Kenneth Zadeck.
Analysis of pointers and structures. In Proceedings of the
Conference on Programming Language Design and Imple-
mentation, pages 296–310, 1990.

[8] Jong-Deok Choi, M. Gupta, Maurice Serrano, Vugranam C.
Sreedhar, and Sam Midkiff. Escape analysis for Java. In
OOPSLA’99 ACM Conference on Object-Oriented Systems,
Languages and Applications, volume 34(10) of ACM SIG-
PLAN Notices, pages 1–19, Denver, CO, October 1999.
ACM Press.

[9] James C. Corbett. Using shape analysis to reduce finite-state
models of concurrent java programs. ACM Trans. Softw. Eng.
Methodol., 9(1):51–93, 2000.

[10] David Detlefs, Christine Flood, Steven Heller, and Tony
Printezis. Garbage-first garbage collection. In Proceedings
of the 2004 International Symposium on Memory Manage-
ment. ACM Press, 2004.

[11] Michael P. Gerlek, Eric Stoltz, and Michael Wolfe. Beyond
induction variables: Detecting and classifying sequences us-
ing a demand-driven SSA form. ACM Transactions on Pro-
gramming Languages and Systems, 17(1):85–122, January
1995.

[12] Urs Hölzle. A fast write barrier for generational garbage
collectors. In Eliot Moss, Paul R. Wilson, and Benjamin
Zorn, editors, OOPSLA/ECOOP ’93 Workshop on Garbage
Collection in Object-Oriented Systems, October 1993.

[13] Antony L. Hosking, Nathaniel Nystrom, Quintin Cutts, and
Kumar Brahnmath. Optimizing the read and write barrier

for orthogonal persistence. In Proceedings of the Eighth In-
ternational Workshop on Persistent Object Systems, Tiburon,
CA, August 1998.

[14] Neil D. Jones and Steven S. Muchnick. Flow analysis and
optimization of lisp-like structures. In S. S. Muchnick and
N. D. Jones, editors, Program Flow Analysis: Theory and
Applications. Prentice-Hall, 1981.

[15] Priyadarshan Kolte and Michael Wolfe. Elimination of re-
dundant array subscript range checks. In Proceedings of the
Conference on Programming Language Design and Imple-
mentation, pages 270–278, 1995.

[16] V. Krishna Nandivada and David Detlefs. Compile-time con-
current marking write barrier removal. Technical Report
SML TR–2004–142, Sun Microsystems Laboratories, De-
cember 2004.

[17] Yoav Ossia, Ori Ben-Yitzhak, Irit Goft, Elliot K. Kolodner,
Victor Leikehman, and Avi Owshanko. A parallel, incremen-
tal and concurrent gc for servers. In Proceedings of the ACM
SIGPLAN 2002 Conference on Programming language de-
sign and implementation, pages 129–140. ACM Press, 2002.

[18] Tony Printezis and David Detlefs. A generational mostly-
concurrent garbage collector. In Proceedings of the Inter-
national Symposium on Memory Management, Minneapolis,
Minnesota, October 15–19, 2000.

[19] Radu Rugina and Martin C. Rinard. Symbolic bounds analy-
sis of pointers, array indices, and accessed memory regions.
In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation (PLDI-
00), volume 35.5 of ACM Sigplan Notices, pages 182–195,
N.Y., June 18–21 2000. ACM Press.

[20] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Solv-
ing shape-analysis problems in languages with destructive
updating. ACM Transactions on Programming Languages
and Systems, 20(1):1–50, January 1998.

[21] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and
Jaswinder Pal Singh. Exploiting prolific types for memory
management and optimizations. In Conference Record of
the Twenty-ninth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices. ACM
Press, January 2002.

[22] Martin T. Vechev and David F. Bacon. Write barrier eli-
sion for concurrent garbage collectors. In Proceedings of the
4th international symposium on Memory management, pages
13–24. ACM Press, 2004.

[23] John Whaley and Martin Rinard. Compositional pointer and
escape analysis for Java programs. In OOPSLA’99 ACM
Conference on Object-Oriented Systems, Languages and Ap-
plications, volume 34(10) of ACM SIGPLAN Notices, pages
187–206, Denver, CO, October 1999. ACM Press.

[24] Taichi Yuasa. Real-time garbage collection on general-
purpose machines. Journal of Software and Systems,
11(3):181–198, 1990.

[25] Karen Zee and Martin Rinard. Write barrier removal by static
analysis. In Proceedings of the 17th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, languages,
and applications, pages 191–210. ACM Press, 2002.

Proceedings of the International Symposium on Code Generation and Optimization (CGO’05)
0-7695-2298-X/05 $ 20.00 IEEE

