
Graph Coloring using GPUs

Meghana Aparna Sistla1[0000−0002−4215−0651]

V. Krishna Nandivada2[0000−0002−5949−0046]

1 Dept of CSE, IIT Madras, India, sistla.meghana@gmail.com
2 Dept of CSE, IIT Madras, India, nvk@iitm.ac.in

Abstract. Graph coloring is a widely studied problem that is used in
a variety of applications, such as task scheduling, register allocation,
eigenvalue computations, social network analysis, and so on. Many of the
modern day applications deal with large graphs (with millions of vertices
and edges) and researchers have exploited the parallelism provided by
multi-core systems to efficiently color such large graphs. GPUs provide a
promising parallel infrastructure to run large applications. In this paper,
we present new schemes to efficiently color large graphs on GPUs.
We extend the algorithm of Rokos et al. [21] to efficiently color graphs
using GPUs. Their approach has to continually resolve conflicts for color
assignment. We present a data driven variation of their algorithm and
use an improved scheme for conflict resolution. We also propose two opti-
mizations for our algorithm to reduce both the execution time and mem-
ory requirements. We have evaluated our scheme (called SIRG) against
the NVIDIA cuSPARSE library and the work of Chen et al. [13], and
show that SIRG runs significantly faster: geomean 3.42× and 1.76×, re-
spectively. We have also compared SIRG against the scheme of Rokos
et al. [21] for CPUs and show that SIRG performs faster on most input
graphs: geomean 10.37×.

1 Introduction

Graph Coloring, widely studied as vertex coloring in an undirected graph, refers
to the assignment of colors to the vertices of a graph such that no two adja-
cent vertices are assigned the same color. It is used in various applications such
as scheduling of tasks [16], register allocation [3], eigenvalue computations [15],
social network analysis [5], sparse matrix computations[12], and so on. The prob-
lem of optimal graph coloring and even that of finding the chromatic number of
a graph (minimum number of colors needed to color the graph) are NP-Hard.
Hence, various heuristics have been proposed to solve the graph coloring problem.
As many modern applications deal with graphs containing millions of vertices
and edges, coloring of such large graphs sequentially leads to prohibitively high
execution times. To address this issue, various parallel graph coloring algorithms
have been designed for multi-core and many-core systems.

Though graph coloring as a problem has been solved using many heuris-
tics [1,7,20,17], parallel graph coloring algorithms have mostly been extensions
of two main approaches: (1) Maximal Independent Set (MIS) approach that

2 Meghana Aparna Sistla V. Krishna Nandivada

finds maximal independent sets of a graph and assigns a unique color to each
independent set. (2) Greedy approach that assigns each vertex v the smallest
color that has not been assigned to any adjacent vertices of v.

Luby [14] proposed one of the first parallel graph coloring algorithms by
computing MIS in parallel. The algorithm was later extended by Jones and
Plassmann [11]. Compared to the MIS based algorithms, owing to the simplic-
ity in implementation and ease of parallelization of greedy algorithms, many
researchers have proposed the greedy approach based parallel graph coloring
algorithms. For example, Gebremedhin and Manne [8] proposed a three-step ap-
proach as the initial parallelization of the sequential greedy algorithm. In Step1,
the algorithm colors all the vertices in parallel with the minimum available color
(that smallest color that has not been used to color any of the adjacent vertices).
This may lead to conflicts between adjacent vertices. In Step2, conflicts are de-
tected and for each conflict one of the vertices retains the color and the other
vertex loses its color. After resolving conflicts, in Step3, all the remaining uncol-
ored vertices are colored with the minimum available colors, sequentially. The
Step3 was parallelized by Çatalyürek et al. [2], by invoking Step1 and Step2 on
the remaining uncolored vertices, repeatedly. The process continues until there
are no conflicts. After each invocation of Step1 and Step2, a barrier is inserted
to synchronize among the threads.

Rokos et al. [21] improved the algorithm of Çatalyürek et al. [2] by reducing
the synchronization overheads among the threads. In case of conflicts, instead
of uncoloring and recoloring, the algorithm recolors the conflicting-vertex in the
same iteration with the minimum available color. We refer to this improvised
algorithm as RIG (Rokos Improvised Greedy).

As GPUs provide massive amounts of parallelism and are widely being used
to run algorithms on large datasets, there also have been efforts to design parallel
algorithms that can run efficiently on GPUs. For example, the csrcolor function,
in the cuSPARSE library [19] of NVIDIA, implements the parallel MIS algorithm
for GPUs. Grosset et al. [9] presented the first implementation of the greedy
algorithm of Gebremedhin and Manne [8] on GPUs. Recently, Chen et al. [13]
extended the work of Çatalyürek et al. [2] on to GPUs with a few optimizations;
we refer to their work as ChenGC. One main drawback of their work is that their
algorithm needs a pre-set value of the maximum color required (maxColor) to
color the graph and the algorithm does not terminate if the value of maxColor
is too low. In contrast, setting maxColor to a very high value leads to very high
execution times and memory usage. Though the NVIDIA’s cuSPARSE library
does not suffer from any such limitations, it uses a large number of colors for
producing a valid coloring of the graph. And also it runs slower (55% [13]) than
ChenGC. In this paper, we present a solution to address these limitations.

We extend the algorithm of Rokos et al. [21] to efficiently color graphs using
GPUs. We provide a data-driven extension of their algorithm, along with new
heuristics for faster executions. We propose two optimizations for improving both
the execution time and memory requirements. We have evaluated our optimized
algorithm (referred to as SIRG – Scalable and Improved RIG Algorithm for

Graph Coloring using GPUs 3

1 Function RIG (G) // G = (V,E)
2 begin
3 U = V ;
4 foreach v ∈ U do // parallel loop
5 C = {colors of u ∈ adj(v)};
6 color(v) = minimum color c 6∈ C;

7 barrier();
8 while |U| > 0 do
9 L = φ;

10 foreach v ∈ U do // parallel loop
11 if ∃ v′ ∈ adj(v), v′ > v: color(v) == color(v′) then
12 C = {colors of u ∈ adj(v)};
13 color(v) = minimum color c 6∈ C;
14 L = L ∪ {v};

15 barrier();
16 U = L;

Coloring Phase

Conflict Re-
solve and

Recolor Phase

Fig. 1: Improvised Greedy Algorithm of Rokos et al. [21].

GPUs) and found that SIRG runs 3.42× and 1.76× faster than csrcolor and
ChenGC, respectively. We have also compared SIRG (on GPUs) against RIG on
CPUs and found that SIRG runs 10.37× (geomean) faster than RIG. We have
also studied the impact of our proposed optimizations and the various design
decisions and found them to be effective.

2 Background

Algorithm of Rokos et al. For the sake of completeness, we briefly present the
improvised greedy algorithm of Rokos et al. [21] (Fig. 1). We refer to it as the RIG
(Rokos Improvised Greedy) algorithm. It consists of two phases: the Coloring

phase (lines 4-6) and the ConflictResolveAndRecolor phase (lines 8-16) with a
barrier in between, for synchronization. The Coloring phase tentatively assigns
(in parallel) every vertex a color based on the minimum available color (the
smallest color that is not assigned to any of its neighbouring vertices). After every
vertex has been processed, the ConflictResolveAndRecolor phase starts, where
every vertex v is checked for conflict of colors with its neighbouring vertices that
have vertex-number higher than that of v. If a conflict is detected, the vertex
with higher vertex number retains the color. The vertex with a lower vertex
number is recolored by checking for colors of its neighbours and assigning the
minimum available color. Once all the vertices have been processed (enforced
by a barrier), the phase continues with the recolored vertices. The algorithm
terminates when no vertices have to be recolored. This, in turn, indicates that
the graph vertices have a valid coloring.

4 Meghana Aparna Sistla V. Krishna Nandivada

Parallelization on GPU. In CUDA programs, the computation is typically
divided between the host (CPU) and device (GPU). The host side computation
includes the allocation of the required memory on the device and copying of data
required by the program from the host to the device. The host also launches
the device code using a command like ≪M,N≫kernelFunc(), to launch N
number of threads on each of the M thread-blocks; the values of M and N are
set by the programmer. After the parallel execution of the kernels, the control
returns to the host. The required data is copied back to the host from the device.

3 Graph Coloring for GPUs

In this section, we present our novel graph coloring algorithm that can be run
efficiently on GPUs. We derive this algorithm from the insightful work of Rokos
et al. [21] (described in Section 2). We first show why their argument about the
non-termination of their algorithm (for GPUs) does not hold. Then we extend
their algorithm with a few heuristics for efficient execution on GPUs.

3.1 Non-termination of the RIG Algorithm

Rokos et al. [21, Section 5] discuss that the algorithm in Fig. 1 goes into an infi-
nite loop due to SIMT-style execution of GPU threads. However, the algorithm
will not lead to an infinite loop if the comparison at Line 11 is based on some
unique ids (such as vertex numbers), which ensures that no two adjacent vertices
will keep flipping their colors forever (as alluded by Rokos et al.). In this paper,
we maintain and use unique vertex ids for such conflict resolution.

3.2 Improvements to RIG

We now list two improvements to the RIG algorithm (Section 2). The first one
improves the conflict resolution criteria, and the second one is an efficient mech-
anism to implement the algorithm for GPUs.
Conflict Resolution. For the ease of presentation, for each vertex v, we use
S(v) to denote the set of neighbouring vertices that need to be checked for
conflicts in every iteration (Line 11, Fig. 1). Fig. 1 resolves the conflicts by
giving priority to the higher number vertex (Line 11) and uses S(v) = {u|u ∈
adj(v), u > v}. While this works as a fine criterion for avoiding infinite loops, it
can be improved by using the degree of the nodes as the first criteria for conflict
resolution. We set S(v) = {u|u ∈ adj(v), degree(u) > degree(v))||(degree(u) ==
degree(v) &&u > v)}. Thus, S(v) includes the set of adjacent vertices of v, such
that either their degree is greater than that of v, or they have the same degree as
v, but have higher vertex-number than v. The intuition of setting S(v) by using
a prioritization scheme based on the degree is that it will lead to fewer conflicts,
as the vertices with higher degrees will be removed from contention early. Note
that we still include the vertex number based check to ensure that the algorithm
does not go into an infinite loop.

Graph Coloring using GPUs 5

1 Function GraphColoring (G) // G = (V,E)
2 begin
3 ≪M,N≫Coloring(G);
4 barrier();
5 Win = V ;
6 while Win 6= φ do
7 ≪M,N≫ConflictResolveAndRecolorKernel(G,Win);
8 barrier();
9 swap(Win, Wout);

Conflict Re-
solve and

Recolor Phase

Fig. 2: Data Driven Implementation - CPU

1 Function Coloring (G) // G = (V,E)
2 begin
3 for vertex v ∈ V |myThread do
4 C = {colors of u ∈ adj(v)};
5 color(v) = minimum color c 6∈ C
6 return color

Fig. 3: Data driven implementation. Coloring Phase on GPU

Data-driven implementation. We use the data-driven method proposed by
Nasre et al. [18] to realize an efficient implementation of the RIG algorithm
(Fig. 1) for GPUs. In the data-driven method, only vertices that do not have
valid colors are processed in every iteration unlike the topology-driven method,
where all vertices are processed in every iteration. The original algorithm has two
parts: (i) the coloring phase (lines 4-6) and (ii) the conflict-resolve-and-recolor
phase (lines 8-16). Our data-driven implementation mainly improves the second
part.

Fig. 2 shows the main pseudocode to be executed on the host (CPU). The
initial Coloring phase (see Fig. 3) is similar to the RIG algorithm, except that
M ×N GPU threads are launched; see Section 5, for a discussion on the optimal
choice of M and N . Each GPU thread is assigned a set of vertices to be colored
(shown by the projection V |myThread). In our implementation, we have used
a cyclic distribution.

The next phase (conflict-resolve-and-recolor) maintains two shared worklists
Win and Wout, where Win represents the vertices that still need to be recolored.
Initially, Win contains the list of all the vertices. In every iteration, the host
launches the GPU kernel on a set of GPU threads. Each of the GPU threads runs
the code shown in the function ConflictResolveAndRecolorKernel (Fig. 4).

Each thread picks a vertex from the list of vertices (from Win) that are
assigned to it (represented by the projection Win|myThread). In our implemen-
tation, we have used a cyclic distribution. Each vertex is checked for conflicts
based on the conflict-resolution heuristic discussed above. In case a conflict is

6 Meghana Aparna Sistla V. Krishna Nandivada

1 Function ConflictResolveAndRecolorKernel (G, Win)
2 begin
3 Wout = φ;
4 for v ∈ Win |myThread do
5 if ∃ v′ ∈ adj(v), v′ ∈ S(v): color(v) == color(v′) then
6 C = {colors of u ∈ adj(v)};
7 color(v) = minimum color c 6∈ C ;
8 Wout = Wout ∪ {v}; // Atomic operation

Fig. 4: Conflict resolution and recoloring phase on GPU.

detected, the vertex is recolored with the minimum available color, and the ver-
tex is added to Wout. Since Wout is a shared list across the GPU threads, this
operation has to be done atomically. See Section 5 on how we implement it ef-
ficiently. If no conflict is detected for a vertex, then the vertex retains its color
and is not considered for (re)coloring in the subsequent iterations.

On the host, at the end of every iteration of the while-loop, Win and Wout

are swapped (double buffering [18]) and the process continues. The algorithm
terminates when Win does not contain any more vertices; that is, all the vertices
have been colored without any conflicts. Thus, the graph finally has a valid
coloring at the end of the algorithm.

4 Optimizations

We now list two optimizations for the baseline algorithm discussed in Section 3.
Both these optimizations are related to the efficient implementation of the data
structure that holds the set of colors of the adjacent vertices. We denote the
baseline algorithm of Section 3 along with the optimizations discussed in this
section, as SIRG (Scalable and Improved RIG Algorithm for GPUs).

In the GPU algorithm shown in Figures 3 and 4, every thread colors/recolors
a vertex with the minimum available color. For this, a naive way of implemen-
tation would be to use, for each vertex, an integer array adjColors to hold one
bit for each of the colors that might be required to color the graph. Hence, the
size of adjColors = d(maxColor÷32)e, where maxColor is the estimated max-
imum number of colors required to color the graph. As a quick and conservative
estimate, we use the following equation as the estimate for maxColor.

maxColor = 2d(log2 (1+maximum-degree-of-the-graph))e (1)

For every vertex v, initially, every bit of the array adjColors is set to 1. For
every adjacent vertex of v, the bit corresponding to the color of that adjacent
vertex is unset in adjColors. Then, the color corresponding to the first bit in
adjColors that is set to 1, is assigned to v.

Graph Coloring using GPUs 7

Considering the overheads of maintaining, for each vertex, an individual
adjColors array, and the scalability issues thereof, we allocate one adjColors

array for each thread on the GPU device. An important point to note is that
every thread may loop over all the elements of the adjColors array twice, for
every vertex in every iteration – finding the first set bit (to find the min color,
line 7, Fig. 4) and for resetting the array (to all 1s, at the end of processing each
vertex, after line 8, Fig. 4). Hence, the size of the adjColors has a significant
impact on the execution time of the individual threads and consequently the
overall kernel. We now discuss two optimizations to address this challenge.

4.1 Use of long long int and CUDA ffsll Instruction

CUDA provides a hardware instruction ffsll to find the first set bit in a
long long int number. Hence, we can use a long long int adjColors array
(instead of an int array), where each element of the array can hold 64 bits –
corresponding to 64 colors. The size of the array would be reduced to maxColor÷
64, from maxColor÷32. As the size of the array decreases by half, every thread
needs to loop a fewer number of times over the adjColors array, for every vertex
thereby improving the performance.

Considering that this optimization is useful only when the initial number
of colors is > 32, we use two versions of the code (one using ffsll and one
without); one of them is invoked at runtime, depending on the maximum degree
of the input graph.

4.2 Stepwise Doubling of maximum colors required

As discussed before, we use maxColor to compute the estimate for the size of
adjColors. However many of the web graphs are usually sparse graphs, with a
small number of vertices having large degrees and the rest having low degrees.
Consequently, using equation (1), we end up setting maxColor to a unneces-
sarily high value, even though the actual number of colors required to color the
graph is relatively very small. Such high values for maxColor increase the size
of the adjColors array, thereby increasing the execution time (and increasing
the memory requirements). We now present a scheme to reduce these overheads.

We set the initial value of maxColor to be a small number K0. Consequently,
the initial size of the adjColors array will be small, but may not be enough to
color the graph without any conflicts. This insufficiency in the number of colors
can be detected when there is no bit set (color available) in the adjColors array
in an iteration (line 5 in Fig. 3 and line 7 in Fig. 4). In such a case, we double the
value of maxColor and resize the adjColors array, and continue the coloring
process for the remaining vertices. Such a resizing can happen till the maxColor
value is sufficient to color the graph without any conflicts.

By doubling the value of maxColor when required and not setting it to a large
value conservatively, the size of the adjColors array can be significantly reduced.

In our evaluation, we use K0 =min
(

256, 2d(log2 (1+maximum-degree-of-the-graph))e
)

.

Thus, this optimization is impactful only for graphs whose maximum degree is > 256.

8 Meghana Aparna Sistla V. Krishna Nandivada

5 Discussion

We now present some of the salient points in the implementation of SIRG.
Compressed Sparse Row. We represent the graph using the standard compressed
sparse row (csr) format, that uses two arrays (ColIndices and Offset) to represent
the graphs. In addition, we maintain another array (called nextVertices) to efficiently
find, for each vertex v, the set of neighboring vertices that need to be checked for
conflicts, (given by S(v), see Section 3). The element nextVertices[i] points to the
index in ColIndices such that the vertices in adjacency list of vi from nextVertices[i]
to Offset[i+1] belong to S(vi). The ColIndices array is arranged such that, for each
vertex vi, the vertices in the adjacency list of vi are ordered by the vertex number, or
the vertex degree, depending on whether vertex number or degree is used for conflict
resolution (see Section 3). Maintaining this additional array nextVertices can provide
access to the elements of S(vi) in O(1) time during the conflict resolution phase.
Adding elements to worklist. In Fig. 4 (Line 8), every thread updates a shared
worklist (Wout) and this has to be done atomically. This leads to the invocation of a
large number of atomic operations, which can be potentially inefficient. To address this
issue we use the popular idea of using parallel prefix sum [10] to find the appropriate
indices where each thread of a warp can write (in parallel) to the shared worklist,
independently of each other. This leads to execution of one atomic operation per warp
(in contrast to one atomic operation per thread) and hence reduces the number of
atomic operations by a factor of up to 32 (warp size).
Distribution of worklist elements among GPU threads. The elements of the
worklist Win have to be divided among GPU threads in a data-driven implementation.
For efficiency, we implemented the worklists (Win and Wout) as global arrays and these
elements are distributed among the GPU threads in a cyclic order. Therefore, a thread
with id = t, accesses the vertices from Win such that the index i of the vertex in Win

satisfies the equation t = i%totalNumThreads. Note that we have also tried using the
blocked distribution, but found the cyclic distribution to be more efficient.
Number of threads. The optimal number of blocks per SM (maximum residency)
to be launched depend on many factors, such as the blocksize, number of registers,
shared memory size, and so on. We set the total number of blocks launched to be equal
to maximum residency × number of SMs. On experimentation, we found that setting
blocksize = 1024 threads gave the best performance, on our NVIDIA P100 system.
Topology-Driven Implementation. In addition to the data-driven implementation
discussed in Section 3, we also implemented the coloring algorithm of Rokos et al. [21]
using the topology-driven method [18]. We observed that the topology-driven imple-
mentation was significantly slower than the data-driven implementation and hence not
elaborated on, in this manuscript.
Difference in memory requirements between SIRG and ChenGC. Both SIRG
and ChenGC [13] follow the greedy approach and the memory usage is similar. Com-
pared to ChenGC, SIRG uses only an extra of 16 bytes overall to maintain some
additional meta-data information.

6 Implementation and Evaluation

We have compiled our codes using the CUDA 9.1 compiler and executed them on a
Tesla P100 GPU, with 12GB memory. We have evaluated our codes using eight differ-
ent graph inputs (details shown in Fig. 5), with vertices varying between 0.4M to 50M,

Graph Coloring using GPUs 9

Network Nodes (106) Edges (106) Avg degree Type

europe osm 50.9 108.1 2.12 Road Network

road usa 23.9 57.7 2.41 Road Network

orkut 3.1 234.3 76.28 Scale Free Network

livejournal 3.9 69.4 17.35 Scale Free Network

twitter7 41.6 323.3 7.76 Scale Free Network

mycielskian19 0.4 903.2 2296.95 General Network

rmat 1 10.0 199.9 20.00 Synthetic (0.5,0.5,0.5,0.5)

rmat 2 20.0 809.9 40.49 Synthetic (0.1,0.3,0.4,0.2)

Fig. 5: Graphs used in our experiments

edges varying between 57M to 903M. These inputs span both real-world graphs like
road networks and scale-free networks that follow power-law, and synthetic graphs (last
three). While the first six are obtained from the Florida Sparse Matrix Collection [6],
the last two are created using the R-MAT [4] graph generator (using the parameters
shown in Fig. 5). We now present our evaluation to understand (i) the performance
improvements realized by SIRG (uses the schemes discussed in Sections 3 and 4) over
the existing graph coloring algorithm of Chen et al. [13] that is targeted to GPUs (ab-
breviated ChenGC), and NVIDIA’s cuSPARSE library. (ii) the effect of the proposed
optimizations, and (iii) the impact of some of the design decisions. All these codes
(different versions of SIRG, ChenGC, and the code using the cuSPARSE library) used
for the comparative evaluation can be found on GitHub [22].

6.1 Comparison of SIRG Vs ChenGC and csrcolor

To perform a comparative evaluation of SIRG, we used ChenGC and the NVIDIA’s
cuSPARSE library (csrcolor function) to color the input graphs. While csrcolor was
general enough to color any given graph, we found that ChenGC did not terminate for
four of the eight input graphs. We found that the issue was because ChenGC uses a
fixed value for the maximum number of the required colors (maxColor) – the value for
this variable is hardcoded in their algorithm, unlike in SIRG, where no such restriction
is present. We found that in ChenGC, while setting maxColor to a very large number,
made the programs run successfully on all the inputs, but it had a drawback – the
programs took a very long time to run. On experimentation, we found the minimum
value for the variable maxColor, in order for ChenGC to run successfully on all the
input graphs was 1024; hence, we set maxColor=1024 in ChenGC.

Fig. 6a shows the speedup of SIRG with respect to ChenGC in terms of execution
time. We can observe that across all the input graphs, SIRG performs better than
ChenGC (between 1.15× to 5.68×, geomean 1.76×).

We find that in the real-world graphs the gains are much more than that in the
synthetic graphs. In general, we found that the stepwise-doubling optimization was
most effective in these real-world graphs in improving the performance. And this impact
was much higher in power-law graphs (for example, twitter7).

Fig. 6b shows the speedup of SIRG over csrcolor. In contrast to ChenGC, we did not
have to make any changes to csrcolor, for it to run. Fig. 6b shows that SIRG performs
significantly better than csrcolor (1.15× to 21.38×, geomean 3.42×). We see that except
for rmat 1 and rmat 2, SIRG performs leads to remarkably higher performance across

10 Meghana Aparna Sistla V. Krishna Nandivada

(a) Speedup over ChenGC. (b) Speedup over csrcolor.

Fig. 6: Speedup of SIRG over ChenGC and csrcolor.

Fig. 7: Speedup of SIRG over RIG

both power-law and non-power-law graphs. We believe the very high speedups obtained
in mycielskian19 is because of the specific nature of the input graph (higher density,
total number of nodes = 0.4 million, average degree ≈ 2300), which is making the
csrcolor perform poorly.

We have also compared the coloring quality (number of colors used) by the three
algorithms under consideration. While SIRG uses significantly fewer number of colors
(geomean 77% less) than csrcolor, the number is comparable to that of ChenGC (ge-
omean difference < 6%). We have observed that even this minor difference is mainly
related to the order in which the threads process the vertices. Further the main contrib-
utor for the increased geomean for SIRG (compared to ChenGC) is the mycielskian19
input, where SIRG takes 29% more colors. This is mainly because the specific struc-
ture of mycielskian19 where the increase in the number of threads is leading to more
conflicts and more number of colors.

Summary. We see that SIRG performs significantly better than csrcolor. It even
performs better than ChenGC, which has to be tuned manually in order to run suc-
cessfully on various graph inputs.

6.2 Comparison of SIRG vs RIG

We performed an comparative study of SIRG (on GPUs) over RIG (on CPUs) (see
Section 2). We evaluated RIG on a CPU with 40 cores. Similar to ChenGC, we observed
that RIG did not terminate for two of the eight input graphs, because of hardcoding the
maximum number of required colors (maxColor) to 256. On experimentation, we found

Graph Coloring using GPUs 11

Fig. 8: Effect of the optimizations.

Fig. 9: Effect on memory usage due to
stepwise-doubling optimization.

that the minimum value of maxColor variable required for RIG to successfully run on
all the input graphs was 512; hence, we set maxColor=512 in RIG and performed the
evaluations.

Fig. 7 shows the speedup of SIRG over RIG. We can observe that SIRG performs
better than RIG (geomean 10.37×) on almost all the input graphs except mycielskian19.
This is due to the specific structure of mycielskian19 graph, where the gains due to
increased parallelism are getting overshadowed by the overheads due to increased color
conflicts, especially for large number of threads.

6.3 Impact of the proposed optimizations

Fig. 8 shows the effect of the two proposed optimizations (Opt1: Section 4.1, and Opt2:
Section 4.2) over our baseline approach (Section 3); the graph shows the achieved
speedup over input graphs where the optimizations were invoked. For europe osm,
road usa and rmat 1 where the maximum degree was not more than 32, Opt1 was
not invoked, and Opt2 had no effect.

We see that, for most inputs, Opt1 performs better than the Baseline and Opt2 adds
to the performance improvements much more. We also observe that in the power-law
graphs, the effect of Opt2 is high and led to large gains (up to 11.56×).

In Section 4.2, we discuss that Opt2 (stepwise-doubling optimization) can also help
reduce memory consumption. We show this impact in Fig. 9. The figure compares the
memory consumption of SIRG, against SIRG without Opt2, for the inputs on which
Opt2 had some impact. It shows that the impact of Opt2 on the memory requirements
is high: leads to geomean 96.59% reduction in memory.

Summary. Our evaluation shows that the proposed optimizations lead to significant
gains and attests to the importance of these optimizations.

6.4 Impact of maintaining adjColors array per thread

In Section 4, we have discussed that due to the memory overheads and scalability
issues, we allocate adjColors array for each thread instead of each vertex. We now
discuss the impact of such a choice. We show the impact (in Fig. 10) in terms of
total time and memory usage for two configurations: (i) SIRG with adjColors array
allocated for each vertex, and (ii) default SIRG: with adjColors array allocated for
each thread.

12 Meghana Aparna Sistla V. Krishna Nandivada

Fig. 10: %Improvement due to per-thread Vs per-vertex allocation of adjColors.

The figure shows that allocating adjColors for each vertex can increase the memory
requirements significantly, which is avoided by doing per thread allocation (Geomean
96.41%). While a per-vertex scheme may lead to some minor gains for some inputs (for
example, 4.87% for twitter7), overall we find that per-thread allocation of adjColors
led to better execution times (geomean 13.48%).

We found that allocating adjColors per vertex increases the memory requirement
so much that in the absence of Opt2 (which reduces the memory consumption sig-
nificantly), the program runs out of memory for many inputs (for example, orkut,
twitter7, mycielskian19). This further shows the importance of our choice of per-
thread allocation of the adjColors array.

Overall summary. Our evaluation shows that SIRG performs better than both
csrcolor and ChenGC. We found our optimizations and design choices lead to efficient
executions (both in terms of execution time and memory usage).

7 Conclusion

In this paper, we presented a fast and scalable graph coloring algorithm for GPUs. We
extended the algorithm by Rokos et al. [21] to efficiently color graphs for GPUs using
a data parallel implementation, with a better heuristics for color-conflict resolution.
We also proposed two optimization techniques to improve both the execution time and
memory requirements. We showed that compared to the NVIDIA’s cuSPARSE library
and the work of Chen et al. [13], our implementation runs significantly faster (geomean
3.42× and 1.76×, respectively). We also showed that our algorithm (on GPUs) performs
geomean 10.37× faster than the scheme of Rokos et al. [21] (on CPUs).

References

1. Biggs, N.: Some Heuristics for Graph Colouring. In: Nelson, R., Wilson, R.J. (eds.)
Graph Colourings, pp. 87–96 (1990)

2. Çatalyürek, Ü.V., Feo, J., Gebremedhin, A.H., Halappanavar, M., Pothen, A.:
Graph Coloring Algorithms for Multi-core and Massively Multithreaded Architec-
tures. Parallel Computing 38(10-11), 576–594 (2012)

Graph Coloring using GPUs 13

3. Chaitin, G.J.: Register Allocation & Spilling via Graph Coloring. In: ACM SIG-
PLAN Notices. vol. 17, pp. 98–105. ACM (1982)

4. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A Recursive Model for Graph
Mining. In: ICDM. pp. 442–446. SIAM (2004)

5. Chalupa, D.: On the Ability of Graph Coloring Heuristics to Find Substructures in
Social Networks. Information Sciences and Technologies, Bulletin of ACM Slovakia
3(2), 51–54 (2011)

6. Davis, T.A., Hu, Y.: The University of Florida sparse matrix collection. ACM
TOMS 38(1), 1 (2011)

7. Dorne, R.and Hao, J.K.: A New Genetic Local Search Algorithm for Graph Col-
oring. In: International Conference on Parallel Problem Solving from Nature. pp.
745–754. Springer (1998)

8. Gebremedhin, A.H., Manne, F.: Scalable Parallel Graph Coloring Algorithms. Con-
currency: Practice and Experience 12(12), 1131–1146 (2000)

9. Grosset, A.V.P., Zhu, P., Liu, S., Venkatasubramanian, S., Hall, M.: Evaluating
Graph Coloring on GPUs. ACM SIGPLAN Notices 46(8), 297–298 (2011)

10. Harris, M., Sengupta, S., Owens, J.D.: Parallel prefix sum (scan) with CUDA.
GPU gems 3(39), 851–876 (2007)

11. Jones, M.T., Plassmann, P.E.: A Parallel Graph Coloring Heuristic. SIAM Journal
on Scientific Computing 14(3), 654–669 (1993)

12. Jones, M.T., Plassmann, P.E.: Scalable Iterative Solution of Sparse Linear Systems.
Parallel Computing 20(5), 753–773 (1994)

13. Li, P., Chen, X., Quan, Z., Fang, J., Su, H., Tang, T., Yang, C.: High Performance
Parallel Graph Coloring on GPGPUs. In: IPDPS Workshops. pp. 845–854. IEEE
(2016)

14. Luby, M.: A Simple Parallel Algorithm for the Maximal Independent Set Problem.
Journal on Computing 15(4), 1036–1053 (1986)

15. Manne, F.: A Parallel Algorithm for Computing the Extremal Eigenvalues of Very
Large Sparse Matrices. In: International Workshop on Applied Parallel Computing.
pp. 332–336. Springer (1998)

16. Marx, D.: Graph Colouring Problems and their Applications in Scheduling. Peri-
odica Polytechnica Electrical Engineering 48(1-2), 11–16 (2004)

17. Mehrotra, A., Trick, M.A.: A Column Generation Approach for Graph Coloring.
INFORMS Journal on Computing 8(4), 344–354 (1996)

18. Nasre, R., Burtscher, M., Pingali, K.: Data-driven versus Topology-driven Irregular
Computations on GPUs. In: IPDPS. pp. 463–474. IEEE (2013)

19. Nvidia, C.: CuSPARSE Library. NVIDIA Corporation, Santa Clara, CA (2014)
20. Philipsen, W., Stok, L.: Graph Coloring using Neural Networks. In: IEEE Interna-

tional Sympoisum on Circuits and Systems. pp. 1597–1600. IEEE (1991)
21. Rokos, G., Gorman, G., Kelly, P.H.: A Fast and Scalable Graph Coloring Algorithm

for Multi-core and Many-core Architectures. In: EuroPar. pp. 414–425. Springer
(2015)

22. Sistla, M.A., Nandivada, V.K.: Artifact for Graph Coloring using GPUs (2019),
https://github.com/cs14b052/Graph-Coloring-using-GPUs

https://github.com/cs14b052/Graph-Coloring-using-GPUs

	Graph Coloring using GPUs

