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ABSTRACT
In this paper we present an automated technique for localizing faults
in data-centric programs. Data-centric programs primarily interact
with databases to get collections of content, process each entry in
the collection(s), and output another collection or write it back to
the database. One or more entries in the output may be faulty. In
our approach, we gather the execution trace of a faulty program.
We use a novel, precise slicing algorithm to break the trace into
multiple slices, such that each slice maps to an entry in the output
collection. We then compute the semantic difference between the
slices that correspond to correct entries and those that correspond
to incorrect ones. The “diff” helps to identify potentially faulty
statements.

We have implemented our approach for ABAP programs. ABAP
is the language used to write custom code in SAP systems. It inter-
acts heavily with databases using embedded SQL-like commands
that work on collections of data. On a suite of 13 faulty ABAP pro-
grams, our technique was able to identify the precise fault location
in 12 cases.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Program Analy-
sis; D.2.5 [Testing and Debugging]: Debugging aids

General Terms
Algorithms, Languages

Keywords
Automated debugging, Data-centric languages, Slicing, Semantic
differencing

1. INTRODUCTION
Bug resolution is an important activity in any software main-

tenance project. Bug resolution for problems reported on appli-
cations already in use (in production) has two main implications.
First, a client has discovered a bug in the field, and so it needs to
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be fixed urgently. Therefore, it is important to have good tool sup-
port that can help the programmer debug the program as quickly
as possible, especially when the person who is debugging the code
is not the programmer who originally wrote the code. Second, the
bug has surfaced despite the fact that the code has been tested and
has probably been running in the field for some time. That means
it is likely to be an unanticipated corner case in otherwise correct
code, and automated tools can focus their effort on identifying such
corner cases.

The techniques presented in this paper, were developed to aid in
faster resolution of programming errors reported for ABAP pro-
grams. ABAP is a widely used propriety language used in SAP-
ERP systems, and is heavily data-centric in the tradition of PL/SQL
and COBOL. Data-centric programs process large collections of
data that typically originate from a database. ABAP contains both
imperative and declarative syntax. The declarative syntax is similar
to SQL and allows developer to do complex operations on collec-
tions of data. Henceforth, we refer to this declarative SQL-like
commands in ABAP as database statements.

Figure 1 shows a sample program written in ABAP and Fig-
ure 2 explains the syntax of each of the commands. This pro-
gram represents a business application that creates a report of or-
ders placed by different customers. Figure 3(a) shows a sample
input and output data combinations from the program. Each cor-
rect output row is followed by a

√
. The output row that is con-

sidered incorrect is marked with a × and is followed with the ex-
pected correct output. The OrderTab table contains the order de-
tails such as customer who placed the order CstId, item ordered
ItemId, its price Price and year in which the order was placed

1 SELECT CstId ItemId Price Year from OrderTab INTO itab
2 SELECT CstId Discount Year from DiscountTab INTO stab
3
4 SORT itab CstId ItemId
5 DEL from itab where Year <= CurrentYear − 2 .
6 LOOP AT itab INTO wa
7 AT NEW CstId
8 amount=0
9 ENDAT

10 amount = amount + wa .Price
11 READ stab INTO fa WHERE CstId = wa .CstId
12 IF subrc = 0
13 amount = amount − fa .Discount
14 ENDIF
15 AT END CstId
16 WRITE CstId amount
17 ENDAT
18 ENDLOOP

Figure 1: Sample ABAP program



Command Description
SELECT project selected columns from a persistent database table

to an internal table in the program
SORT sorts the specified internal table on specified key(s)
DEL deletes rows from a table that satisfies the condition
LOOP iterates over an internal table, reading one row at a time

into a local record
AT NEW a predicate that is true for a given row and field name(s)
(AT END) when the row is the first (last) one in the table or when

the field’s value in the current row is different from the
previous (next) row

READ selects a row from table based on the WHERE clause.
If more than one row matches, the last row is returned

WRITE prints the specified data
wa.f field f of structure wa (actual ABAP syntax wa-f)

Figure 2: Basic ABAP syntax

(a) OrderTab/itab
CstId ItemId Price Year

1 I1 10.0 2010
1 I2 10.0 2011
2 I3 10.0 2011

Output
CstId Amount

1 16.0 × [= 10.0 + 10.0 - 2.0 - 2.0]
[18.0X= 10.0 + 10.0 - 2.0]

2 7.0 X[= 10.0-3.0]

DiscountTab/stab
CstId Discount Year

1 2.0 2010
2 3.0 2011

(b)

8 15 16

10 11 12 13

161513111087 12

5 7

5

6

6
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Line 16, <1,16.0>

Line 16, <2,7.0>

Figure 3: (a) Input and output for the ABAP program illus-
trated in Figure 1. (b) Dynamic slices for each output row.

Year. The DiscountTab table contains the discount applicable per
customer per year. The output shows for each customer the total
order amount. At the code level, the program first reads the input
data from OrderTab and DiscountTab into internal tables itab, stab
(lines 1,2), sorts table itab (line 4) and deletes records older than
year 2010 (line 5). The CurrentYear variable is a parameter to
the program and has value 2011. The program then loops over the
contents of itab (line 6), sums up the Price (line 10), subtracts any

(a) OrderTab/itab-pre
CstId ItemId Price Year

1 I1 10.0 2009
1 I2 10.0 2011
2 I3 10.0 2011

itab-post
CstId ItemId Price Year

1 I2 10.0 2011
2 I3 10.0 2011

DiscountTab/stab
CstId Discount Year

1 2.0 2011
2 3.0 2011

Output
CstId Amt

1 8.0 × [= 10.0-2.0]
[16.0X = 10+
10.0-2.0-2.0]

2 7.0 X

(b) 1
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Figure 4: (a) Input and output for the ABAP program illus-
trated in Figure 1. (b) Dynamic slices for each output entry.
(c) Key based slices for each output row.

(a) OrderTab/itab
CstId ItemId Price Year

1 I1 10.0 2010
2 I3 10.0 2011

Output
CstId Amount

1 8.0 × [= 10.0 - 2.0]
[7.0 X= 10.0 - 3.0]

2 7.0 X

DiscountTab/stab
CstId Discount Year

1 2.0 2009
1 3.0 2010
2 3.0 2011

(b)
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Figure 5: (a) Input and output for ABAP program illustrated
in Figure 1. (b) Key-based slice for each output row.

relevant Discount (line 13) and prints out the total (line 16). One
output entry is generated for each unique CstId present in the input
OrderTab.

There are several challenges involved in developing fault local-
ization techniques for these types of programs. The first challenge
is that the analysis needs to handle both the imperative and declar-
ative parts of the language. What should be the correct representa-
tive semantics for the different SQL-like commands in an ABAP
program? Another challenge is that the analysis needs to be data
driven, as the behavior of a command is very often dependent on
the underlying data. Thus the same command at the same program
point may run without any problems for most of the data and yet
may throw an exception or generate incorrect output for some other
data. As we shall see later in the paper, for the example shown in
Figure 1, depending on the combinations of data available in the
OrderTab and DiscountTab tables, three different bugs can mani-
fest themselves in the output.

Problem resolution methodology. A large body of past work
on fault localization relies on the usage of program slicing [1]. The
basic idea in these techniques is that, when a program computes a
correct value for a variable x and an incorrect value for variable y,
the fault is likely to be in statements that are in the slice with re-
spect to y but not in the slice with respect to x [14]. Similarly, if a
program computes correct value for a variable x in a particular test
case and computes incorrect value in another test case, then the po-
tentially faulty statements would be in the difference between the
slices of these two program executions [2, 22]. Our problem reso-
lution methodology is motivated by these prior works and attempts
to apply the same in the domain of data-centric programs.

One of the key challenges in applying any of the slicing based
fault localization techniques in real world debugging scenarios is
the lack of significant number of test cases that show the correct
behavior of the program. These test cases are needed to collect
the execution traces of correct examples that can be differentiated
with the trace for the incorrect execution as reported in the bug
description. However, in the context of data-centric programs, we
can leverage the fact that a single run of the program yields an
execution trace that can in turn be split into multiple independent
slices, each of which is responsible for a single record in the output.
This is because these programs typically loop over the input data
records, aggregate the input depending on certain key fields and
generate an output record per key value. In the case of the example
discussed above, the key field was CstId. A defective program
writes incorrect values for one or more key values. Further, if a
user specifies that certain output rows are incorrect and we assume
that the rest of the output is correct, we can associate a “incorrect”



or a “correct” tag with each slice corresponding to each row of
output. We can then compute the difference between the correct and
incorrect slices to discover the statements that are potential sources
of bugs.

To identify the bug reported in Figure 3(a), denoted by the out-
put row postfixed with×mark, we first collect the dynamic trace by
running it on the input that reveals the problem. We split the trace
into multiple slices by applying dynamic slicing starting at each in-
stance of line 16 (WRITE) in the execution trace. Figure 3(b) shows
the slices. We then compute the difference between the slices to
identify that line 10 through 13 are executed twice in the first slice
versus once in the second slice. The lines are highlighted as fault
inducing statements. This finding relates to the problem that the
discount should have been given only once per customer. In the cor-
rected code (done manually by the programmer), lines 11 through
14 were moved inside the AT END block (after line 15).

Key-based Slicing. It may appear that we can always gener-
ate incorrect and correct slices, and apply a differencing technique
to this setting. However, this is not the case, as the dynamic slice
based on simple data and control dependence may not differentiate
between a correct and an incorrect execution slice. Consider the
bug reported for the same program using input data in Figure 4(a).
In this case the user was expecting to see the amount value as 16.0
for CstId = 1 (considering that we have the code as it is in Fig-
ure 1). However, the code is deleting all order records that are older
than 2 years (line 5). This means the conditional in DELETE state-
ment in Line 5 is incorrect or incomplete. The slices for both the
output rows are the same as shown in Figure 4(b) and hence differ-
encing will not be able to identify any faulty lines. We resolve this
by enhancing the existing dynamic slicing with the introduction of
a key in the slicing predicate. The intuition for this is as follows.
Usually in a data-centric program, as part of the output record, one
or more input fields are written that together act as the identifier (or
key) for the data and is unchanged from the input to output. For our
example this field is the CstId. So, besides using an execution of a
particular statement as the predicate for our slice, we also use the
value of this key field as our slicing criterion. Figure 4(c) shows the
key-based slices. Line 5 is only showing a side-effect for records
in OrderTab with CstId = 1. The values in the table itab before
(Pre) and after statement #5 (Post) are shown in Figure 4(a).

Once we do a differencing on these key-based slices, our tech-
nique highlights line 5 as the potential fault inducing code, as it
effects the incorrect slice, and not the correct slice.

Semantic Differencing. In some cases even key-based slicing
is not enough to differentiate between slices. Consider the input
data in Figure 5(a) for the same program. Here the key slices for
both the output records are the same. The actual difference is in the
behavior of line 11 in its two different executions. The READ state-
ment in ABAP returns only a single matching record. If there exist
multiple records that match the selection criterion (WHERE clause),
then it returns the first one. For CstId = 1, line 11 would need
to select from two records, while for CstId = 2, there is only one
matching record. Hence, the behaviors of the READ statement for
these two keys are different. Our semantic differencing algorithm
identifies such statements in the execution trace where different be-
havior of the command/statement have been exercised in the cor-
rect and incorrect key slices and highlights them as potential faults.
For the example application, the fix is to change the READ (stmt
11) as READ stab INTO fa WHERE CstId = wa.CstId and Year =

wa.Year such that appropriate year-wise discount is availed.

Novelty and Contributions. Key-based slicing and semantic
differencing are novel generalizations of previous work on fault lo-
calization based on comparing program executions. Prior work in
this area mostly takes into account just whether a statement appears
in one slice but not in another one; but it does not take into ac-
count the manner in which it appears in a slice. Key-based slicing
also takes into account the relevance of execution of statements to
specific keys that were used in creating those slices; this is impor-
tant in the context of data-centric programs. Semantic differencing
contributes yet another attribute of statement execution, where the
behavior of statement execution on specific input data is taken into
account. We believe that our work is among the first to success-
fully adapt and extend fault-localization techniques to data-centric
programs that occur in an industrial setting.

We have built a tool that takes an execution trace of an ABAP
program and an indication of the buggy part of output. The tool
then offers diagnosis of faults based on the techniques presented
in this paper. In most cases, the diagnosis if found, was a single
statement (for semantic differencing, we were looking for only a
single statement difference).

Our experiments with the tool show that the above differencing
techniques were able to accurately localize faults in 12 out of 13
ABAP programs provided to us by our colleagues in IBM Global
Business Services. These ABAP programs were either old versions
of some programs where there was a known defect that has since
been fixed, or were programs in which a realistic defect was seeded
by them. A baseline version of the tool that did not incorporate the
generalizations of differencing mentioned above was effective only
in 3 out of the 13 programs.

Organization. In the next section we give the details of our slic-
ing algorithm. In Section 3, we elaborate on the differencing algo-
rithm. In Section 4, we give the results of running our analysis on
field bugs. Section 5 describes the related work and we conclude in
Section 6 with some additional discussion on future work.

2. DYNAMIC SLICING
The efficacy of our differencing algorithm (cf. Section 3) de-

pends on the accuracy of slicing. In this section we present an al-
gorithm that performs precise backward dynamic slicing on execu-
tion traces containing database commands. Each slice is computed
starting from a statement occurrence (Lineseq) that produces a row
in the output, and on a set of variables (V ), occurring in the state-
ment. This constitutes the slicing criteria 〈Lineseq, V 〉. We refer
to the slices producing incorrect output as incorrect slices, and to
the slices producing correct output as correct slices. The slices ob-
tained in this way are analyzed with a differencing algorithm to
reason about the possible faults present in incorrect slices.

Traditional slicing algorithms are oblivious to the rows and fields
of tabular data (i.e., table accesses are treated as table[*].*). This
results in overly conservative slices that are not effective in differ-
encing data-centric programs. We obtain a row and field-sensitive
algorithm based on the existing techniques of handling non-scalar
data [29, 28, 19]. Our algorithm is built on top of precise (to the
field-row level) dependency information, which can be obtained
from the semantics of the statement and the data present in the ex-
ecution trace. For example, the effect of a DELETE statement on a
table is modeled such that it is possible to know the shift of indices
of all the rows. The data effect of the DELETE statement will contain
all those rows, whose table index is changed by the DELETE state-
ment. In general, for each compound statement, its final effect is
represented by a set of assignment statements, and a set of def-use
pairs are identified from the assignment statements.



11, 22, 43, 54, 65, 76, 87, 98, 109, 1110, 1211, 1312, 1413, 1514, 1615,
1716, 1817, 618, 719, 820, 921, 1022, 1123, 1224, 1325, 1426, 1527, 1628,
1729,1830

(a) Execution Trace: List of LineSequenceId

Iq Statement φ

1628 WRITE amount
1527 AT END CstId itab.length
1325 amount = amount - fa.Discount amount, fa.Discount, itab.length
1224 IF subrc = 0 subrc, amount,

fa.Discount, itab.length
1123 READ stab into fa amount, stab[1].Discount,

where CstId = wa.CstId wa.CstId, itab.length
1022 amount = amount+wa.Price amount, wa.Price, itab.length

stab[1].Discount, wa.CstId
820 amount = 0 wa.Price, itab.length,

stab[1].Discount, wa.CstId
719 AT NEW CstId wa.Price, itab.length,

stab[1].Discount, wa.CstId
itab[0].CstId, itab[1].CstId

618 LOOP at itab into wa. itab[1].Price, stab[1].Discount,
itab[1].CstId, itab.length
itab[0].CstId

54 DEL from itab where .. itab[2].Price, stab[1].Discount,
itab[2].CstId, itab.length
itab[1].CstId

22 SELECT .. from DiscountTab itab[2].Price, itab[2].CstId
into stab DiscountTab[1].Discount,

itab.length, itab[1].CstId
11 SELECT .. from OrderTab OrderTab[2].Price

into itab DiscountTab[1].Discount,
OrderTab[2].CstId,
OrderTab[1].CstId

(b) Update of Data Dependency Set

Figure 6: Example: Slice Computation

The execution trace of the example in Figure 1 for input data
specified in Figure 4, is presented in Figure 6(a). Figure 6(b) shows
the update of the data dependency information after including each
statement occurrence in the slice that is computed for the amount

variable in the second row of the output, generated at statement
occurrence 1628.

Note that, due to shift of indices and its effect on the length of the
table, the statement 54 is included in the slice. The DELETE state-
ment actually does not affect the computation that is done for the
second row of the output, as the addition is not performed on ele-
ments which have Year value ≤ 2009. Thus inclusion of DELETE

statement in this slice makes it imprecise. Whereas, the slice com-
puted with criteria 〈1615, {amount}〉 should include the DELETE

statement, as the deleted rows, affect the computation, performed
to compute the sum at 1615.

2.1 Key-based Slicing
As discussed above, the row and field-sensitive slicing algorithm

can result in imprecise slices. An important question to answer is,
when does a statement occurrence become a part of the slice? Our
dynamic slices represent the computations that affect specific rows
in the output. A statement occurrence is not considered to be a part
of the slice, if its absence has no effect on the computation of the
variable values in the output row associated with the slice.

If a statement occurrence only affects the position of a row in
the output, and not the values, we do not consider the statement to
be part of the slice. In our experience it was the content of the
row and not the order in which they occurred in the output that was
more commonly observed to be at fault.

To determine whether a statement occurrence is effecting the

variable values in the slicing criteria we need to check two con-
ditions: (C1) if the statement occurrence is performing any op-
eration that defines a variable in the dependency set, (C2) if the
absence of the statement can change the dependency set in terms
of addition or deletion of elements. If either of the conditions C1
or C2 is true, the statement is added to the slice. The statements
that could change the dependency set by adding/deleting elements
are called db-change statements. The DELETE statement in our run-
ning example does not satisfy the condition C1 for the slices cor-
responding to either row of the output. The condition C2 is sat-
isfied for the first row of output: in the presence of the DELETE

statement, the dependency set in the slice corresponding to CstId=1

contains OrderTab[1].Price (as shown in Figure 6(b)), whereas in
the absence of DELETE statement, that slice would have contained
OrderTab[0].Price and OrderTab[1].Price. However, the condi-
tion C2 is not satisfied for the DELETE statement in the slice corre-
sponding to the second output (corresponding to CstId=2), as in the
absence of the DELETE statement, the dependency set would have
still contained only OrderTab[2].Price.

The condition C1 is straightforward to check, and it is assumed
that this check is precisely done as a part of field-row-sensitive al-
gorithm for the non-db-change statements. We now present a cri-
teria to check the condition C2 on the db-change statements. The
purpose of this criteria is to remove a statement from the slice
which otherwise would be included in the slice by a field-row-
sensitive algorithm which takes conservative decision for inclusion
of such database statements in the slice. The criteria has two parts
1) key-value condition and 2) sequence condition.

The first condition can be motivated by revisiting the running
example. It is evident that the slices with respect to the criteria
〈1628, {amount}〉 and 〈1615, {amount}〉 have association with key-
value pairs 〈CstId, 2〉 and 〈CstId, 1〉 respectively. With this as-
sociation, whether to include the statement occurrence 54 can be
easily checked by determining whether the deleted rows match the
key-value pairs. In general, we say a row r matches a key-value
pair (k, v) if the value of key k in row r is equal to v. A state-
ment is not included in the slice if any change performed by the
statement (such as added or deleted rows) does not match with the
key-value pairs.

However, even if the change performed by a statement matches
the key-value pair condition, the statement may not have any effect
on the slice criteria, and thus, may not be included in the slice. The
sequence condition, described next, is a condition that applies in the
common GROUP-BY/ORDER-BY pattern in database processing. Con-
sider an example pre-state and post-state of the DELETE statement
54.

itab(Pre) itab(Post)
CstId ItemId Price Year CstId ItemId Price Year
1 I1 10.0 2009 1 I2 10.0 2011
2 I1 5.0 2009 2 I3 10.0 2011
1 I2 10.0 2011
2 I3 10.0 2011

Here the DELETE statement does not affect the slicing criteria
〈1628, {amount}〉 as only the position of output row has changed,
and not its values. The deleted rows could possibly effect the ag-
gregated computations only if in the pre-state they were adjacent to
the remaining undeleted rows. Sequence condition states that the
table elements that are used to compute the values of the variables
in the slicing criteria, are accessed in sequence. If the sequence
condition is not met after key condition is met, the statement is not
included in the slice. Note that the example does satisfy the key-
value condition, so the sequence condition offers extra precision by
eliding the DELETE statement from the slice.



There are multiple ways to identify key fields for association.

• The key fields may be specified by the user. This is not an
unrealistic assumption. Observations on actual bug reports,
indicate that the users find it more intuitive to describe the
problem using the key fields associated with the row, i.e.,
they are more comfortable in specifying something like, "the
unbilled amount for customer 2 is wrong", rather than, "the
unbilled amount in the second row of the table is wrong"
• Fields in the internal table that are not modified before being

written out into the output.
• Fields in the internal table that are used to select the rows to

operate on (in SELECT, DELETE, MODIFY, etc.).

To summarize, we introduced, the key-value, and the sequence
conditions, to more precisely evaluate condition C2 for verifying
the inclusion of compound statements that process table elements,
into a slice. It is important to describe here that as we move back-
ward in the slice, the checking of one or both of these conditions
may no longer remain applicable. For instance, say we encounter
a statement such as SORT, which sorts the table elements based on
the key-values, then as we move backward in the slice, we expect
the table elements, to not be in sequence w.r.t. the key-values. Sim-
ilarly, we may encounter a statement such as APPEND, backward to
which, the key-value may not exist in the table elements.

The details of our key-based slicing algorithm are presented in
Figure 7.

• Lines 1-6, 8-11, 15-16, 20-21 represent a basic field and row
sensitive dynamic slicing algorithm.
• Function get_def_use(s) returns a set of def-use pairs rep-

resenting def-use relationship between each pair.
• Function field_row_sensitive_inclusion_check performs

checks like nonempty intersection of dependence set and defs
in duSet to check data dependency and control dependency
to include a statement occurrence in the slice.
• Once a statement is identified to be included in the slice, the

dependency set is updated by removing the def and including
use of each def-use pair in duSet (Line 16).
• Above the check done by field-row sensitive check, we add

the key-value and sequence checking (Lines 12-13) to de-
termine whether a statement occurrence chosen by the basic
field-row sensitive algorithm will be part of the slice. These
checks are only done for db-change statements.
• Function check_kv_assumption checks that all the non-scalar

elements in the dependency set satisfy the key-value pairs
• Function check_seq_assumption checks that all the elements

in the dependency set are in sequence, so that any statement
occurrence which has a change outside this sequence will not
have any effect for a particular key value.

Note that to highlight the interesting part of the algorithm we do
not present the slicing algorithm in terms of dynamic dependence
graph [1], used to express the data and control dependencies in the
execution trace.

While, it is possible to give a necessary and sufficient condition
to check the condition C2, the evaluation of such condition is not
scalable, and thus not ideal for practical purpose. In this paper,
we therefore restrict the presentation to the practical and scalable
technique of key-based slicing.

3. SLICE DIFFERENCING
In this section we present the fault localization algorithms. We

extend an existing approach to identify faults–to find the difference

1 Function KeySlice (Iq, V, S )
2 Input : int Iq /∗sequenceid∗ / , Set V /∗set of vars ∗ /
3 Output : List S /∗ List of statements ∗ /
4

5 Set φ = V
6 int i = Iq

7 key−value−pairs kvp = kvpairs / / computed or user provided
8 while i>0
9 s = stmt .get ( i )

10 duSet = get_def_use (s ) / / statement specific
11 if (field_row_sensitive_inclusion_check (s ,duSet ,φ )
12 ∧ ( !key_assumption_valid | | (check_kv_constraint (kvp ,s )
13 ∧ ( !sequence_valid | | check_seq_constraint (kvp ,s ,φ ) ) ) )
14 )
15 slice .add (s )
16 φ = update_dep_set (φ ,duSet )
17 key_assumption_valid = check_kv_assumption (φ ,kvp )
18 if key_assumption_valid
19 sequence_valid = check_seq_assumption (φ ,kvp )
20 i−−
21 return slice ;
22

23 check_kv_constraint kvp , s
24 if s is not a db−change statement
25 return true / / condition C1
26 if any change by s satisfies kvp
27 return true
28 else
29 return false
30

31 check_seq_constraint kvp , s , φ
32 c = changes by s that satisfies kvp
33 if check_sequence_assumption ( {c, φ} ,kvp )
34 return true
35 else
36 return false
37

38 check_kv_assumption φ , kvp
39 for each structure variable v.f
40 if f ∈ kvp.keySet
41 if value of v.f != kvp .getValue (f )
42 return false
43 return true
44

45 check_seq_assumption φ , kvp
46 for all itab
47 for any key f ∈ kvp.keys
48 I = set of all i s .t . itab[i].f ∈ φ
49 if elements of I are not in sequence
50 return false
51 return false

Figure 7: Key-based Slicing

in behavior between slices that produce correct and incorrect out-
put [14], and localize the faults at difference points. The novelty of
our technique lies in the way we compute the differences between
slices.

We apply two main differencing techniques. The first technique
is relatively simple, where any control difference between two slices
is determined (cf. Section 3.1). Such difference analysis typically
determines the difference in sequences of statement occurrences in
correct and incorrect slices. However, it is possible that sequence-
based differencing may not produce any difference as the same se-
quences of statements can be present in both the slices. The second
technique is particularly novel as it tries to find out the behavioral
differences between two slices–finding statements that are present
in both correct and incorrect slices but shows difference in their se-
mantic behaviors (cf. Section 3.2). Note that, these differencing
techniques are useful to localize faults when certain rows (not all)
in the generated output have incorrect results.



3.1 Sequence-based Differencing
The main aim of sequence-based differencing is to identify state-

ments that contribute towards computation of the incorrect result
and do not contribute to the computation of at least one correct re-
sult. To realize the presence of such statements we perform a two
step process: 1) grouping correct and incorrect slices into equiva-
lence classes, and 2) perform pair-wise differencing between the
representative elements of the correct and incorrect equivalence
classes.

In data-centric programs it is common to find the slices contain-
ing traces of same set of statements, but differing in the number
of iterations of the some loops. Thus, while creating equivalence
classes in correct and incorrect slices, we combine two slices into
the same class if they are exactly same or if they have different
number (≥ 1) of iterations of the same statements in a loop. Gen-
erating equivalence classes in correct and incorrect slices reduces
the number of pair-wise comparisons required to find differences
between slices.

While sequence-based differencing of two slices, one from a cor-
rect equivalence class and another from an incorrect equivalence
class, any difference of statements executed in the sequences of
statement occurrences is noted. However, due to common nature
of loop-iteration differences (such as, different number of loop it-
erations), these differences are given lower priority among all-sets
of pair wise differences. The actual algorithm of sequence-based
differencing in presence of loops is not presented here for brevity.

3.2 Semantic Differencing
As discussed above, an incorrect slice may not show any impor-

tant difference compared to correct slices in sequence-based differ-
encing. This is possible if a statement exhibits different “behaviors”
in two slices due to the nature of input data to the statement. We
call such difference in behavior as semantic difference. In this sec-
tion, we illustrate such differences, and present algorithms to detect
semantic differences. To the best of our knowledge, this is the first
attempt to perform fault localization based on differences in the
semantics as seen during the execution of program statements.

Consider the example program presented in Figure 1 and the cor-
responding test case shown in Figure 5(a). In this example corre-
sponding to the CstId=1 there are two rows in stab. In the READ

statement at Line 11 when the selection condition is satisfied with
multiple rows, then first (lowest index) matching row is selected
based on ABAP semantics. In the example , the first row is selected
with Discount=2.0, which results in output 8.0 instead of the cor-
rect output 7.0 corresponding to CstId=1. In this example, same
slices exist for the two output rows as shown in Figure 5(b). So
sequence-based differencing does not find any difference between
slices.

In semantic differencing, we assume that there must exist a faulty
statement in the program that appears both in the correct and incor-
rect slices, such that it fortuitously exhibits the intended seman-
tics in the correct slices, but deviates from the intended semantics
(based on programmer intent) in the incorrect slice. Remember that
the fortuitous correct behavior in the correct slices is specific to the
particular input data.

The important question is, how do we tell if a statement has de-
viated from its intended semantics? After all, programmers do not
provide assertions after each statement to verify if the effect of the
statement just executed is as they expected. We only know that the
final effect, i.e. the intended output is present in the correct slices,
and the unintended output in the incorrect slice.

In this paper, we use two kinds of heuristics to find the first state-
ment in the incorrect slice which shows such a deviation.

Statement Type Target Corner-case Difference
READ from itab into wa where C Multiple/Unique rows are satisfied

with C

APPEND/INSERT lines of jtab from
idx1 to idx2 to itab.

The number of rows appended/inserted
is different from idx2 - idx1 + 1

INSERT The inserted row makes certain set of
rows with same keys non-contiguous.

APPEND/INSERT The inserted/appended row makes
sorted data unsorted

Assignment
MOVE
MOVE-CORRESPONDING
transporting clause

overflow
overwriting same value

LOOP at itab. ... ENDLOOP. the statement within loop contains
delete from itab.

AT NEW/END Whether AT NEW and AT END both
is true for a single row.

DEL ADJ from itab comparing f1..fn. the table is not sorted with f1..fn
DELETE from itab where C Multiple/Single row selected by C.

selection condition a ≤ b a = b

selection condition a ≥ b a = b

Figure 8: Corner-case Differences

Corner Case Differencing. The first method of semantic dif-
ferencing is called corner-case differencing. The semantics of some
of the statements are classified into two separate categories: a nor-
mal case, and one or more corner cases. For example, in a READ

statement, the WHERE condition could match multiple rows, or just
one row. Since the first matching row is returned by the READ, the
matching of just one row among several candidates is a corner case.
A table of corner and non-corner cases for several statements is
given in Figure 8. Given a trace, we can tell if a statement executed
in a corner-case manner, or in a normal case manner.

Intuitively, this technique exploits the fact that most errors (typi-
cally seen in already tested code) occur due to non-handling of cor-
ner cases that are revealed in the incorrect slices, and not revealed
in the correct slice. Key-based slicing determines whether there is
any effect of a statement on a slice or not. Corner-case differencing
tries to find out semantic difference of a statement with respect to
correct and incorrect slices where the statement has some effect in
both the slices.

In the example given in Figure 1 and data in Figure 5(a), we de-
termine a corner-case difference in the READ statement, that in the
case of correct slice only single row satisfies the selection condi-
tion, but in case of incorrect slice, the selection condition is satis-
fied with two rows. This difference is produced by looking at the
semantics of READ statement and particularly evaluating the corner-
case aspect in two slices. Note that, in this case, the difference in
behavior of the READ statement is indeed this particular behavior
found using behavioral differencing. The presence of this behav-
ior (multiple satisfied selection) in READ is always a problem, as
programmer may intend to get the first matching row always, and
may not agree to specify an extra field in selection condition which
increases the overhead of the operation. The fact that this differ-
ence in behavior showed in correct and incorrect slices is the key
observation. Several other checks are presented in Figure 8.

Mutability Differencing. Our second method of differencing
is called mutability differencing. Mutability differencing tries to
make an intelligent guess on the correct form of the statement such
that it produces different behavior than the observed behavior in the



Statement Mutation
key constraint C in
READ/SELECT/DELETE
APPEND/INSERT/MODIFY

addition of key constraint
deletion of key constraint

non-key constraint C in
READ/SELECT/DELETE/LOOP
APPEND/INSERT/MODIFY

modify C with post-condition imposed
by a correct and all incorrect slices.

List of fields in SORT addition and deletion of fields based on
key constraint and field names in DELETE
ADJACENT statement on the same table

AT NEW f.
AT END f.
on change f1..fn.

addition and deletion of fields to f based
on key constraint and based on fields used
in sort statement on the same table

MOVE-CORRESPONDING DELETE or INSERT MOVE of other fields
by breaking MOVE-CORRESPONDING to
a set of MOVE statements

Figure 9: Mutation Operators

incorrect slice, expecting that the produced behavior after mutation
is potentially same as the correct behavior. The important aspect of
our technique is that we only consider mutation of the statements
that do not change the behavior of the statement in the correct slice.

To diagnose the fault reported for Figure 5(a), we can also use
mutability differencing. Consider the READ statement on line 11 in
Figure 1. We apply a mutation to the READ statement at line 11 in
Figure 1. Year=wa.Year is added to the selection condition in the
WHERE clause. This is based on the observation that READ statement
with key option is typically used as joining condition between two
tables. There exist two common fields CstId and Year in the input
tables OrderTab, DiscountTab. Any one of them or their combi-
nation could be used as the joining fields. However, in the buggy
program only CstId is being used. After adding the common field
Year in the joining condition, the analysis finds that the behavior in
the correct slices remained same as same row is selected as before,
but instead of selecting the record with values <1, 2.0, 2009> ,
the statement has now selected <1, 3.0, 2010> in the faulty slice.
Indeed, the fix for this problem is the above change. A customer
should only be given the discount applicable to the year in which
the order was placed. Note that in general it is possible to get such a
mutation after trying several number of mutations, and the applied
mutation might not be the final fix, but could help to indicate the
kind of fix to be made.

In general, the mutations we consider are based on identifica-
tion of the key-fields. We identify the key-fields looking at similar-
ity of field names in two joining tables (as above), matching fields
names in sort, DELETE ADJACENT, and AT NEW statement, matching
field names sort and binary search specification in READ statement.
A complete list of patterns for ABAP language is not presented
here for brevity. A list of mutation operators for different ABAP
specific statements is presented in Figure 9.

Mutability differencing can be effective in cases where corner-
case differencing is not. In Figure 10, minimum value for f2 is
computed for each distinct f1 value. Before this computation, dele-
tion occurred with a condition on f2 values f2 ≤ 0. In case (A),
1st and 4th rows are deleted by the DELETE statement. In case (A),
say we want the second output to be <2, 0> instead of <2, 2>, and
fix we need is f2 < 0 in delete condition. Corner-case differenc-
ing can find this error as for f1 = 2 the deletion of the row was
done on the corner case of the condition f2 ≤ 0, but for f1 = 1 the
deletion was done on a non-corner case. Consider Case(B) where
the first row reported is wrong as the expected output is <1, -1>.
Here both the conditional evaluation for deletion went through a

1 DELETE itab where f2 <= 0
2 LOOP into itab into wa
3 AT NEW f1
4 min = MAXINT
5 ENDAT
6 IF wa .f2 < min
7 min = wa .f2
8 AT END of f1
9 WRITE wa .f1 , min

10 ENDAT
11 ENDLOOP

itab (init) Output
f1 f2
1 -1
1 1
1 2
2 0
2 3
2 2

1 1 X
2 2 × [0X]

Fix: at Line 1
where f2< 0.

Case (A)

f1 f2
1 -1
1 1
1 2
2 -2
2 3
2 2

1 1 × [-1X]
2 2 X

Fix: at Line 1
where f2< −1.

Case (B)

Figure 10: Example: Mutability vs. Corner-case Differencing

non-corner cases. Thus, behavioral difference will not be able to
perform any difference here. Mutability difference, on the other
hand, can intelligently mutate looking at the post-conditions that is
required f2 6= -2 ∧ f2 = -1 ∧ f2 ≤ 0.

However, mutability differencing is not strictly more powerful
than corner-case differencing, as will be shown later in ZROTC ex-
perimental subject in Figure 12.

3.3 Extensions
The other kinds of bugs seen in data-centric programs are in-

correct input data, unwanted rows, all incorrect rows, and missing
rows. We briefly describe the approach we take for such description
of bugs.
Missing rows. In this case the bug report contains the description
of the missing rows in terms of their key-value pairs. Note that it
is not possible to determine the slices corresponding to the miss-
ing rows as we cannot form slicing criteria for missing variables.
However, the intuition that we follow here is that, if there is any
row to be produced corresponding to the missing key-value pairs,
their slices will be similar to the correct slices computed for some

1 SELECT ∗ from zitr into table it_itr .
2 LOOP AT it_itr INTO wa_itr .
3 CLEAR : v_exrate .
4 v_exrate = ’READ_EXCHANGE_RATE ’ (wa_itr .waers )
5 IF subrc = 0 .
6 IF v_exrate > wa_itr .exrate .
7 wa_itr .dispamt = wa_itr .amount ∗ v_exrate .
8 ELSE .
9 wa_itr .dispamt = wa_itr .amount ∗ wa_itr .exrate .

10 ENDIF .
11 WRITE : / wa_itr−matnr , 30 wa_itr−dispamt .
12 ELSE .
13 wa_itr .dispamt = wa_itr .amount ∗ wa_itr .exrate .
14 ’ Missing write here
15 ENDIF .
16 ENDLOOP .

ZITR
matnr amount waers exrate

1 50 USD 47
2 100 EUR 66
3 100 UK 75

Output
matnr dispamt

1 2400
2 6600

Missing row: 3, 7500

Trace: 11,22,33,44,55,66,77,118,169, 210,311,412,513,614,915,1116,1617,
218,319,420,521,1322,1623

Figure 11: Example: Missing Row



existing rows. Thus, we analyze (by stepping backward) each cor-
rect slice, to find the first statement occurrence (s) from end which
has the missing key-value pairs in its use set, but not in its def

set. If s does not occur in a loop, it is reported as a suspect as
the selection operation in the statement has filtered out the missing
key-value pairs. If s is in a loop, we determine all peer occurrences
of s in different loop iterations, such that each of them (say s’) has
the missing key-value pairs in its use and def set. The execution
path starting from s’ has the potential to produce the missing rows.
Sequence-based difference of the execution path starting from s’

and the execution path starting from s is presented to the user.
To explain the case in loop, we present the following exam-

ple in Figure 11 along with the input data and trace. The row
corresponding to key-value pair <matnr,3> is missing. The two
slices corresponding to the generated rows with respect to the key
wa_itr-matnr at write instances 118, 1116 are {11, 22} and {11, 210},
respectively. Both the statement occurrences 22 and 210 at line 2
contain the table it_itr in the use set which has the missing key-
value pair, and do not contain the missing key-value pair in their
def sets. Their peer statement occurrence 218 has the missing key-
value pair in both the use and def sets. 1322 is the difference be-
tween execution traces starting from 218 and either of 22 and 210.
This statement occurrence is presented to the user as fault suspect,
which helps user to localize the missing write statement.

Incorrect input data. Along with the slice, we also highlight the
variables that are defined in each statement occurrence in the slice
and belong to the dependency set. This means for a select state-
ment occurring in an incorrect slice, we identify the parts of the
data selected which flow to the incorrect output. This information
corresponding to the incorrect slices helps user to identify the in-
correct input data.

Unwanted rows. In this case some (but not all) unwanted rows
are found in the output. The fault localization problem is posed as
an application of differencing where incorrect slices are computed
based on key fields in the unwanted rows and correct slices are
computed based on key fields in the rest of the rows. The key-based
slicing, followed by sequence-based differencing, and, if required,
semantic differencing is carried out to localize the fault.

Incorrect fields in all rows. In this case incorrect values in one or
more fields for all rows in the output is reported as a bug. Incorrect
slices are computed for each of the rows, and instead of computing
sequence-based difference of them, the common statements in all
the incorrect slices are computed. Furthermore, the mutation tech-
nique is applied to find a mutation of a statement (in the common
statements set), such that the mutated behavior is different from all
the existing behaviors of the statement in all incorrect slices. For
each statement in the common set, corner-case differencing is ap-
plied to find a corner-case behavior of a statement which is present
in all its occurrences in incorrect slices.

4. EMPIRICAL EVALUATION
We implemented our analysis algorithms for the ABAP language

as a part of an analysis platform towards a joint program with IBM
Global Business Services. We evaluate the effectiveness of our core
contributions - key-based slicing, semantic differencing, and the
analysis for missing rows in output. In our evaluation, the key-value
pairs are obtained from the bug description. To perform seman-
tic differencing, we implemented the semantics of several database
statements of ABAP in Java, and hence could execute each database
statement by mutating its original form.

4.1 Experimental Setup
We used a suite of 13 ABAP samples along with the bugs which

were given to us by ABAP practitioners. 3 of these were client
programs (SUTAX, ZQFPR, ZFR052). The other 10 bugs were
replicas of bugs reported in client situations. As we did not have
permission to use the client code, the bug was replicated on copies
of similar SAP standard programs. Additionally, we also got 20
toy programs to test our algorithms. The fault relevant source snip-
pets for all the subjects have been provided in the report [24]. To
indicate the complexity of the subjects, lines of code and the size
of execution (LOC/EXE) are provided in Figure 12. In the same
table, we also report on the time it took to run the analysis (does
not include trace collection time) for complete fault localization.
The time includes sequence-based differencing of key-based slices
followed by semantic differencing if required, or analysis for miss-
ing output. All the experiments are performed on a 2.53GHz PC
with 4GB RAM, running Debian Linux 2.6. To conduct the exper-
iments, we followed the method as given below -
• Execution trace was collected via an automated script, written
using the SAP GUI Client scripting facility. The script simulates a
step-thru debugging execution of an ABAP program, collecting use
and def variable values.
• Fault observation was specified as a pair of precise slicing criteria
and associated category (e.g. incorrect, missing).
• For problem categories incorrect and unwanted, we first identify
the correct and incorrect slice criteria from user input. Then, we
perform the sequence-based differencing on both field-row sensi-
tive slices and key-based slices. If the sequence-based differencing
does not yield any difference, we perform both the semantic dif-
ferencing algorithms on key-based slices. For problems in miss-
ing category, we perform the missing algorithm described in sub-
section 3.3.
• The results were presented, as a navigable dynamic slice, mapped
to the source, for the IBM GBS team to verify. The suspected faulty
statement as identified by our algorithms was highlighted.

4.2 Results
In 12 cases out of 13, our analysis was able to localize to a single

statement and it was manually verified that the line was the source
of the fault. For the subject named SUTAX, we were not able to
point out a single statement. Verification revealed that the program
input was faulty and had to be fixed. The smallest key-based slice
we reported was of size 12 (for ORDER program), and the input
statement in the slice was related to the fault.

4.2.1 Key-based Slicing
In 5 cases sequence-based differencing yielded some difference.

In 3 cases (RO13, IMAT, and IINV) the difference between field-
row sensitive slices identified the fault. In 2 cases (MMAT and
ORDER), the key-based slice was smaller than the field-row sensi-
tive slice. The slice sizes are mentioned in the field-row, and key
columns of Figure 12. A look at the relevant code snippets revealed
that field-row sensitive slices had over-approximately included the
DELETE statements. In case of ORDER this difference was vital in
identifying the fault, as DELETE statement was key to the bug. In
case of MMAT (* marked in Figure 12 ), field-row sensitive slice
found a difference in the correct and incorrect slices, but that was
not the exact faulty line. The sequence-based differencing of key-
based slices showed the faulty line.

4.2.2 Semantic Differencing
In 5 cases sequence-based differencing (either just on field-row

sensitive slices or key-based slices) was sufficient to identify the



Subject LOC EXE Data Slice Size Sequence Diff. Semantic Diff. Missing Time
Field-row Key Field-row Key Corner Mutability [Space] in Secs

RO13 1202 2948 8 8 X X - - 23
IMAT 2661 3864 4 4 X X - - 20
IINV 3154 5299 8 8 X X - - 135
MMAT 1019 7251 5 4 X X* - - 27
ORDER 1975 7386 13 12 × X - - 28
RLS 2013 569 4 4 × × X X [1] 1
ZROTC 1066 2397 4 4 × × X × 46
ZBMR 827 257 5 5 × × X X [1] 4
ZQFPR 1136 275 8 8 - - - - X 1
ZFR052 944 520 4 4 - - - - X 1
BABL 2795 367 6 6 - - - - X 1
RV54 3492 1088 5 5 - - - - X 1
SUTAX 1662 4028 12 12 - - - - 2

Figure 12: Fault Localization Result

RLS

1 a : f1 f2 f3 f4 f5
2 b : f3 f4 f5 f6 f7
3 c : f1 f2 f3 f4 f5 f6 f7
4 LOOP into a
5 LOOP into b
6 MOVE−CORRESPONDING a to c
7 MOVE−CORRESPONDING b to c
8 MOVE a .f3 to c .f3
9 WRITE c

10 ENDLOOP
11 ENDLOOP .

ZROTC

1 SELECT from tab into table itab
2 LOOP at ktab
3 READ itab INTO w_itab
4 WITH KEY a = ktab .a
5 w_jtab .a = w_itab .a %o v e r f l o w
6 APPEND w_jtab to jtab
7 ENDLOOP
8 . . .
9 write_alv jtab .

ZBMR

1 SORT it_ekpo BY ebeln ebelp
2 matnr werks
3 . . .
4 LOOP AT it_ekbe INTO wa_ekbe
5 READ TABLE it_ekpo INTO wa_ekpo
6 WITH KEY
7 ebeln = wa_ekbe .ebeln
8 matnr = wa_ekbe .matnr
9 werks = wa_ekbe .werks

10 BINARY SEARCH
11 . . .

(a) (b) (c)

Figure 13: Code Snippets. (a) RLS, (b) ZROTC, (c) ZBMR

fault. In 3 cases, where the sequence-based differencing failed, se-
mantic differencing was able to identify the fault. We now discuss
in detail these 3 interesting cases -

RLS. In the example code snippet shown in Figure 13(a), the MOVE-
CORRESPONDING X to Y statement moves the values from structure
X to Y for the common fields. The Lines 1-3 show the fields
for the structure. The correct assignments that needed to be done
here are c.f1=a.f1, c.f2=a.f2, c.f3=a.f3, c.f4=a.f4, c.f5=b.f5,
c.f6=b.f6, c.f7=b.f7. The assignment a.f4 to c.f4 was miss-
ing in the MOVE statement in Line 8. The error is only noticed
when a.f4 is different from b.f4. In an iteration which produced
the correct output, both a.f4 and b.f4 were same. In an incor-
rect iteration b.f4 had a non-zero value, whereas a.f4 had a zero
value. Both correct and incorrect slices had same sequence of
statements having second MOVE-CORRESPONDING and not the first.
So, sequence-based differencing failed to discover any difference.
The corner-case differencing tried two corner (overflow and over-
writing, cf. Figure 8) cases for the MOVE-CORRESPONDING state-
ment. And the overwriting corner-case evaluation showed the fol-
lowing difference - MOVE-CORRESPONDING at Line 7 overwrites c.f4
with its existing value in correct slice and with different value in
the incorrect slice. This is also located using a mutation where
the MOVE-CORRESPONDING statement in the slice is mutated to a se-
quence of MOVE statements and deleting the MOVE-CORRESPONDING to
c.f4=b.f4. The assignment related to field f4 is chosen for dele-
tion as it is the common field between structure variables a and b

that assigns values to structure variable c.

ZROTC. In Figure 13(b) Line 5 the overflow occurs in the as-
signment statement as size of w_jtab.a is smaller than that of
w_itab.a. The overflow is visible in incorrect slices as non-zero
digits were truncated due to overflow. However, in correct slices

only zeros were truncated, which did not produce any ill effect to
the computed result. This statement was there in both correct and
incorrect slices, and therefore sequence-based differencing was not
able to catch this semantic difference. The corner-case differenc-
ing was able to catch this behavior as this is one of the corner-case
that is determined in assignment statement (Figure 8). Note that,
the fix to this bug is not a change the assignment statement, but
requires a change in type in the declaration of the variables. As
mutation only considers mutating a statement, this bug cannot be
found using mutation.

ZBMR. The example shown in Figure 13(c) has the same flavor
as our running example in Figure 1 with data in Figure 5. In this
case the bug was the under-specification of the key constraint in
the read statement. This resulted in the wrong row selection by
the read statement in the incorrect slice. As explained in Section 3,
both corner-case differencing and mutability differencing were able
to find the error. Note that, in this case there was only one more
common field (ebelp) between table it_ekbe and it_ekpo which
was not present in the selection condition in the read statement.
Thus mutability differencing considered only one mutation of the
current statement.

The mutation space observed in our experiments was small as
we use heuristics to restrict the mutation space.

4.2.3 Missing Rows in Output.
We explain a case for missing output with the code snippet of

program RV54 shown in Figure 14. The bug reported was that for
some keys, corresponding rows were missing from the output. In
the program, there was a DELETE statement, which was deleting the
rows where the f_new field is null. Some computations were per-
formed on the rows to produce output. We first obtained a key-
based data slice which was of length 5 for an existing row in the



1 PERFORM batch_heading_babl
2 . . .
3 DELETE gt_output WHERE f_new IS INITIAL
4

5 PERFORM aendbelege_lesen
6 . .
7 output gt_output

Figure 14: Code Snippet for Missing Row in RV54

output. Then by performing a backward traversal in the slice we
found the DELETE statement that was deleting rows with the same
key value as that of the reported missing data. As this statement
was not in the loop, this was highlighted in the slice as the reason
for the missing rows in the output. It was verified by the ABAP
practitioners that, it was indeed the faulty line. The deletion should
not have been to the gt_output table.

5. RELATED WORK

Static Program Slicing of ABAP Programs. Dor et al. [11]
used static slicing to analyze how a given ABAP code uses data
stored in different database tables. Their system PanayaAI, identi-
fies all select statements in code and computes a forward static slice
from these statements, to infer how the data returned from the se-
lect is being consumed in the program. They presented three algo-
rithms; improving from a flow-field-context insensitive algorithm
to field-sensitive, and finally to a flow-field sensitive algorithm. In
their more recent work Litvak et al. [19] recognized the importance
of field sensitive analysis in the ERP systems domain, and present
an algorithm for efficient and precise computation of program de-
pendences in the presence of large structure variables. In this paper
we presented a backward dynamic slicing algorithm, which is field
and row sensitive. We also observed that row-sensitivity plays an
important role in reducing statement occurrences in dynamic slice.

Dynamic Program Slicing. There is significant work in the
area of dynamic program slicing. Korel and Laski [18] had intro-
duced the notion of a dynamic slice, way back in 1988. Agrawal
and Horgan [1] significantly optimized the notion by dropping the
executability constraints. Venkatesh [26] worked on separating the
semantics based definition of a program slice from the semantic
justification of an algorithm. Kamkar et al. [17] worked on inter-
procedural dynamic slices. Zhang and Gupta [29, 28] improvised
the algorithms for dynamic slice computation in the presence of
arrays, structures and pointers for complex real world programs.

Hainaut et al. [8] and Cleve [7] looked at applying dynamic anal-
ysis on data intensive systems, which contain embedded and dy-
namic SQL (such as in JDBC). The aim was to resolve the input
queries being passed to a database as precisely as possible. The
authors showed how just a static scan of the code for SQL state-
ments does not suffice. The collected trace was used for program
comprehension and to infer implicit referential constraints between
database tables. We are similar to these papers as we also use
dynamic analysis. However, our presented dynamic slicing tech-
niques go a few steps further; in presence of integrated data in-
tensive operations, we present row and field sensitive slicing, and
extend it with key-based slicing.

Differencing based Fault Localization. Fault localization
by differencing two program runs has been widely applied. The no-
tion of spectrum (abstract trace) was introduced by Reps et al. [23]

for acyclic, and intraprocedural path spectra. Harrold et al. [13]
generalized the notion of spectrum and proposed spectra based on
several program features - branch, complete-path, data-dependence,
output, and execution trace. Tarantula [16] provides a visualiza-
tion of various passing and failing test runs of a software system.
Here the authors explored how visualizing the hit or miss count of
various code statements in passing and failing runs can help users
localize faults faster. Zeller [27] applied systematic delta changes
to program input to generate guided passing and failing execution,
that could be differenced to detect cause-effect chains more pre-
cisely. Renieris and Reiss [22] introduced distance spectrum. In
a distance spectrum, a distance measure between the passing and
failing spectra gives a measure of dissimilarity.

In the context of software verification, a number of techniques [25,
15] have been proposed to provide users with minimal information
required to explain counter-examples resulting from model check-
ing. Some techniques [4, 5] localize the errors in programs by
identifying the diverging point between a counter-example and a
positive example; a positive example is a sequence of statements in
programs that does not lead to a violation of the property of interest.
A similar approach is presented in [12] where errors are localized
to program statements absent in all positive examples and present
in all counter-examples leading to the same error condition.

In our approach, we difference between dynamic slices i.e. iden-
tify statements that have some effect in producing incorrect output
but has different effect in producing correct output. However, we
additionally, also identify if each executed statement showed simi-
lar behavior in each run.

Another novelty of our approach is that we split a single program
execution into multiple slices that are further classified as correct
or incorrect. We are able to do so because of the nature of the pro-
grams we are analyzing. Each program in a single run, produces
some correct and some incorrect values. Mani et al. [21] applied a
similar technique to retrieve passing and failing traces from a sin-
gle execution to compute repair recommendations for model trans-
forms. They used tainting to resolve how input data moved within
a program to generate the output. However, their approach would
not be applicable in our case where we need to handle data flows
between code and external database. We used key based slicing to
split a single execution run into multiple traces.

Mutation Analysis. In the area of testing, mutation technique
is used to generate faulty programs from a correct program [10,
3, 20] to study the path divergence of faulty programs from the
correct programs. Debroy et al. [9], use mutation based approach
to suggest repairs to localized faults. The two classes of mutant
operators used there are replacement of expression, replacement
of assignment operator by another operator from the same class,
and decision negation. Our mutation operators are specialized for
database statements. Chandra et al. [6] determine alternate values
of an expression to satisfy the goal of correcting the failing tests
without breaking the correct traces. In comparison, we consider the
syntactic mutations that change the outcome of a statement in the
incorrect slices without changing its outcome in the correct slices.
The space of syntactic mutations is managed due to the domain-
specific nature of ABAP programs.

6. CONCLUSION
Fault localization using slicing and differencing have been iden-

tified as important techniques for performing fault localization in
procedural programming languages. In this paper, we extend these
techniques to data-centric programming languages which use em-



bedded database specific statements to perform operations on in-
memory and persistent data.

We present a new key-based dynamic slicing algorithm and two
differencing techniques that use the underlying program semantics
to localize faults in the data-centric programs. We applied our tech-
niques on 13 real industrial programs and identified the underlying
faults accurately in 12 of them.

We notice that, in data-centric programming paradigm the pro-
cessing of data is separated out across different systems and lan-
guages. For example, many applications use the Java - JDBC -
Stored Procedure framework to create a data-centric application.
In future, we aim to check the applicability of our techniques in
such paradigms.
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