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ABSTRACT
In OpenMP, because of the underlying efficient ‘team of work-

ers’ model, each worker is given a chunk of tasks (iterations of
a parallel-for-loop, or sections in a parallel-sections block), and a
barrier construct is used to synchronize the workers (not the tasks).
Naturally, the practitioners are discouraged from invoking barriers
in these tasks; as otherwise, depending on the number of workers
the behavior of the program can vary. Such a restrictive practice
can adversely impact programmability and program readability. To
overcome such a restrictive practice, in this paper, inspired from
the more intuitive interaction of tasks and barriers found in newer
task parallel languages like X11, HJ, Chapel and so on, we present
an extension to OpenMP (called UW-OpenMP).

UW-OpenMP gives the programmer an impression that each par-
allel task has been assigned a unique worker, and importantly these
parallel tasks can be synchronized using a barrier construct. Con-
sequently, the semantics of the programs (using parallel-for-loops,
sections and barriers) remains independent of the actual number of
worker threads, at runtime. We argue that such a scheme allows
the programmer to conveniently think and express his/her logic in
parallel. We propose a source to source transformation scheme to
translate UW-OpenMP C programs to equivalent OpenMP C pro-
grams that are guaranteed to not invoke barriers in any task. We
have implemented our proposed translation scheme in the ROSE
compiler framework. Our preliminary evaluation shows that the
proposed extension leads to programs that are concise and arguably
easier to understand. Importantly, the efficiency resulting from the
‘team of workers’ model is not compromised.

1 INTRODUCTION
The increasing popularity of multi-core systems has resulted in

the advent of many task parallel languages like X10 [1], HJ [2],
Chapel [3], Cilk [4], OpenMP [5] and so on. One of the mantras
of parallel programming in many of these languages is that the pro-
grammer thinks in parallel and expresses the program logic in a
parallel language. For instance, from a programmer’s point of view,
a parallel loop in HJ [2] or X10 [1] can be seen as one that cre-
ates multiple tasks, where each task will run in parallel. Figure 1a
shows a sample stencil computation code (written in HJ), which
creates four parallel tasks (by using the forall construct) and the
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A = new int[5];
B = new int[4];
B[0]=1;B[1]=2;
B[2]=3;B[3]=4;
D = new int[4];
void compute(){
forall (i: 0..3) {
workload(i);

} }
void workload(int i){
A[i]=B[i]-1; /*S1*/
next; // barrier
D[i]=A[i+1]*2;/*S2*/}

(a) HJ code

int A[5],D[4]; //zero init
int B[4]={1,2,3,4},i;
void compute(){
omp_set_num_threads(nthrds);
#pragma omp parallel
{
#pragma omp for private(i)
for(i=0;i<=3;i++){
workload(i); } } }

void workload(int i){
A[i]=B[i]-1; /* S1 */
#pragma omp barrier
D[i]=A[i+1]*2; /* S2 */ }

(b) OpenMP code

Figure 1: Barrier inside parallel-for-loop.

goal of each task is to execute the workload function in parallel.
Each instance of the workload function executes the first state-
ment (S1) and then waits for the other tasks to reach the barrier
(next). Once all the tasks reach the barrier, they continue with
their execution of S2. The barrier (in the workload function) en-
sures that the execution of S2 (by any task) starts only after all the
instances of S1 have been executed. The expected values in arrays
A and D are [0 1 2 3 0] and [2 4 6 0], respectively.

It can be argued that the facility to place barriers inside parallel
tasks (supported in many languages like X10 [1], HJ [2], Chapel [3],
and so on) helps improve programmability. It helps the program-
mer to conveniently encode program logic such as “Create a num-
ber of tasks and each task performs a job that requires the tasks to
(conditionally or unconditionally) synchronize at different points”.
In addition, from a programmer’s point of view, it is natural to
assume that the number of parallel worker threads (workers, for
short) will match the number of parallel tasks. The HJ code shown
in Figure 1a works according to this intuitive behavior, where the
synchronization happens among the iterations of forall (parallel
loop) rather than workers. However, we observe interesting chal-
lenges when a similar code is written in languages likes OpenMP
C [5], PJ [6], and JOMP [7].

Figure 1b shows a code snippet (similar to that shown in Fig-
ure 1a) written in OpenMP C. OpenMP provides a simple yet pow-
erfully efficient scheme of creating a team of workers and using
them to execute various parallel tasks; in the context of OpenMP,
we use ‘task’ to refer to either an iteration of a parallel-for-loop
(specified using #pragma omp for) or a section (specified us-
ing #pragma omp section). The number of workers in a team
can be set inside the code by invoking omp_set_num_threads
(a library function). The OpenMP code in Figure 1b, compiled us-
ing GCC gives the expected output, if nthrds=4 (= number of
iterations). However, say, nthrds=2 and the OpenMP scheduler



(using static scheduling) assigns iterations 0 and 1 to worker 0, and
iteration 2 and 3 to worker 1. Now worker 0 and 1 start execut-
ing iterations 0 and 2, respectively. The barrier works as a syn-
chronization point between the workers. Once both the workers hit
the barrier, they resume executing the code after the barrier. After
a worker has finished executing an iteration, it continues execut-
ing the next assigned iteration. At the end of the execution of the
parallel-for-loop, D contains [0 4 0 0], which does not match the
expected value. The reason for such a mismatch is that the work-
ers executed the statement at label S2 (present after the barrier)
of iterations 0 and 2, before they executed the statement at label
S1 (present before the barrier) of iterations 1 and 3. If nthrds=3,
the program may not even terminate. Further, setting the number of
workers to be greater than the number of tasks does not guarantee
consistent results, either.

The above discussed inconsistency can be noted with all the im-
plementations (and variations) of OpenMP we have tested (GCC [8],
Cray CC [9], Clang/LLVM [10], ICC [11], PJ [6], and JOMP [7]).
However, some compilers (like GCC 4.4) issue a warning to the
programmer when a barrier is syntactically surrounded by a work-
sharing construct (such as parallel-for-loop or parallel-sections).
Similarly, GCC 4.7, Cray CC, ICC and Clang/LLVM throw an error
in such a case. But if the barrier is present inside a function called
within a work-sharing construct, no such warning/error is issued.

The correct way to encode the logic expressed in Figure 1a in
OpenMP is to write conforming [5] OpenMP code that ensures
that no barrier can execute in the body of the parallel-for-loop. A
programmer can achieve this (in case of the Figure 1b) by manu-
ally inlining the function invoked in the loop-body and distributing
the parallel-for-loop. In general, this leads to code bloat and ar-
guably harder to read programs (cohesive pieces of program logic
are spread across multiple parallel-for-loops). Importantly, it is not
always straightforward to distribute the body of the parallel-for-
loop, as the barrier may be present deep inside if-statements, or
while-loops. For example, consider the illustrative iterative averag-
ing (IA) code from [12] (modified by Shirako et al [13]) shown
in Figure 2; it intends to perform iterative averaging on a one-
dimensional array. Here, a simple distribution of the outer loop
would not suffice, because barriers are present inside a while-loop.

To summarize, the use of barriers within parallel-for-loops and
parallel-sections can improve the general programmability and read-
ability of the OpenMP code. However, addressing the associated
consistency related issues requires that such barriers are used to
synchronize the iterations (or sections) of the parallel-for-loop (or
parallel-sections), instead of the team of workers associated with
the work-sharing construct. In this regard, we first define a runtime
model called UW model. Note: we mainly focus on parallel-for-
loops and later show that parallel-sections can be dealt similarly.

DEFINITION 1.1. A parallel-for-loop is said to be executing in
UW model if a unique worker executes each iteration therein. An
OpenMP program is said to be executing in UW model if each con-
stituent parallel-for-loop executes in UW model and each parallel-
for-loop uses the same iterations to worker map.

Any given OpenMP program may be run in UW model by setting
the number of workers equal to the number of parallel tasks. To dis-
tinguish UW model from the current execution model of OpenMP
(where a worker may execute one or more iterations of a parallel-
for-loop), we term the latter as the One-to-Many model (in short
OM model). To avoid the above discussed consistency related is-
sues, we add a requirement (matching the popular advise [14]) that
a program executing in OM model cannot invoke barriers inside
work-sharing constructs.

iters = 0; delta = epsilon + 1;
#pragma omp parallel
{
#pragma omp for
for (j=0;j<N;j++){
while(delta>epsilon){
newA[j]=(oldA[j-1]+oldA[j+1])/2.0;
diff[j]=abs(newA[j]-oldA[j]);
#pragma omp barrier
if(j==1){ delta=sum(diff); iters++;

temp=newA;newA=oldA;oldA=temp;}
#pragma omp barrier

} if (j==0) printf("iters = %d\n",iters);
}/*for*/ }/*parallel*/

Figure 2: Snippet of Iterative Averaging (IA) in OpenMP

In this paper, we propose to extend OpenMP with UW model; we
call this extension UW-OpenMP. Similarly, we term the subset of
OpenMP programs that can execute in OM model as OM-OpenMP
programs. For the UW-OpenMP code shown in Figure 1b, an equiv-
alent OM-OpenMP can be derived by performing function inlining
and a simple loop-distribution [15] transformation across the bar-
rier statement. However, in general, it may not be so straightfor-
ward to do the transformation, as the barrier may be present deep
inside if-statements or while-loops (see for example, Figure 2). In
such examples, a naive loop distribution may not lead to even syn-
tactically correct code.

We present a source to source transformation scheme to translate
UW-OpenMP C programs to equivalent OM-OpenMP C programs;
the translation ensures that the semantics of the generated program
is independent of the number of workers. And the generated code
can still take advantage of the efficiency of the ‘team of workers’
model of OpenMP. Our proposed technique is inter-procedural and
whole-program in nature. Another important feature induced by
UW-OpenMP is that it allows OpenMP programmers to think in
parallel, instead of first writing a serial program and then introduc-
ing parallelism as an afterthought.
Our Contributions:
• UW-OpenMP allows barriers to be placed inside parallel-for-
loops, which helps the programmer encode the program logic in
a convenient (more intuitive) way.
• A transformation scheme (based on a combination of traditional
loop optimizations [15] and some novel mini-transformations) is
presented that helps enforce the UW model behavior in the pres-
ence of barriers in conditional statements and loops.
• The correctness of the transformation is stated as a theorem and
we present a proof thereof.
•We present a set of optimizations to generate efficient code.
•We have implemented the proposed techniques in the ROSE Com-
piler Framework [16].
•We present an evaluation over ten popular OpenMP kernels (taken
from different benchmark suites), and show that (i) our proposed
translation ensures that the generated code takes advantage of the
underlying ‘team of workers’ model, (ii) the overheads are mini-
mal, and (iii) the proposed optimizations are effective.

1.1 Related Work
Shirako et al [17] proposed a mechanism to adopt the concept of
phasers in HJ to OpenMP. They extend the existing runtime to
admit phaser related calls (e.g., registration, synchronization and
drop) in OpenMP programs. In contrast, our extension does not
need any modifications to the runtime, and realizes thread level syn-
chronization by doing a source to source translation of UW-OpenMP
programs to OM-OpenMP. Their proposed technique does not
allow synchronization between iterations of different parallel-for-
loops (or different instances of the same parallel-for-loop nested



1. Parallel region #pragma omp parallel
S

2. Atomic #pragma omp atomic
S

3. Parallel-for-loop #pragma omp for
for(i=0;i<N;i++) S

4. Parallel-sections #pragma omp sections
S

5. Parallel section #pragma omp section
S

6. Single #pragma omp single
S

7. Barrier #pragma omp barrier

Figure 3: Syntax of OpenMP Pragmas

inside a serial loop), or different parallel-sections, which is not the
case with UW-OpenMP.

Presence of synchronization primitives inside parallel-for-loops
poses interesting challenges while doing semantics preserving trans-
formations. Nandivada et al [18] present techniques to do seman-
tics preserving transformation of programs with task parallel loops
with barriers. In this paper, we present a systematic approach to
translate UW-OpenMP programs (that may contain barriers inside
loops) to OM-OpenMP.

We extend many of standard loop optimizations (such as loop
fusion, loop distribution) [15] in the context of OpenMP programs.
Further, we propose a series of optimizations to improve the per-
formance of the generated code. Many prior works try to optimize
parallel programs [19, 20, 18, 21], by eliminating useless barriers,
joins, task-creation and termination overheads. These techniques
can be applied on our generated code in an orthogonal way.

2 BACKGROUND
Figure 3 lists the syntax of some of the most important prag-

mas supported by OpenMP C [5]. Each of the pragmas (except the
one for barrier) is applied on the statement immediately after the
pragma (referred to as the body of the pragma).
Parallel Region: A parallel region creates a team of workers, each
of which executes the body S in parallel. For each parallel region,
the number of workers is fixed (once per region) by either invoking
the library routine omp_set_numthreads, or setting the envi-
ronment variable OMP_NUM_THREADS.
Atomic Construct: It ensures mutual exclusion, important to con-
currently update / read shared variables.
Work-sharing Constructs: OpenMP supports three types of work
sharing constructs: (i) parallel-for-loop: the iterations of the en-
closed for-loop are distributed among the workers of the current
team. (ii) parallel-sections: This work-sharing construct distributes
each section (declared using #pragma omp section) present
in the body, among the workers of the current team. The exact dis-
tribution of the work (iterations / sections) to different workers of
the team is dependent on the scheduling policy. The default pol-
icy is left to individual implementations (e.g., GCC uses a default
blocked distribution). (iii) single: The body of the single construct
is executed only by one of the workers in the team.
Barriers: A barrier within a parallel region acts as a synchroniza-
tion point among all the workers of the current team. No worker in
a team can cross a barrier, until all the workers of the team reach
a barrier. There is an implicit barrier at the end of each parallel
region. Each work-sharing construct (unless invoked with a special
nowait clause) has an implicit barrier inserted at the end of it.
Memory Model: OpenMP programs support the relaxed memory
consistency model [22, 23]. There is an implicit “flush” at the end
of the barrier construct that ensures that all the workers crossing the
barrier see a consistent view of the updates to the shared variables.

Step 1

LOpenMP parallel-for-loops in UW model

I:loop-distribution II:if-distribution

III:if-contraction

Step 2

Step 3

parallel-for-loops in OM model

parallel-for-loops inside do-while

IV:phase-guard V:barrier-phase-guard
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Figure 4: Block Diagram

3 FROM UW-OpenMP TO OM-OpenMP
In this section, for the ease of translation, we first define a subset

of UW-OpenMP called LOpenMP and present our transformation
scheme to translate LOpenMP programs to equivalent OM-OpenMP
programs. Later in Section 3.3 we present a generalization.

DEFINITION 3.1. An LOpenMP parallel region is an OpenMP
parallel region which has its body comprising of one or more parallel-
for-loops, each possibly nested within a sequential (while) loop.
The body of a parallel-for-loop in an LOpenMP region may contain
a serial loop. But the serial loop should not have further nested se-
rial loops. An OpenMP program where each parallel region is an
LOpenMP parallel region is called an LOpenMP program.

DEFINITION 3.2. In the execution trace of an LOpenMP par-
allel region in UW model, we group all the statement instances by
the iteration number of the parallel-for-loop in which they execute:
the sequence of statements executed by all the parallel-for-loops
in their ith iterations constitutes the ith UW-group. We say that
the ith UW-group is generated by the ith agent of the LOpenMP
parallel region.

DEFINITION 3.3. We use bik to denote the kth(≥ 1) barrier in
the ith UW-group. Let Ψi

k denote the set of statement instances
executed before bik. The kth phase (Φk) is defined as follows. Φ1

=
⋃

i Ψi
1; and Φk =

⋃
i Ψi

k \ Ψi
k−1, if k > 1. The statement

instances of any phase Φk are said to be executed in the kth phase
of the parallel region.

3.1 Translation Scheme
The execution of each UW-OpenMP task can be seen to be consist-
ing of one or more phases; intuitively, a phase describes the bar-
rier free code executed between the starting point and a barrier, be-
tween two barriers, between a barrier and the end point of the task,
or between the starting and ending points. And when two or more
UW-OpenMP tasks synchronize on a barrier, each one of them pro-
gresses to the next phase. Our proposed transformation scheme
uses this intuition to generate equivalent OM-OpenMP code.

For ease of explanation, we introduce our transformation tech-
niques assuming that the parallel-for-loops in the input LOpenMP
program have no barriers nested inside while-loops; later in Sec-
tion 3.2 we relax this requirement. We define N to be the maximum
number of iterations present in any parallel-for-loop.

The overall block diagram of our transformation is shown in Fig-
ure 4. Our transformation consists of three steps. In Step 1, we re-
peatedly invoke loop-distribution, if-distribution, and if-contraction
rules (Figure 5), till the body of each parallel-for-loop is a simple-
statement (sequential code with no OpenMP pragmas), or a barrier,
or a barrier surrounded by an if predicate (conditional-barrier).
These rules are standard compiler transformations [24], applied in



Step 1
I: Loop-distribution
#pragma omp for
for(i=0;i<N;i++){

S1;S2;}
//S1 or S2 has barriers

#pragma omp for
for(i=0;i<N;i++){S1;}
#pragma omp for
for(i=0;i<N;i++){S2;}

II: If-distribution
#pragma omp for
for(i=0;i<N;i++) {

if(e) { S1; S2; }}
//S1 or S2 has barriers

#pragma omp for
for(i=0;i<N;i++) {
v = e;
if(v) S1; if(v) S2;}

III: If-contraction
#pragma omp for
for(i=0;i<N;i++) {

if(e1) if (e2) S1;}
//S1 has barriers

#pragma omp for
for(i=0;i<N;i++) {
if(e1 && e2) S1; }

Step 2
#pragma omp parallel

S
H=calloc(M,
N*sizeof(int));

P=calloc(N,
sizeof(int));

cp=0;
#pragma omp parallel
do { S; break;
} while (1);

Step 3
IV: Phase-guard
#pragma omp for
for(i=0;i<N;i++) {

S; }

#pragma omp for
for(i=0;i<N;i++) {
if(P[i]==cp &&

!H[JpfCntK][i])
{H[JpfCntK][i]=1; S}}

V: Barrier-phase-guard

#pragma omp for
for(i=0;i<N;i++) {
if(e)
#pragma omp barrier

}

#pragma omp for
for(i=0;i<N;i++){
if(P[i]==cp &&

!H[JpfCntK][i])
{ H[JpfCntK][i] = 1;

if (e) P[i]++; }
if (P[i]!=(cp+1)){
#pragma omp atomic
flag=0;

}/*end if*/}//end for
#pragma omp single {

tmpflag = flag;
if(flag) cp++;
flag = 1;}

if(tmpflag) continue;

Figure 5: Transformation Rules

the presence of OpenMP parallel-for-loops. Note: Loop-distribution
may perform scalar-expansion, if necessary.

Step 2 initializes two auxiliary variables (H and P used in Step 3)
and embeds the complete body of the parallel region inside a do-
while loop. This do-while loop helps avoid unstructured goto
statements in the next step. The output from Step 2, consisting
of a parallel region containing a series of parallel-for-loops (say,
in total M) embedded inside a do-while loop, is given as input to
Step 3, which in turn generates equivalent OM-OpenMP code.
Data structures: We use a shared variable cp (to indicate the cur-
rent phase of the parallel region) , and a shared array P (to denote
the phase array) with size equal to N. If the parallel region is in
phase k, cp is set to k. The current phase of the ith agent is stored
in P[i] and is incremented to emulate the behavior of the ith

agent encountering a barrier. When all the agents increment the
phase, we increment cp by 1 to indicate the change in the current
phase of the parallel region. With the body of each parallel-for-loop
(after Step 2), we maintain a unique identifier pfCnt ∈ [0,M).
We use JpfCntK to indicate the value of pfCnt for the current
parallel-for-loop. We use a two dimensional array H: M×N (to

denote statement execution history). A statement with identifier
JpfCntK is executed by agent i, only if H[JpfCntK][i]= 0
(that is, it has not already been executed). Thus, the maximum
memory overhead = O(M×N).
Rules IV and V: The input to Step 3, is a parallel region containing
a series of parallel-for-loops, each of whose body is either a simple-
statement or a conditional-barrier; we treat unconditional-barriers
also as conditional barriers, where the predicate always evaluates
to true. Correspondingly, in Step 3, we present two transformation
rules (IV and V) shown in Figure 5. In Rule IV, the ith instance of
the simple-statement S is executed only when P[i] (current phase
of agent i) is equal to cp and H[JpfCntK][i]=0. In Rule V, the
barrier inside the conditional-barrier statement is replaced by the
statement P[i]++, which is executed only when P[i] (current
phase of agent i) is equal to cp and H[JpfCntK][i]=0. We
examine the complete phase array P to check if a phase change
(increment) is in the offering (happens only if all agents increment
P[i] by 1). The phase increment is reflected by the increment of
cp by a single thread. After the phase increment, the control goes
back to the beginning of the do-while loop. This is to execute those
statements which were skipped because P[i] was greater than the
value of cp at that instant.

Our proposed technique ensures that we replace the abstraction
of synchronization among the workers of the team (executing a par-
allel region) with the abstraction of synchronization among the it-
erations of a parallel-for-loop. This helps the programmer to code
in the UW-OpenMP, ignoring the complexities arising out of the
need to know the mapping of iterations to the workers at the time
of placing barriers.

Correctness of Transformation
We first extend the definition of barrier given in Definition 3.3, in
the context of our transformed programs: We use bik to denote the
kth(≥ 1) instance of the statement P[i]++ in the ith UW-group.

The definitions of Statement instance Ψi
k and phase set Φk, in the

context of the transformed program, depend on this new definition
of bik. The following theorem establishes the correctness of our
transformation scheme.

THEOREM 1. Let Suw
i,n denote the nth instance of statement S

executed by agent i in UW model and Sbm
i,n denotes the instance of

statement S executed by agent i in OM model in the transformed
code. If R→d S denotes that statement S is dependent on R then

1. [Phase-dependence] Suw
i,n ∈ Φk ⇒ Sbm

i,n ∈ Φk.
2. [Data-dependence] Ruw

i,m →d S
uw
j,n ⇒ Rbm

i,m →d S
bm
j,n .

PROOF. (Sketch) [Phase-dependence]: The kth increment of P[i]
in the transformed code in OM model corresponds to bik in UW
model. Based on the type of Suw

i,n (a simple-statement or conditional-
barrier), Rules IV or V ensure that Sbm

i,n executes in the phase Φk.
This behavior is ensured by the guard P[i]==cp, since cp is in-
cremented only when all the agents increment P[i]. This is equiv-
alent to all agents executing bik in the code executed in UW model.

[Data-dependence]: The phase-dependence part ensures that for
each Ruw

i,m and Suw
j,n there are corresponding elements in the same

phase in the OM model. Since we do not add/remove any new
statements and for each statement in the UW model, there is a cor-
responding statement in the OM model. Thus, it implies that no
new statement executes in between Rbm

i,m and Sbm
j,n ; thus the depen-

dencies are preserved.

3.2 While Transformation
In this section, we extend the transformation rules presented in Sec-
tion 3.1, to admit parallel-for-loops with a while-loop as the body;



Step 1

LOpenMP parallel-for-loops in UW model
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VII:non-while-guard VIII:while-guard

II:if-distributionI:loop-distribution
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Figure 6: Block Diagram for While Transformation

the while-loop may in turn contain barriers within. Unlike a serial
for-loop in normal form [24], while-loops introduce newer chal-
lenges because of the uncertainty of the number of iterations of the
while-loop a priori during compilation. Note that a while-loop in
LOpenMP has no nested serial loops inside.
Overall procedure: The overall block diagram for the transla-
tion of parallel-for-loops containing while-loops, carried out in four
steps, is shown in Figure 6. In Step 1, we invoke the Rules I, II
and III (Figure 5) along with the standard loop-switching rule (see
Rule VI, Figure 7), till there is no change. Step 2: Similar to the
Step 2 invoked in Section 3.1, we embed the body of the parallel
region inside a do-while loop. We also initialize two new vari-
ables (K and Rdy) that are used for later bookkeeping (in some
helper functions). Step 3: We first invoke the non-while-guard rule
(Rule VII, in Figure 7), on all the parallel-for-loops whose body
is not a while-loop containing barriers. We now process, in the
program order, each of the parallel-for-loops that contains an im-
mediately nested while-loop. Each such parallel-for-loop PF is
processed through three sub-steps: (i) invoke the while-guard rule
(Rule VIII, Figure 7) on PF , (ii) invoke Rules I, II, and III (again)
on the generated code till there is no further change, and (iii) invoke
the macro-replacement rule (Rule IX, Figure 7). Step 4: Invoke
phase-guard and barrier-phase-guard (Rules IV and V, Figure 5).

We first explain the data structures and auxiliary functions used
and then present an explanation of the transformation rules.
Data structures: Besides pfCnt (discussed in Section 3.1), we
use an additional auxiliary counter grCnt (to indicate group-count).
In Step 3, the value of pfCnt for a statement may change (due to
the invocation of Rule I). We use JgrCntK to remember the pfCnt
value (at the end of Step 2) for each statement. Note that the value
of grCnt for any statement does not change in Step 3.

Consider a parallel-for-loop (PF ), with an immediately nested
while-loop (W ); say W has statement S as the body and e as the
predicate. Say, S1 and S2 are sequences of parallel-for-loops be-
fore and after PF , respectively. Each arbitrary iteration of PF ,
executes S until e evaluates to false, for that iteration. Thus, for
any iteration i of PF , W contributes a sequence of statements
(say, si) to the ith UW-group (say, denoted by Gi). In Gi, let
ri (contributed by S1) and ti (contributed by S2) denote the se-
quence of statements executed before si and after si, respectively.

Step 1
VI: Loop-switching
#pragma omp for
for(i=0;i<N;i++) {
if(e1) {
while(e2){ S;}}}

#pragma omp for
for(i=0;i<N;i++) {

v = e1;
while(e2){if(v){ S;}}

Step 2
#pragma omp parallel

S
H=calloc(M,

N*sizeof(int));
P=calloc(N,sizeof(int));
Rdy=calloc(N,

sizeof(int));
cp=0; K=0;
#pragma omp parallel
do { S;
if(Done(0))break;

} while (1);
Step 3

VII: Non-while-guard
do{ S1;
#pragma omp for
for(i=0;i<N;i++) S;
S2;
if(Done(N1)) break;
}while (1);
//S has no while
//loop with barrier

do { S1;
#pragma omp for
for(i=0;i<N;i++) {
if(canEnter(i,JgrCntK))
{S;iExit(i);}}
S2;
if(Done(N1+N))break;

}while (1);
VIII: While-guard:
do { S1;
#pragma omp for
for(i=0;i<N;i++)
while (e) {S}
//S has barriers
S2
if(Done(N1))
break;

}while (1);

do { S1;
#pragma omp for
for(i=0;i<N;i++) {
if(canEnter(i,JgrCntK))
{v = e;
if(v) {S;
tmpreset(i,JpfCntK);}
if (!v){iExit(i);}}}
S2
if(Done(N1+N))break;

}while (1);
IX: Macro-replacement
#pragma omp for
for(i=0;i<N;i++)
if(e){ S;

tmpreset(i,C);}

#pragma omp for
for(i=0;i<N;i++)
if(e) { S;
reset(i,C,JpfCntK);}

Figure 7: While Transformation Rules.

That is, Gi = ri ‖ si ‖ ti, where ‖ is the concatenation oper-
ator. Our transformations ensure that the sequence of statements
executed in the ith UW-group matchGi. Note that when the agent
i has finished executing the code in ri, statements in ri are said
to be in done state, the statements in si are considered ready to be
executed (state = ready), and the statements in ti are considered to
be not ready (state = ignore).

To realize the semantics discussed above, our transformation uses
two auxiliary variables: i) a zero initialized integer array Rdy (of
size N, the maximum number of iterations of the parallel-for-loops).
For any iteration i of a parallel-for-loop PF , the value of Rdy[i]
decides if the iteration i is ‘ready’ to be executed or not, by agent
i. Say the group-count of PF is given by JgrCntK, then if the
value of Rdy[i]= 2 ∗ JgrCntK or 2 ∗ JgrCntK + 1, it indicates
that the ith iteration of PF , is ready to be executed, for the first
time or subsequent time, respectively. ii) we use a zero initialized
shared counter K to keep a count of the number of parallel-for-loop
iterations (spread across multiple parallel-for-loops in the parallel
region) that have finished executing. Say, the parallel region con-
tains exactly two parallel-for-loops having N1 and N2 iterations,
then the maximum value of K is N1 +N2.

Auxiliary procedures: The transformed code uses four auxiliary
procedures, shown in Figure 8: (i) canEnter, (ii) iExit, (iii)



int canEnter(int i,int g){
if(Rdy[i]==2*g){
Rdy[i]++; return 1;}

if(Rdy[i]==2*g+1){
return 1;}

return 0; }
int Done(int maxCnt){

#pragma omp barrier
return K == maxCnt; }

int iExit(int i){
Rdy[i]++;
#pragma omp atomic
K++; return 1;}

void reset(int i,
int l,int h){

for (j=l;j<=h;j++)
H[j][i]=0;

}

Figure 8: The Auxiliary Procedures

1. init: (a) Ji,0K=ready (b) ∀g ≥ 1, Ji,0K=ignore
2. Ji,g-1K=exec ∧ iExit(i)⇒ Ji,g-1K=done ∧ Ji,gK= ready
3. Ji,gK=ready ∧ canEnter(i,g)⇒ Ji,gK=exec
4. Ji,gK=exec ∧ canEnter(i,g)⇒ Ji,gK=exec

Figure 9: State change rules for agent i.

reset, and (iv) Done. The ith iteration of the parallel-for-loop
with grCnt=g will execute the body of the parallel-for-loop, only
if canEnter(i,g) returns 1. If the value of Rdy[i]=2*g, it
increments Rdy[i] by 1 (indicates that the body has started exe-
cuting). The function call iExit(i) increments Rdy[i] by 1 (in-
dicates that the ith agent has finished executing the ith iteration
of the current parallel-for-loop and is ready to start with the next
parallel-for-loop). And the value of K is atomically incremented by
1, to indicate that the body of one more parallel-for-loop has been
executed by agent i. Note: the value of Rdy[i] at the end of a
iExit(i) call is guaranteed to be even. The function reset is
used to reset a part of statement execution history H (Section 3.1).
The function call reset(i,l,h) resets the statement execution
history corresponding to the ith agent, in the parallel-for-loops
whose pfCnt values vary between l and h (both inclusive). The
function Done checks if K matches its expected maximum value
(passed as an argument). The barrier ensures that the routine waits
for all the updates to K, by any parallel task, before evaluating the
predicate. We now explain the Rules given in Figure 7.
Transformation rules: Rule #VII and VIII together provide an
interesting mechanism to avoid the while-loop altogether. We start
with Rule VIII for the ease of explanation.

In any iteration of the outer do-while loop (introduced in Step 2),
the state Ji,gK of an agent i, inside any parallel-for-loop with
grCnt=g and body as S, can be one of the following: (a) ready:
i is going to execute S for the first time, (b) exec: when the state
changes from ready to exec, it indicates that the agent iwill execute
S one or more times. (c) done: i has finished executing S, or
(d) ignore: i is in exec or ready state inside a parallel-for-loop with
grCnt=k and g>k. The function canEnter(i,g) returns 1,
only if Ji,gK is ready or exec. Fig. 9 shows the state change rules.

In the transformation shown for Rule VIII, we can execute e and
S only if canEnter(i,g) returns 1. After the first invocation of
canEnter, the element Rdy[i] gets incremented by 1 and Ji,gK
changes to exec. In this exec state, agent i executes the statements
in the parallel-for-loop with grCnt=g, and not execute any other
statements in any other parallel-for-loop with grCnt6= g (as their
state is done or ignore). Once the predicate e becomes false for the
agent i, the function iExit(i) is called to increment Rdy[i] by
1. As a result, Ji,gK changes from exec to done and Ji,g+1K
changes from ignore to ready. Thus, the parallel-for-loops with
grCnt=g+1 are now ready to execute. And this process continues
till all the states are set to done.

As discussed in Section 3.1, the statement execution history map
H ensures that there are no duplicate executions of any statement.
However, in case of the body S of a while-loop nested inside a
parallel-for-loop, S may have to be executed multiple times. Thus,
at the end of one iteration of the while-loop, by a parallel itera-

tion i, we have to reset the corresponding H value entries for i.
Considering the possibility that the code generated in Rule VIII,
may be distributed in later transformations (leading to a sequence
of parallel-for-loops), we use a temporary function tmpreset to
remember the starting index (pfCnt) of the sequence and replace
it with the auxiliary function reset and supply the value of the
last index in Rule IX.

Rule VIII also increments the argument to the Done function by
N, to indicate that N parallel-iterations are executed as part of the
current parallel-for-loop.

Rule VII: It handles the case when the body S does not contain
a while-loop with a barrier inside. In the transformed code, agent
i executes S when canEnter(i,JgrCntK) returns 1. Note that
the agent i executes S only once. And once executed, in the future
iterations of the outer do-while loop, agent i will never execute S.
This is ensured by the call to iExit(i) after the execution of S.

Phase-guard rules: Similar to the Step 3 in Section 3.1, we in-
voke the rules IV and V (Figure 5). Note: this may lead to multiple
invocations of the canEnter function (max 2 times) for the same
statement. This does not alter the semantics (as canEnter has no
side effects), and is optimized away by a later pass (Section 4).

In the transformed code, the body of the do-while loop may have
different parallel-for-loops. The technique explained above ensures
that the statements which were part of a while-loop in the original
code, repeat as many number of times as executed by the original
while-loop in UW model, and the statements which are not part of
any while-loop (in the original code) are executed only once.
Example Translation: Figure 10a shows a simplified version of
the code discussed in Figure 2. Figures 10b–10g show the impact
of applying our transformation rules on the input UW-OpenMP
code (Figure 10a), along with the sequence of the rules applied
to obtain the code in the figure. For brevity, we show the code
generated after some of the important transformations only.

We use a sample execution to show how the semantics of Fig-
ure 10g (executing in OM-OpenMP) matches that of Figure 10a
(executing in UW-OpenMP). Say, the while-loop in the latter ex-
ecutes its body twice. Statement S3 is executed only after all the
iterations finish the execution of the while-loop.

In Figure 10g, the arrays H and P, and the variable cp are initial-
ized to 0. Similarly, the variable flag is initialized to 1. We term
the predicate guarding the body of each of the six parallel-for-loops
(L0-L5), within the do-while loop, as the guarding-predicate.

In Figure 10g, during the first iteration of the do-while loop, the
guarding-predicate will evaluate to true for L0, L1 and L2. In L0,
v[i] will be evaluated to true by all the iterations. In L1, S1 will
be executed by all the iterations. In L2, all the iterations increment
P[i] to 1 and as a result the predicate P[i]!=(cp+1) evaluates
to false (as cp=0). Next, cp is incremented to 1, by a single thread.
This indicates a phase increment; it is equivalent to finishing the
execution of the barrier statement by all the agents during the first
iteration of the while-loop in Figure 10a. Now, in Figure 10g, all
the workers execute the continue statement and jump to the start
of the do-while loop.

During the second iteration of the do-while loop, the last term in
the guarding-predicate evaluates to false for L0, L1 and L2. And
the control reaches L3. In L3, S2 and the function reset(i,0,3)
is called by all the iterations, which resets the value of all H ar-
ray elements corresponding to the parallel-for-loops generated be-
cause of while-loop. In L4, since the predicate !v[i] evaluates to
false, iExit(i)is not executed which keeps canEnter(i,0)
as true. In L5, S3 will not be executed because canEnter(i,1)
evaluates to false. The execution of the do-while loop continues
because Done(N+N) evaluates to false.



// Input code
#pragma omp parallel
{
#pragma omp for
for(i=0;i<N;i++)
{
while(delta>epsilon)
{
S1;
#pragma omp barrier
S2;

}
S3;
}
}

(a)

//after Rule I
#pragma omp parallel
{
#pragma omp for
for(i=0;i<N;i++){
while(delta>epsilon)
{
S1;
#pragma omp barrier
S2;
}
}
#pragma omp for
for(i=0;i<N;i++) S3;
}

(b)

//after Step 2
#pragma omp parallel
do {
#pragma omp for
for(i=0;i<N;i++){
while(delta>epsilon){
S1;
#pragma omp barrier
S2;
}
}
#pragma omp for
for(i=0;i<N;i++) S3;
if(Done(0)) break;

} while(1);

(c)

//after Rule VII
#pragma omp parallel
do{
#pragma omp for
for(i=0;i<N;i++){
while(delta>epsilon){
S1;
#pragma omp barrier
S2; }}
#pragma omp for
for(i=0;i<N;i++)
if(canEnter(i,1)) {
S3;iExit(i);}

if(Done(N)) break;
}while(1);

(d)

//after Rule VIII
#pragma omp parallel
do {
#pragma omp for
for(i=0;i<N;i++){
if(canEnter(i,0)){
v=delta>epsilon;
if(v){
S1;
#pragma omp barrier
S2;
tmpreset(i,0);}
if(!v)iExit(i);
}}
#pragma omp for
for(i=0;i<N;i++)
if(canEnter(i,1)){
S3;iExit(i);}

if(Done(N)) break;
}while(1);

(e)

//Rules II,I,II,I,III
#pragma omp parallel
do {
#pragma omp for
for(i=0;i<N;i++){
v1[i]=canEnter(i,0);
if(v1[i]) {
v[i]=delta>epsilon;}}

#pragma omp for
for(i=0;i<N;i++){
if(v1[i] && v[i]){S1;
#pragma omp barrier
S2; tmpreset(i,0);}}

#pragma omp for
for(i=0;i<N;i++){
if(v1[i] && !v[i])
iExit(i);}

#pragma omp for
for(i=0;i<N;i++)
if(canEnter(i,1)){
S3;iExit(i);}

if(Done(N+N)) break;
}while(1);

(f)

//Rules I,II,IX,IV,V
#pragma omp parallel
do{
#pragma omp for // L0
for(i=0;i<N;i++){
if (canEnter(i,0) &&
P[i]==cp&&!H[0][i]){
H[0][i]=1;
v1[i]=canEnter(i,0);
if(v1[i])
v[i]=delta>epsilon;

}}
#pragma omp for // L1
for(i=0;i<N;i++)
if (canEnter(i,0) &&
P[i]==cp&&!H[1][i]){
H[1][i]=1;
if(v1[i] && v[i]) S1;}

#pragma omp for // L2
for(i=0;i<N;i++){
if (canEnter(i,0) &&
P[i]==cp&&!H[2][i]){
H[2][i]=1;
if(v1[i]&&v[i])P[i]++;}
if(P[i]!=(cp+1)) {
#pragma omp atomic
flag=0; }}

//contd. in the next col

//contd. from the prev col
#pragma omp single {
tmpflag = flag;
if(flag) cp++;
flag = 1;}
if(tmpflag) continue;
#pragma omp for // L3
for(i=0;i<N;i++)
if (canEnter(i,0) &&
P[i]==cp&&!H[3][i]){
H[3][i]=1;
S2; reset(i,0,3); }

#pragma omp for // L4
for(i=0;i<N;i++)
if (canEnter(i,0) &&
P[i]==cp&&!H[4][i]){
H[4][i]=1;
if(v1[i] && !v[i])

iExit(i);}
#pragma omp for // L5
for(i=0;i<N;i++)
if (canEnter(i,1) &&
P[i]==cp&&!H[5][i]){
H[5][i]=1;
if(canEnter(i,1)){
S3;iExit(i);}}

if(Done(N+N)) break;
}while(1);

(g)
Figure 10: Effect of our transformation rules shown in Figures 5 and 7. (a) input UW-OpenMP code. (b)-(g) code after applying different
rules.

The third and fourth iterations of the do-while loop execute sim-
ilar to that of the first and second iterations respectively. In the fifth
iteration of the do-while loop, the predicate v[i] will be set to
false. Hence in L4, iExit(i) will be executed. As a result, in
L5, canEnter(i,1) evaluates to true and consequently, S3 and
iExit(i) are executed. Now Done(N+N) evaluates to true and
the control comes out of the do-while loop.

3.3 Generalizing the Translation
Given any general UW-OpenMP program, we first translate it to
LOpenMP and then invoke the transformations discussed in Sec-
tion 3 that deal with programs written in LOpenMP.
OpenMP sections: Each parallel-section inside a #pragma omp
sections is executed by a worker available in the parallel region.
We can translate it to an equivalent parallel-for-loop (number of
iterations equal to the number of sections) such that its ith iteration
executes the ith section.
Statements outside parallel-for-loop: Figure 11 shows a simple
scheme to handle statements, in an OpenMP parallel region, not
nested inside any work-sharing construct.

#pragma omp parallel
{
· · ·
S
· · · }

T=omp_get_numthreads();
#pragma omp parallel
{· · ·
#pragma omp for
for(i=0;i<T;++i){S} · · ·}

Figure 11: Statement outside parallel for
while(e1){
S1;
while(e2)
S2;

S3;}

inInnner=0;
while((!inInner&&e1)||(inInner)){
if(!inInner) S1;
inInner=e2;
if(inInner) S2; if(!inInner) S3;}

Figure 12: Nested while loops

Nested while loops: Figure 12 shows a simple transformation to
convert a nested while-loop to a non-nested one. It uses an addi-
tional variable (inInner) to execute the correct code.

Barriers inside functions: If a non-recursive function containing a
barrier is called from a work-sharing construct, it is first inlined (as
a pre-processing step). In case of a recursive function, it is special-
ized to take additional arguments for the auxiliary data structures.
We skip the details for lack of space.



#pragma omp for
for(i=0;i<N;i++) {
if(P[i]==cp&&!H[C][i]){

H[C][i] = 1; S1;}}
#pragma omp for
for(i=0;i<N;i++) {
if(P[i]==cp&&!H[C+1][i]){
H[C+1][i] = 1; S2;}}

#pragma omp for
for(i=0;i<N;i++) {
if(P[i]==cp&&

!H[C][i]){
H[C][i] = 1;
S1;
S2;}}

Figure 13: Loop fusion

Scheduling policies: One of the advantages of our proposed trans-
lation scheme is that the semantics of the generated code is inde-
pendent of the scheduling policy [5] used in the program (static,
dynamic, guided, auto, or runtime). This is because the generated
code (in OM-OpenMP) never invokes barriers inside any work-
sharing construct. Note that to handle the possible issues arising
due to multiple invocations of omp_get_thread_num, for each
iteration, we cache the returned value of this function in a local data
structure and use it in future invocations.

4 CLEANUP OPTIMIZATIONS
We now briefly describe a few optimizations to help generate

efficient code; these optmizations mainly target reducing the over-
heads (in space and time) resulting from our translation scheme.
Direct loop distribution: In the context of the rules discussed
in Section 3.1, if there exists a sequence of unconditional barri-
ers inside a parallel-for-loop (may be interspersed with serial code
in between), before any conditional barrier: we can apply loop-
distribution around those unconditional barriers (incurs no over-
head) and then apply the techniques of Section 3.1 on the rest of the
parallel-for-loop starting with the conditional statement enclosing
the barrier. We extend this logic further, to include conditional bar-
riers guarded by single-valued expressions [25]. In such a case, we
can apply the if-distribution rule, followed by the loop-distribution
rule (Figure 5) and avoid any overhead, whatsoever.
Loop fusion: Figure 13 shows an extension to the standard loop
fusion [15] technique to fuse some of the consecutive parallel-for-
loops generated by our transformation. This helps in eliding the
implicit barrier after the first parallel-for-loop, avoiding a predicate
check. As shown in the text in bold, we are able to fuse the two
loops even though the predicates are different. The underlying se-
mantics of the H array guarantees the semantics preservation.
Removing avoidable atomic operations: We eliminate the atomic
construct introduced for the write to the shared variable flag (in
Rule V, Figure 5). Though this optimization may lead to non-
conforming OpenMP code, we argue that it is acceptable, as the re-
sulting race (between multiple writes to flag) is a benign one [26]:
all of them write the same value 0. And since at most one bit may
change (the old value of flag may only be either 0 or 1), it does
not lead to partial writes [27].
Code specialization: Considering the possible overheads associ-
ated with our generated code (due to the While-transformation, dis-
cussed in Section 3.2), we specialize the transformed code (if the
transformation involves the While-transformation) such that, when
the number of workers matches the number of parallel iterations,
the input parallel region is executed as it is, along with an option
to set the chunk-size of the parallel-for-loop to 1. Though this opt-
mization leads to non-conforming OpenMP code, the code will run
according to the semantics of UW-OpenMP.
Barrier elimination: We make a pass over the generated code to
check if there are two consecutive barrier statements (implicit or
explicit), and eliminate one of them.
Redundant canEnter elimination: We make a simple pass over
the code to eliminate calls to the canEnter function, nested within
an if-statement whose predicate includes a call to canEnter.

#pragma omp for
for (i=0;i<n;++i)

S1;
#pragma omp for
for (i=0;i<n;++i)

S2;

(a)

#pragma omp for
for (i=0;i<n;++i){

S1;
#pragma omp barrier
S2; }

(b)
while (cond) {
#pragma omp parallel
{
#pragma omp for
for (i=0;i<n;++i)
S1;

#pragma omp for
for (i=0;i<n;++i)
S2; } }

(c)

#pragma omp parallel
{
#pragma omp for
for (i=0;i<n;++i)
while (cond) {
S1;
#pragma omp barrier
S2; } }

(d)
Figure 14: (a) and (b) (and, similarly (c) and (d)) encode different
program logics.

5 DISCUSSION
We now present a brief discussion on the expressiveness in our

proposed extension UW-OpenMP. Depending on the specific prob-
lem under consideration, the intuitive mechanism to encode the so-
lution may vary. Consider two typical solutions: i) Create n par-
allel tasks to execute S1; wait till all the tasks are completed; cre-
ate n parallel tasks to execute S2. ii) Create n parallel tasks to
compute S1, followed by S2, and ensure that each task waits for
each other, after executing S1. Depending on the particular prob-
lem under consideration the programmer may find it convenient to
encode the program logic using the first solution or the second. Un-
like OM-OpenMP, where only the first solution can be coded (Fig-
ure 14a), UW-OpenMP allows the encoding of both the solutions
(Figure 14a, and Figure 14b).

Similarly, consider two solutions typically applicable in many it-
erative computations (e.g., iterated averaging [12], Jacobi kernels
from the polybench suite [28]): i) Repeat the following till conver-
gence: in each iteration create n tasks to execute S1; wait till all the
tasks are completed; and then create n tasks to execute S2; wait till
all the tasks are completed. ii) Create n tasks, where each task exe-
cutes the following code till convergence: execute S1 followed by
S2, and ensure that the tasks wait for each other after every execu-
tion of Si (lock step synchrony). These two solutions are encoded
in Figure 14c and Figure 14d, respectively. As has been argued in
Section 1, unlike OM-OpenMP, where only the first solution can
be coded (Figure 14c), UW-OpenMP allows the coding of both the
solutions (Figure 14c, and Figure 14d).

In general, we see that UW-OpenMP is more expressive than
OM-OpenMP, and gives the programmer more choices to encode
the program logic.

6 IMPLEMENTATION AND EVALUATION
We implemented our proposed techniques as an AST to AST

transformation in the ROSE compiler framework [16], which sup-
ports OpenMP 3.0 specifications. It takes as input UW-OpenMP
programs and outputs equivalent OM-OpenMP code. We use the
GCC 4.4 compiler to compile any of these OpenMP programs.
To understand the impact of our transformations on varying hard-
ware configurations, we conducted experiments on two different
machines: an Intel 16 core system (two E5-2670 processors, 64GB
RAM, hyper threading disabled), and an AMD 64 core system (four
AMD 6376 processors, 512GB RAM, no hyper threading). We
found that the compilation time overheads were negligible.
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Figure 16: Performance comparison of the input UW-OpenMP code (executed by setting OMP_NUM_THREADS to NIP) with the translated
code (executed by setting OMP_NUM_THREADS to #cores).

Bench Source #LOC Input class
UW OMP %less and size

1 CG NPB [29] 851 868 1.2 A=14k
2 BT NPB [29] 3607 3616 0.2 B=102
3 LU NPB [29] 3470 3481 0.3 B=102
4 GEMVER PB [28] 177 181 2.2 L=8000
5 3MM PB [28] 100 102 1.96 EL=8000
6 FDTD2D PB [28] 152 154 1.2 EL=4000
7 JACOBI1D PB [28] 116 117 0.8 ST=10000
8 JACOBI2D PB [28] 123 124 0.8 EL=4000
9 SOR [30] 75 77 2.6 3000
10 IA [12] 78 80 2.5 500

Figure 15: Characteristics of the benchmark kernels.

For our evaluation, we first created UW-OpenMP versions (UW)
of ten popular benchmark kernels (see Figure 15). This involved,
parallelizing five kernels (3MM, GEMVER, FDTD2D, JACOBI1D
and JACOBI2D) from the PolyBench [28] suite (to UW-OpenMP),
rewriting CG, BT, LU and SOR in UW-OpenMP, and designing a
standalone kernel for IA (based on [12]). One common feature of
all these kernels is that each kernel contains at least one parallel-
for-loop with at least one nested barrier within; in case of IA, JA-
COBI1D, and JACOBI2D the barrier is nested inside a serial loop,
which in turn is nested inside the parallel-for-loop. For all of the ten
kernels, we also considered their equivalent OM-OpenMP variants
(OMP). The main difference between these two versions is the way
in which parallelism is expressed in the programs (see Section 5).

Since the OpenMP versions distribute the code to perform cer-
tain coherent computation across multiple parallel-for-loops, it led
to codes that are lengthy (marginally higher – around 1-17 lines)
and arguably more complex (less readable – related parts of the
parallel-for-loop are not together). For NPB and PolyBench (PB)
kernels, we chose the largest class of input for which we could run
the kernels. In case of SOR and IA, we chose input sizes such that
the code generated by our transformation technique (from the input
UW-OpenMP kernels) took at least a few tens of seconds (on the In-
tel system, by setting the environment variable OMP_NUM_THREADS
to 16). In all these ten kernels the input size also matches the num-
ber of iterations of the main parallel-for-loop (abbreviated as NIP).

The first part of our evaluation is to address a naive argument that
instead of following the elaborate translation scheme, we could let
the programmer write programs in UW-OpenMP and we just set the
OMP_NUM_THREADS to NIP at runtime (guarantees a consistent be-
havior). Figure 16 presents a comparison of the input UW-OpenMP
code (executed by setting OMP_NUM_THREADS = NIP) and the trans-
lated code (executed by setting OMP_NUM_THREADS = #cores).

Figure 16a shows that on the Intel system, the execution times of
our translated code are clearly lower than that of the UW-OpenMP
code; a geometric mean % difference of 100×(1− 7.6

56.0
) = 86.4%.

The exact difference for any particular benchmark depends on the
value of NIP and the work done in each iteration. Figure 16b shows
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(a) 16 core Intel system.

45.7	  

0.4	  

2.2	  
1.1	  

-‐0.2	  
1.3	  

0.0	   0.0	  

3.7	  

0.0	  

6.7	  

-‐5	  

0	  

5	  

10	  

15	  

CG
	  

BT
	  

LU
	  

GE
MV
ER
	  
3M
M	  

FD
TD
2D
	  

JA
CO
BI1
D	  

JA
CO
BI2
D	  
SO
R	   IA	  

GM
EA
N	  

%
	  Im

pr
ov
em

en
t	  w

.r.
t.	  
U
W
	  m

od
el
	  

Benchmarks	  

(b) 64 core AMD system.
Figure 17: Performance comparison of the generated and input
code, both executed by setting OMP_NUM_THREADS=NIP.

the corresponding comparison on the 64 core AMD system. On the
AMD system the geometric mean % difference is 88.7%.

This behavior is consistent with the common knowledge that set-
ting OMP_NUM_THREADS to a large number will lead to significant
performance degradation. And we show that use of our proposed
scheme is definitely better than using such a naive scheme.

To explain the impact of the overheads resulting from our gen-
erated code, Figure 17 shows the comparison of the performance
of the generated code (α) and the input code (β), both executed by
setting OMP_NUM_THREADS set to NIP. Figure 17a shows the perfor-
mance improvement on the 16 core Intel system (% improvement =
100×(1 - exec time of α / exec time of β). Except for 3MM, it can
be seen that most of our generated codes ran faster than the input
codes, even though OMP_NUM_THREADS was set to NIP. This indi-
cates that the effects of the overheads is eclipsed by the proposed
optimizations. Interestingly, in case of 3MM the performance gains
actually show a dip due to some of the overheads introduced by our
transformations. Overall, we observe that the impact of the over-
heads in our proposed transformation is more than nullified by the
optimizations discussed in Section 4. We note that in case of the 64
core AMD system (Figure 17b), the performance of our generated
code is similar to that seen on the 16 core Intel system.
Effect of the Optimizations: We studied the effect of the proposed
optimizations (Section 4) on the generated code. In this regard, we
invoked our transformation phase, with and without the optimiza-
tions, on each of the benchmark kernels.

Figure 18a shows the effect of the optimizations on the Intel sys-
tem: the gains varied between 1.2% (CG) to 40.6% (IA), and ge-
ometric mean gain = 11.7%. The significant gains in IA and JA-
COBI1D are due to the optimizations which reduced the number
of redundant barriers. The gains due to optimizations on the AMD
system (Figure 18b) are similar to the ones shown in Figure 18a:
the gains varied between 2.2% (3MM) to 74.9% (IA), and geomet-
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(a) Intel system, #cores=16.
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(b) AMD system, #cores=64.
Figure 18: Comparison of unoptimized and optimized codes (both
executed by setting OMP_NUM_THREADS = #cores).

ric mean gain = 26.9%. Note that the gains on the AMD system are
a bit more pronounced because of the increased number of cores.

Impact of code specialization: This optimization is applicable
only when OMP_NUM_THREADS=number of iterations of the main
parallel-for-loop, that has a while loop. For the evaluation shown
in Figure 17, code specialization was applicable for JACOBI1D,
JACOBI2D and IA. The percentage improvement varied between
51-91% on the AMD system and 43-65% on the Intel system.

7 CONCLUSION AND FUTURE WORK
In this paper, we propose UW-OpenMP (an extension to OpenMP)

that allows the placement of barriers anywhere inside the OpenMP
work-sharing constructs (parallel-for-loop and parallel-sections), and
helps the programmer to realize synchronization among the dif-
ferent parallel tasks (instead of the workers), which is arguably a
natural way to express parallel algorithms. Our proposed method
results in concise and simpler programs, without compromising on
the efficiency resulting from the underlying team of workers model
of OpenMP. We validate the same by presenting an evaluation on
two different hardware systems.

Extending UW-OpenMP to support OpenMP 3.0 [5] tasks (de-
fined using #pragma omp task) would be an interesting future
work. Further, extending UW-OpenMP to guarantee deadlock free-
dom would be another interesting challenge.
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