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ABSTRACT
We present a new optimization DECAF that optimizes recursive

task parallel (RTP) programs by reducing the task creation and

termination overheads. DECAF reduces the task termination (join)

operations by aggressively increasing the scope of join operations

(in a semantics preserving way), and eliminating the redundant

join operations discovered on the way. Further, DECAF extends

the traditional loop chunking technique to perform load-balanced

chunking, at runtime, based on the number of available worker

threads. This helps reduce the redundant parallel tasks at different

levels of recursion. We also discuss the impact of exceptions on our

techniques and extend them to handle RTP programs that may throw

exceptions. We implemented DECAF in the X10v2.3 compiler and

tested it over a set of benchmark kernels on two different hardwares

(a 16-core Intel system and a 64-core AMD system). With respect to

the base X10 compiler extended with loop-chunking of Nandivada

et al. [26] (LC), DECAF achieved a geometric mean speed up of

2.14⇥ and 2.53⇥ on the Intel and AMD system, respectively. We

also present an evaluation with respect to the energy consumption

on the Intel system and show that on average, compared to the LC

versions, the DECAF versions consume 71.2% less energy.
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1 INTRODUCTION
The onset of multi-core architectures has brought forth a shift in pro-

gramming paradigm from sequential programs to task parallel pro-

grams. The task parallel languages allow the programmer to express

the desired amount of parallelism (a.k.a ideal parallelism), while del-

egating the task of extracting the useful parallelism to the compiler

and/or runtime. Recursive Task Parallel (RTP) programs constitute

an important subset of task parallel programs written in popular lan-

guages like Cilk [12], X10 [31], Chapel [7], OpenMP [28], HJ [5],

and so on. In RTP programs, each task can recursively create newer

tasks and wait for those respective tasks to terminate. This leads

to the execution of a large number of redundant task-creation and
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1 def find_queens() {...; nqueens (n, 0, ...);}
2 def nqueens(val n:Int, val j:Int, ...) {...
3 finish {
4 for(var i:Int=0; i<n; i++) {
5 async { ... /* Check for conflicts */
6 nqueens(n, j+1, ...); } } } }

(a)

2 def nqueens(val n:Int, val j:Int, ...) {...
3 var nChunks:Int=Runtime.retNthreads();
4 var chunkSize:Int=(n+nChunks-1)/nChunks;
5 finish {
6 for(var ii:Int=0; ii<n; ii+=chunkSize) {
7 val ni = ii;
8 async { var kx:Int = ni+chunkSize;
9 if(kx>n) kx=n;
10 for(var i:Int=ni; i<kx; i++) {
11 ... /* Check for conflicts */
12 nqueens(n, j+1, ...); } } } } }

(b)

Figure 1: BOTS Nqueens kernel in X10: (a) Unoptimized ver-
sion (b) Loop Chunked version of the nqueens function.

-termination operations. Importantly, the structure of RTP programs

makes it quite challenging to identify and eliminate such redundant

operations. We will use an example to illustrate the problem.

Redundant task termination operations: Figure 1(a) shows the

snippet of the BOTS [10] Nqueens kernel, in X10. The async con-

struct spawns a new child task to execute the statement within its

body, in parallel with the parent task. The finish construct acts

as a join point for all the tasks spawned in its body. The code in

Figure 1(a) (due the presence of recursive task parallelism) may

lead to the execution of a large number of finish operations at

runtime (for example, when n=14, it executes 27 million finish
operations). Nandivada et al. [26] show that eliminating unnecessary

finish operations can lead to significant performance improve-

ments. However, in this code, their proposed technique does not

reduce the number of finish operations. Interestingly, we observe

that each task spawns new child tasks, and waits at the join point for

the spawned tasks to terminate. After that the task simply returns

from the procedure. Hence, the finish construct can be pulled out

of the nqueens method and placed around its non-recursive call

site (in find_queens), without altering the semantics of the code.

In other words, the scope of the finish construct can be expanded

to surround the first call to nqueens. Such an optimization brings

down the number of dynamic finish operations to just one (com-

pared to 27 million), for the code shown in Figure 1(a). This can

lead to significant performance gains.

Redundant task creation operations: Further analysis of Figure 1(a)

shows that at recursion level k, nqueens creates nk number of

asyncs (tasks) leading to an explosion of tasks (e.g., when n=14, it

creates a total of 377 million tasks) — results in large performance

overheads. The powerful Loop Chunking [26] scheme (henceforth
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referred to as LC) extracts useful parallelism from the ideal. LC

splits the iterations of a parallel loop into a set of chunks, where

each chunk (containing a set of serial iterations) runs in parallel.

Figure 1(b) presents the LC version of the nqueens function.

Here, the Runtime.retNthreads function returns the initial

count of the worker threads. Hence, the useful parallelism is bound

by nChunks. Considering this, LC ensures that at most nChunks
number of tasks are created in any invocation of this function. Thus,

at level k of recursion, it creates nChunksk number of tasks (e.g.,

when n=14 and nChunks=8, it creates 189 million tasks). This

chunked program runs faster than the unoptimized version, but still

incurs a large task creation and termination overhead. This is because

the chunking algorithm is oblivious to the recursive call inside the

loop, and hence, permits the spawning of a large number of tasks.

We have observed such trends in a number of RTP kernels present

in two open-source benchmark suites: IMSuite [14] and BOTS. In

general, it is quite challenging to address the dual problems of re-

ducing redundant task-termination and task-creation operations in

RTP programs. For example, it is non-trivial to expand the scope

of finish constructs nested deep inside some if/while con-

structs, and there may be dependencies between the code inside the

finish block and the code outside. This problem becomes further

challenging, in the presence of exceptions. Similarly, to avoid the

creation of large number of redundant tasks it is imperative that tasks

are created based on the available “free” workers at runtime.

In this paper, we present a new optimization DECAF that handles

both of these challenges. DECAF aggressively expands the scope

of finish operations and helps elide a large number of dynamic

finish operations. This is in contrast to the finish-elimination

algorithm of Nandivada et al [26] that mainly focusses on reducing

the scope of finish operations. To handle the redundant tasks cre-

ated in loops, in recursive functions, DECAF modifies the chunking

algorithm of Nandivada et al [26] to generate code that spawns new

tasks based on the number of “idle" workers available, at runtime. If

no idle workers are available, the current worker executes the loop

serially. During the serial execution, if some workers become idle,

the remaining iterations can be executed in parallel (by the idle work-

ers). For the example shown in Figure 1(a), DECAF significantly

reduces the tasks creation operations – for n=14, DECAF leads to

the creation of 6 million tasks (⇡ 30⇥ less, Vs LC).

We introduce a new optimization practice, in the context of RTP

programs, of expanding (instead of contracting) the scope of task

termination constructs (such as finish) from the procedural defini-

tions to their respective call-sites, in a semantics preserving manner,

even in the presence of exceptions. Furthermore, we extract the use-

ful parallelism by utilizing the key insight of available idle workers

at runtime, as part of a mixed compiler+runtime based optimization.

We believe that such a principled strategy helps to define and extract

the maximum useful parallelism in case of RTP programs.

Our Contributions
•We propose a new optimization DECAF for improving the perfor-

mance of RTP programs that reduces the redundant task creation

and termination operations. DECAF can also be extended to other

task parallel languages (such as HJ, Chapel and OpenMP) that have

similar constructs for task creation and task termination operations.

We also implemented DECAF on top of the X10v2.3 compiler.

1. Loop-Finish Interchange
for(S1;c;S2)

{ finish S3 }
=) S1; finish {

for(;c;S2) {S3}}
// Say Es = set of e-asyncs in S3
// ¬9e 2 Es : c has dependence on e .
// ¬9e 2 Es : e has loop carried dependence on S2, c or S3
2. Finish Fusion
finish{S1} finish{S2} =) finish{S1; S2}
// S2 has no dependence on any e-async of S1.

Figure 2: Existing transformation rules.

•We extend DECAF to perform semantics preserving code transfor-

mation even in the presence of exceptions.

• We evaluated DECAF over eight benchmarks (drawn from two

benchmark suites: IMSuite and BOTS) on two different hardware

systems (a 16-core Intel system and a 64-core AMD system). We

show that DECAF leads to improved execution times (geometric

mean of 2.14⇥ on the Intel and 2.53⇥ on the AMD system, with

respect to the LC version. We also show that DECAF leads to lower

energy consumption.

2 BACKGROUND
X10: We briefly describe some relevant X10 constructs here (see

the X10 manual [31] for details). ‘async S1’ spawns a new asyn-

chronous task to execute S1. A task can be registered on one or

more clocks. For example, ‘async clocked(c1,c2) S’ regis-

ters the new spawned task on the clocks c1 and c2. Two tasks with

at least one common registered clock can synchronize by execut-

ing Clock.advanceAll(). ‘finish S’ waits for all the tasks

spawned in S to terminate. Each async has a unique Immediately

Enclosing Finish (IEF), at runtime. Note: statically an async may

have multiple IEFs.

The escaping asyncs or e-asyncs [13] of a statement S are the

async statements (within S) whose IEF is not enclosed within S.

X10 runtime is built around the notion of workers. Each worker is

assigned a task to execute and can be seen as a software thread.

The initial count for workers can be set (typically to the num-

ber of available cores) at runtime, using the environment variable

X10_NTHREADS. During execution, X10 runtime also tracks the

number of idle-workers – workers which are assigned no task.

Finish Elimination: The ‘Finish Elimination’ optimization of Nan-

divada et al. [26] repeatedly applies a series of transformation rules to

eliminate the redundant finish constructs. Two of their proposed

set of rules are relevant to this work and for the sake of completeness,

are reproduced in Figure 2. Each transformation includes a set of

pre-conditions (shown as comments) necessary to ensure semantics

preserving transformation. Loop-Finish Interchange is applicable

when, neither there is a loop carried dependence between the itera-

tions of the loop, nor the loop condition depends on the e-asyncs of

S3. This rule can be trivially extended for other looping constructs

such as, while and do-while. Finish Fusion merges two finish
statements, if S2 has no dependence on the e-asyncs of S1.

3 DETAILS OF DECAF
In this section, we discuss a novel optimization to reduce the task cre-

ation and termination overheads in recursive task parallel programs;
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May Happen in Parallel Dependence Analysis 

Output Code

Reducing Task Termination Overheads Reducing Task Creation 
Overheads

Loop Chunking (LC)
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Chunked-Block-Modification

Parent-Block-Generation

Serial-Block-Generation

Finish-If 
Interchange

Async-Finish 
Interchange

Finish
Expansion Upper

Finish 
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Stop iterating if no change

Finish-Method 
Pull

Loop-Finish 
Interchange

Finish 
Fusion

Nested Finish 
Elimination

Input Code

Figure 3: Block diagram of DECAF

we call it DECAF

1

. Figure 3 shows the block-diagram of DECAF.

We first compute the may-happen-before dependence (MHBD) [26]

information, before invoking DECAF that generates optimized code.

DECAF aggressively expands the scope of finish operations to

eliminate redundant task termination operations (described in Sec-

tion 3.1). To eliminate redundant task creation operations, DECAF

extends the chunking algorithm of Nandivada et al [26] to perform

loop chunking in a load-balanced manner, by taking into considera-

tion the idle workers at runtime. For the sake of simplicity, in this

section, we assume that the programs do not throw exceptions. In

Section 4, we extend our proposed techniques to do handle X10

programs that may throw exceptions.

3.1 Reducing Redundant Task Termination Ops
DECAF applies a set of eight transformation rules that aim to ex-

pand the scope of finish operations. Two of these rules have

been proposed by Nandivada et al [26] (Figure 2). The rest six rules

(Nested Finish-Elimination, Async-Finish Interchange, Finish-If In-
terchange, Finish Expansion Upper, Finish Expansion Lower, and

Finish-Method Pull), shown in Figure 4, are new. The necessary pre-

conditions (checked by the compiler) for any rule are specified as

comments. Note: Since our goal of expanding the scope of finish
operations and the goal of finish-elimination optimization [26] are

opposite in nature, naturally some of the rules used here do the oppo-

site of those used in the finish-elimination optimization. Accordingly,

the pre-conditions and the transformations will vary.

Nested Finish Elimination eliminates the trivially redundant fin-
ish constructs. Finish-If Interchange pulls out a finish construct

from the surrounding if construct. The if-then-else statement is

handled as a special case: if (cond) {finish S1} else
{finish S2}=) v=cond;finish{if(v) S1 else S2}.

The switch-case statement is also handled similarly. Finish Expan-
sion Upper expands the finish scope by pulling a preceding state-

ment S1 in its scope. It requires that S1 does not have any e-asyncs

registered on clocks. Finish Expansion Lower expands the scope

of the finish construct by pulling in a succeeding statement S1.

It requires that (i) there is no dependence (MHBD) between S2
and the e-asyncs of S1, and (ii) S2 does not have any e-asyncs

1

DECAF (decaffeinated coffee) is like regular coffee, except that at least 97% of the

caffeine has been removed. – source authoritynutrition.com

3. Nested Finish Elimination
finish finish S1 =)

finish S1
4. Finish-If Interchange
if(e) {finish S1} =) v=e; finish{if(v) S1}
5. Finish Expansion Upper
S1; finish {S2} =)

finish {S1; S2}
// If S1 has no e-asyncs registered on clocks.
6. Finish Expansion Lower
finish {S1}; S2 =)

finish {S1; S2}
// S2 has no e-asyncs registered on clocks. Say Es=set of e-asyncs in S1.
// ¬9e 2 Es : S2 has dependence on e.
7. Async-Finish Interchange
async finish S1 =)

finish { async S1}
// S1 has no e-asyncs registered on clocks.
8. Finish-Method Pull
(a) // finish-method pull hasn’t already been applied on f3().

def f2(){S1;f3();S2}

def f3(){finish S}
=)def f2(){S1;finish f3();S2}

def f3() { S }
(b) // finish-method pull has already been applied on f3().

def f3(){finish S} =) def f3() { S }

Figure 4: Rules to help expand the scope of finish operations.

registered on clocks. The Async-Finish Interchange interchanges

the surrounding async and the inner finish. In conjunction with

other transformation rules, this rule helps to increase the scope of

finish. Finish-Method Pull rules lift a finish construct from a

method to all its possible callers (obtained by a conservative flow

analysis), by taking into consideration the possible recursive calls.

The rule (b) precludes the possibility of leaving S surrounded by a

finish construct, in case S contains a recursive call to f3.

Note I: The pre-conditions on the e-asyncs like those specified

on Rules 5, 6, and 7 ensure that the translated code does not dead-

lock [31, Section 15.2]. Note II: the order in which the set of eight

rules are applied has no effect on the final generated code. These

eight rules are iteratively applied till we reach a fix point.

The rules (#1-#8) listed in Figures 2 and 4 can be categorized

under two heads (a) eliminating rules: transformations to eliminate

redundant finish constructs, and (b) expanding rules: transfor-

mations to expand the scope of finish constructs. For example,

Rule #2, and #3 reduce the static finish operations; and Rule #1

and Rule #8 can reduce the dynamic finish operations; these

rules fall in the category of eliminating rules. The Rules #4�#8 are

examples of expanding rules. Note: Rule #8 is both an ‘eliminating’

rule and an ‘expanding’ rule.

Sample Transformation:

We now discuss the working of the eight rules of DECAF for re-

ducing redundant task termination operations, on the input code

shown in Figure 5(a). Assume that S1, S2, S3, and S4 have no

e-asyncs registered on clocks. Further, S4 has no dependence on the

e-asyncs of S2 or S3, and S2 has no dependence on the e-asyncs of

S1. DECAF starts by applying Finish Fusion, followed by Finish/If
Interchange (Figure 5(b)). Then, it applies Async/Finish Interchange
(Figure 5(c)), Loop/Finish Interchange followed by Nested Finish
Elimination (Figure 5(d)), and finally Finish Expansion Upper and

Finish Expansion Lower to obtain the code in Figure 5(e).
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// Example Code
S1;
finish {
for(i in 0..n){
async { =)
if(cond) {
finish S2;
finish S3;
}}}} S4;

(a)

// Applying rules #2, #4
S1;
finish {
for(i in 0..n){
async { =)
finish {
if(cond){S2;S3
}}}}}

S4;
(b)

// Applying rule #7
S1;
finish {
for(i in 0..n) {
finish { =)
async {
if(cond){S2;S3;
}}}}}

S4;
(c)

// Applying rules #1, #3
S1;
finish {
for(i in 0..n) {
async { =)
if(cond){S2;S3;
}}}}

S4;

(d)

// Applying rules #5, #6
finish {
S1;

for(i in 0..n) {
async {
if(cond){S2;S3;
}}}

S4; }

(e)

Figure 5: Using DECAF to expand the scope of finish operations on the code in (a). The modifications are highlighted in bold.

3.2 Reducing Redundant Task Creation Ops
The existing loop-chunking (LC) optimization [26] suffers from a

drawback that it may create tasks even when there are no idle workers

at runtime. This may lead to significant overheads (especially in case

of RTP programs, where it is common to have many tasks created

at each level of recursion). DECAF takes inspiration from the lazy-

binary-splitting scheme [34] and reduces these overheads through

two simple, yet effective strategies: (i) dynamic task creation based

on the number of idle workers and load balancing among the workers,

and (ii) serial execution if no idle workers are available. For the ease

of explanation, we first discuss the details of our scheme for input

codes having no synchronization operations. In Section 3.2.1, we

extend our scheme to handle code with synchronization operations.

We first discuss a modification to the chunking policy of LC and a

minor extension to the X10 runtime, before going over the scheme of

DECAF to reduce the number of redundant task creation operations.

Modified chunking policy. We make two simple modifications

to the chunking policy to balance the load: a) divide the iterations

equally among all the idle workers (not all the workers), and b) spare

some iterations for the current worker (executing the current task).

To highlight the unbalanced load distribution inherent in LC

consider the code shown in Figure 1(b) (obtained after invoking LC

on Figure 1(a)). Say, n=9 and number of total workers = nChunks
= 4. Thus, chunkSize is equal to 3, and LC creates three tasks

(to execute three iterations each). Say, excluding the current worker,

the other three workers are currently idle. In such a scenario, the

three idle workers execute one task each, while the current worker

waits at the join point for the spawned tasks to terminate. In contrast,

our chunking policy creates three tasks (with three, two and two

iterations each), that are executed by the three idle workers. The

remaining two iterations are executed by the current worker. Thus,

DECAF ensures that the current worker not only does some useful

work, but also gets the smallest chunk of iterations. This leads to

better load-balancing (the “critical path” length remains unchanged).

Let us consider another case where n=12 and nChunks=4. LC

creates four tasks (to execute three iterations each). In such a sce-

nario, the three idle workers execute one task each, and the last task

is placed in the task queue. Say, the current worker reaches the join

point (finish end), and then picks up the last task (from the task

queue) to execute. In this process, the current worker switches its

current task, executes the new task and then switches back to its old

task. In contrast, instead of creating the “last task” and inserting it

in the job queue, our chunking policy executes the iterations corre-

sponding to the “last task” directly. Thereby avoiding the cost of

task creation, and switching operations.

Extending the X10 runtime (XRX). We expose a field in XRX

(Runtime.retIdleWorkers) to obtain the current count of

idle workers. In a transformed RTP program, it is possible that two

tasks may query the same value of the count of idle workers, at

the same instant. Which may lead to creation of more tasks than

the idle workers. This inaccuracy can be addressed by the use of

‘atomic’ sections, but we avoid this solution considering the associ-

ated performance overheads. Despite this inaccuracy, we show that

our approach leads to significant reduction in task creation.

Dynamic task creation and overhead reduction. DECAF reduces

redundant task creation operations in five substeps (see Figure 3).

It starts by invoking LC on parallel loops in canonical form [24].

The next step is to introduce some template code that computes the

current count of the idle workers and a set of five helper variables:

i) totWorkers: # idle workers+1, ii) eqChunk: minimum num-

ber of iterations executed by any worker, iii) actualn: number

of iterations of the parallel loop to be executed. iv) newN: total

number of iterations to be executed by the idle workers, and v) rem:

a temporary variable. This substep also introduces an outer while

loop, which is used to avoid unstructured control flow. The third

substep (Chunked-Block-Modification) modifies the chunked code

to enforce the load balancing scheme discussed above. Similarly,

the fourth step (Parent-Block-Generation) introduces code to be

executed by the parent thread.

The final substep Serial-Block-Generation is more involved. DECAF

aims to create tasks only if there are idle workers. Ideally, if there are

no idle workers then we should neither execute a join operation nor

spawn new tasks. In such cases the current task can be asked to com-

plete the remaining job serially. DECAF handles this scenario, by

using a simple heuristic: If at the time of task creation, no idle work-

ers are available (workers = 0), then the loop under consideration

should be executed serially. This heuristic is enforced by invoking

the Serial-Block-Generation substep. Considering the possibility

that some workers may get freed up during the life-time of this serial

loop, the generated serial-code checks for available idle workers,

after each iteration. And if idle workers are available, the rest of

the iterations are divided into totalWorkers (= workers + 1)

number of chunks to be executed in parallel.

Example: For the input code of Figure 1(a), DECAF would (i)

perform aggressive finish expansion and pull the finish construct

to the nqueens call-site (find_queens), and (ii) reduce redun-

dant task operations by invoking the five substeps described above

– to generate code shown in Figure 6. The code computes the num-

ber of idle workers, and if workers>0, the execution continues
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1 def find_queens() {
2 finish { nqueens (n, 0, ...); } }
3 def nqueens(val n:Int,val j:Int, ...) {
4 var ii:Int=0;
5 var workers:Int = Runtime.retIdleWorkers;
6 outer: while(true) {
7 if(workers>0) {
8 val totWorkers:Int = workers+1;
9 val actualn:Int=n-ii;
10 val eqChunk:Int=actualn/totWorkers;
11 val newN:Int=actualn-eqChunk;
12 var rem:Int=actualn%totWorkers+workers
13 for( ; ii<newN; ) { // ``chunked block"
14 val kx = ii+eqChunk+rem/totWorkers;
15 val ni=ii; rem--; ii = kx;
16 async {
17 for(var i:int=ni ; i<kx; i++) { ...
18 nqueens(n, j, ...);
19 } }/* async */}/* outer-for */
20 { // ``parent block"
21 for(var i:int=newN;i<size;i++){ ...
22 nqueens(n, j, ...);
23 } } } /* if */
24 else { // ``serial block"
25 for(i=0; i<n; i++) { ...
26 nqueens(n, j, ...);
27 workers = Runtime.retIdleWorkers;
28 if(workers>0 && i<n-2) {
29 ii=i+1; continue outer;
30 }}} break; } /*while */ } /*nqueens */

Figure 6: DECAF applied on BOTS Nqueens kernel

at line 8. The if body includes a chunked parallel loop (chunked-

block: executed by the idle workers), and a for-loop (parent-block:

executed by the current worker). The “serial block” depicts the code

generated by the ’Serial-Block-Generation’ substep. At the end of

each serial iteration, we check the count of the idle workers. If the

count is greater than zero (and at least two iterations are left to exe-

cute, to account for the work available for the current worker and at

least one of the idle workers), we create parallel tasks to execute the

remaining iterations. To do so, ii is set to the number of iterations

that have already been executed, and the control is transferred to

line 6; at line 9, this updated value of ii is used to compute the

value of actualn.

3.2.1 Impact of synchronization operations on reduction of

redundant tasks . We now extend the techniques presented above

to handle loops that may contain synchronization operations. Like

before the code generation happens in five steps: (1) Loop Chunking:

The LC substep chunks the parallel loops with N synchronization

operations, such that the body of the outer chunked loop consists

of a series of inner serial-for-loops (N + 1 of them) separated by

Clock.advanceAll statement; the serial-for-loop bounds are

guarded by a condition. For example, for the input (synthetic) code

shown in Figure 7(a), Figure 7(b) shows the code generated by LC.

(2) Template-Code-Generation: same as before. (3) Chunked-Block-

Modification: The generated “chunked block” skips the first phase
number of serial-for-loops (have already been executed in the “serial

block”), and execute the rest of the serial-for-loops. This selective ex-

ecution of the serial-for-loops is performed using a switch statement.

finish {
for(var i:Int=0; i<n; i++){
async clocked(c){S1;Clock.advanceAll();S2;}}}

(a)
var workers:Int = Runtime.retNthreads();
var chunkSize:Int=(n+workers-1)/workers;
finish {
for(var ii:Int=0;ii<n;ii+=chunkSize) {

val ni = ii;
async clocked(c) {
var kx:Int=ni+chunkSize; if(kx>n)kx=n;
for(var i:Int=ni; i<kx; i++) S1;
Clock.advanceAll();
for(var i:Int=ni; i<kx; i++) S2; } } }

(b)
//``chunked block":

for( ; ii<newN; ) {
val kx:Int=ii+eqChunk+rem/totWorkers;
val ni=ii; rem--; ii = kx;
async clocked(c) {
switch(phase) {

case 0:for(var i:int=ni;i<kx;i++) S1;
Clock.advanceAll();

case 1:for(var i:int=ni;i<kx;i++) S2;
} } /* async */ } /* outer-for */

//``parent block":
switch(phase) {
case 0:for(var i:Int=newN;i<n;i++) S1;

Clock.advanceAll();
case 1:for(var i:Int=newN;i<n;i++) S2;}

//``serial block":
for(i=0 ; i<n; i++) S1;
Clock.advanceAll(); phase++;
workers = Runtime.retIdleWorkers;
if(workers>0) { continue outer; }
for(i=0;i<n;i++) S2;

(c)

Figure 7: Reducing task creation operations in the presence of
synchronization operations. (a) Input unoptimized version, (b)
LC version, and (c) DECAF version.

(4) Parent-Block-Generation: The strategy for the “parent block” is

similar to that followed for the “chunked block”. (5) Serial-Block-

Generation: To keep a tab on the complexity of the generated code,

we choose a scheme in which (a) we keep track of the number of

inner serial-for-loops executed (using a variable called phase, that

is initialized to 0), which is incremented after the execution of each

Clock.advanceAll statement. (b) we check for the availability

of free workers after executing each Clock.advanceAll state-

ment (instead of checking it after each iteration – can become too

complex). Figure 7(c), shows the code corresponding to “chunked

block”, “parent block” and the “serial block”, for the loop chunked

code shown in Figure 7(b).

3.3 Discussion
Overheads due to DECAF: The code generated by DECAF may

incur overheads due to possible reduction in parallelism: Consider

the code transformation shown below:

def f1() {f2();f3();}

def f2() { =)⇤
async finish S1 }

def f1() {

finish {f2();} f3();}

def f2() {async S1 }
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It can be seen that the shift of finish construct from the method

f2() to its call site, inhibits the parallel execution of S1 and the

function f3. This overhead gets easily fixed if the scope of the

finish can be further expanded later to include the call to f3.

During our evaluation, we have found that async-finish inter-

change is an important transformation and is invoked for each RTP

benchmark under consideration. But we did not encounter any case

leading to such an overhead – the scope of finish could always

be expanded after applying async-finish interchange.

DECAF Vs a fully runtime approach: To reduce the task termi-

nation operations, DECAF involves elaborate dependence analysis

and code transformation schemes that are non-local in nature (even

in the absence of exceptions). Re-casting these as a runtime opti-

mization may seem attractive, but is both non-trivial and can be

expensive. Similarly, to reduce the task creation overheads, DECAF

generates serial-code from the input parallel code. Doing this at

runtime is non-trivial, especially in the presence of deeply nested

barriers. Overall DECAF is a whole program optimizations that has

intuitive compile-time implementation and reaps runtime benefits.

4 EXTENSIONS FOR EXCEPTIONS
We now discuss the extensions to the rules of DECAF discussed

in Section 3, in the presence of exceptions. Though the rules are

discussed in the context of X10 exception model (inspired by that of

Java), the general idea can also be applied to other languages with

exception semantics (for example, HJ and C++).

As per X10 semantics [31] when an exception is thrown in an

async, at runtime, the exception is caught by its IEF (see Section 2).

The IEF waits for termination of the remaining tasks, packages all the

thrown exceptions into a new object of type MultipleExceptions,

and throws this exception object. Note: an exception thrown in one

task does not terminate the sibling tasks.

To motivate the impact of exceptions on the presented transfor-

mation rules, consider the finish expansion upper rule of Figure 4,

being applied on the following example, where S1 can throw an

exception (of type Ex).

try{ S1; finish S2 =)
} catch(e:Ex){...}

try{ finish { S1; S2;

} } catch(e:Ex){...}
In the LHS, the exception thrown by S1 is caught by the catch
block. However, in the RHS, the finish block catches this excep-

tion and in turn throws an object of type MultipleExceptions
– not caught by the catch block and hence not semantics preserving.

To ensure semantics preservation, we now present the required

modifications to DECAF. Overall, DECAF still follows the same

block diagram shown in Figure 3, but some of the individual transfor-

mation rules are modified. Note that since LC is semantics preserving

in the presence of exceptions [26], our rules to reduce task creation

operations do not alter the program semantics (even in the presence

of exceptions). We now discuss the changes to the different rules,

used by DECAF (to reduce the task termination overheads), to make

them semantics preserving in the presence of exceptions.

Figures 8 and 9 present the extensions to the rules presented in

Figures 2 and 4. As it can be seen the new rules are a lot more com-

plicated, which underscores the importance of the compiler based

automatic (in contrast to hand transformation by the programmer).

1. Loop-Finish Interchange

for(S1;cond;S2) {

finish { S3

}<exlist>
}
// ++
// e-asyncs in cond/S2/S3
// do not throw exceptions

S1; var e:Exception=null;

var me:ME=null,v:Boolean;

finish {

for(; ;){ try {v=cond;}

catch(ex:Exception)

{e = ex; break; }

if(e==null && v){

try{S3}

catch(ex:Exception){

me=new ME(ex);break;}

if(me==null) {

try { exlist }

catch(ex:Exception)

{ e = ex; break; }

if(e==null){

try{S2}

catch(ex:Exception)

{e=ex; break;}}}}}}

<if(e!=null) throw e;

if(me!=null) throw me;>
2. Finish Fusion

finish{S1}<exlist1>
finish{S2}<exlist2>
// ++
// e-asyncs in S1 and S2
// do not throw exceptions.

finish {

S1

exlist1
S2

}<exlist2>

Figure 8: Rules of Figure 2, in the presence of exceptions.

To aid the translation process, we use a temporary finish con-

struct of the form “finish {S1}<exlist>”, where exlist
represents a sequence of conditional throw statements. Each entry

in exlist is of the form “if (ex != null) throw ex;".

We call exlist the list of pending exceptions. This temporary con-

struct is translated away, at the end, using the following rule:

finish{S}<exlist> =) finish{S}; exlist;

Figure 8 presents the extensions for the two rules of Figure 2, in

the presence of the exceptions. We use ME to refer to the X10 class

MultipleExceptions. For brevity, we avoid re-stating the old

rules specified in Figures 2 and 4 and use “// ++” to refer to them.

Rule#1 ensures that S3 is executed only if no exceptions are thrown

by cond, S2 and exlist. Rule#2 ensures that S2 is executed only

if no exception is thrown in exlist1.

Figure 9 presents the extensions to the rules of Figure 4 in the

presence of exceptions. Rule#3 uses a try-catch block to capture

the exceptions thrown by the inner finish and exlist1, and

rethrow it later. The Rule #4 is similar to that shown in Figure 4.

Rule #5 requires that no exceptions are thrown by the e-asyncs in

S1. The transformed code catches the exception (if any) thrown in

S1 and throws the exception outside the finish. The execution

of S2 occurs only if S1 throws no exceptions. Similarly, Rule #6

requires that no exceptions are thrown by the e-asyncs of both S1
and S2; execution of S2 occurs only if S1 and exlist throw no

exceptions. Rule #7 requires that S1 does not throw exceptions. It

also requires the finish has no pending exceptions. For the ease of

explanation, we explain the modifications to the Finish-Method Pull
transformation (Rule #8, Figure 4), using the following example:
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3. Nested Finish Elimination
finish {

finish {

S1}<exlist1>
}<exlist2>

try { finish { S1 }

exlist1;
} catch(e:Exception) {

val me = new ME(e);

throw me; }<exlist2>
4. Finish-If interchange
if(cond) {

finish { =)
S1}<exlist>}

v = cond;

finish {

if(cond) S1}<exlist>

5. Finish Expansion Upper
S1;

finish{S2}<exlist>
// ++
// e-asyncs in S1 do not
// throw exceptions.

=)

var e:Exception=null;

finish { try { S1 }

catch(e1:Exception){e=e1;}

if(e == null) S2

}<if(e!=null)throw e;

exlist>

6. Finish Expansion Lower
finish { =)

S1 }<exlist>
S2
// ++
// e-asyncs in S1 and S2
// do not throw exceptions.

var e:Exception=null;

finish { S1;

try { exlist }

catch(e1:Exception){e=e1;}

if(e==null){ try {S2}

catch(ex:Exception){e=ex;}}

}<if(e!=null)throw e;>
7. Async-Finish Interchange
async{finish {S1}<> =)
// S1 throws no exceptions.

finish{async{S1}}<>

Figure 9: Rules of Figure 4, in the presence of exceptions.

def b() {f();}

def f() { =)
var e:Ex;

finish S

<if(e!=null)throw e;>}

var g:Ex;

def b() { var e:Ex;

finish { f(); e=g;

}<if(e!=null)throw e;>}

def f(){var e:Ex;S;g=e;}

Here a new instance field g stores the exception e, inside the method

f, and this exception is thrown in the callee of f.

Besides the extensions to the rules from Figure 4, in the presence

of exceptions, we need another transformation to expand the scope

of finish constructs – Try-Finish Exchange. This transformation

requires that no exceptions are thrown by e-asyncs in S1.

9. Try-Finish Exchange
try {

finish {

S1 }<exlist> =)
} catch(e:Ex) { S2 }
// e-asyncs in S1 do not
// throw exceptions.

var e:Ex=null;

finish {try {try {S1}

catch(e1:Exception)

{throw new ME(e1);}

exlist

}catch(e1:Ex){e=e1;}

} if (e!=null){S2}

5 EVALUATION
In this section we evaluate our proposed optimization DECAF. We

analyze DECAF on two different systems – a 16 core Intel system

(2 Intel E5-2670 2.6GHz processors ⇥ 8 cores per processor) and

a 64 core AMD system (4 AMD Abu Dhabi 6376 processors ⇥ 16

cores per processor).

We implement DECAF, as a whole program optimization, in the

x10-2.3.0 compiler and present an evaluation of DECAF using the

Native X10 (C++) backend. We found the compilation overheads to

be negligible (< 0.05%). Each execution time reading is reported by

taking an average over ten runs.

To evaluate DECAF, we used the following criteria to select ker-

nels from the IMSuite [14] and BOTS [10] benchmark suite: a)

presence of recursive task parallelism, and b) creation of asynchro-

nous tasks only via parallel loops. Figure 10 lists all the benchmarks

satisfying the selection criteria (first five from IMSuite, and the rest

three from BOTS). Note that, BFS, DST, and MST also have their

non-clocked versions in IMSuite. But we chose the clocked versions

owing to their added complexity related to barriers.

Figure 10 (first two columns) provides a brief overview of the

benchmarks and their respective input data sets. For each BOTS

benchmark, we list the input type (e.g., Large, Medium) and for each

IMSuite benchmark, we list the input size and a note if we are using

the standard input or a modified one. For all the benchmarks (except

DST and MST), we have used one of the standard inputs provided.

For DST and MST, we found that the default inputs were not leading

to much recursion (as the diameter of the input graph was around

2 or 3), thereby rendering the program nearly non-recursive. To

overcome this challenge, we used their respective input generators

(provided by IMSuite) to generate larger and denser graphs. For all

the benchmarks, the chosen input size was the largest input such that

the corresponding input program takes not more than an hour, when

run on our 16-core Intel system.

5.1 Dynamic characteristics
We executed the chosen kernels on the specified inputs and collected

the dynamic counts for the task creation (async) and task termina-

tion (finish) operations (with X10_NTHREADS=16). The last

two columns of Figure 10, show these dynamic characteristics for the

unoptimized (UnOpt), Loop Chunking (LC) and DECAF versions.

It can be seen that in comparison to both the UpOpt and LC

versions, DECAF achieves a significant reduction in the number

of async and finish constructs, for BFS, NQ and BY kernels.

For DR, HL and FL there is a significant reduction in the number

of async operations but DECAF is not able to expand the scope

of any finish constructs (due to MHBD), and the reduction in

the finish operations is a consequence of reduction of async
operations. In case of DST and MST as the numbers of finish and

async operations are low (for the UnOpt and LC versions), the

reduction in their counts (because of DECAF) is also less.

5.2 Evaluation of DECAF
For varying number of cores (in the powers of two), Figure 11

compares the speedup of DECAF with respect to LC; higher the

better. Figure 11(a) presents the speedups on the Intel system. We

vary the number of cores and X10_NTHREADS from 2 to 16, in sync

(i.e., for a k core setup, we set X10_NTHREADS to k). The speedup

amount, for each kernel depends on a varied set of factors – the

behavior of the kernel, the scope for reducing the task creation and

the task termination operations, the nature of the input, runtime/OS

related factors and the hardware characteristics.

It can be seen that for kernels BFS, DR, NQ and HL, our technique

achieves significant speedups on increasing the number of cores (and

thus increasing values of X10_NTHREADS). These speedups can be

attributed to the varied effects of increased parallelism on LC and
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Kernel Input Type #Finish #Async

Bellman and Ford 256 UnOpt 58k 930k

Breadth First LC 29k 343k

Search

⇤
(BFS) (Standard) DECAF 1 64

Byzantine 128 UnOpt 276k 3869k

(BY) LC 276k 3308k

(Standard) DECAF 34 18k

Dijkstra 512 UnOpt 28k 631k

Routing LC 28k 338k

(DR) (Standard) DECAF 17k 23k

Dijkstra 2048 UnOpt 3.2k 26k

Breadth First LC 3.2k 1k

Search

⇤
(DST) (Modified) DECAF 18 338

Minimum 512 UnOpt 3.1k 6.3k

Spanning LC 3.1k 2k

Tree

⇤
(MST) (Modified) DECAF 1.1k 1.5k

Nqueens UnOpt 26993k 377901k

(NQ) (Large) LC 26993k 377901k

DECAF 1 3460k

Health UnOpt 17516k 630575k

(HL) (Large) LC 17516k 210192k

DECAF 1636k 2851k

Floorplan UnOpt 3678k 19244k

(FL) (Medium) LC 3657k 19193k

DECAF 3619k 1650k

Figure 10: Benchmark statistics; starred(*) ones have barriers.

DECAF. As the number of X10_NTHREADS increases, LC creates

more number of tasks at each level. In contrast, DECAF creates

tasks, only if idle workers are available, and thereby is able to take

advantage of the increased number of cores. Hence, comparatively

DECAF has low overheads and synchronization costs, which im-

prove its relative performance. This is one of the main reasons for

the sudden peak in case of NQ at 16 cores: the execution time for LC

increases sharply due to excessive task creation, while the DECAF

version maintains its scalable nature (uniform decrease in execution

time), as the number of cores are increased. In case of HL, we ob-

serve a dip in the speedup on moving from 2 to 4 cores. This is due

to the sudden improvement in performance of the LC version for

four cores from two cores. We hypothesize this behavior of the LC

versions to the system specific scheduling policies.

A general observation is that when the number of cores are less,

the obtained speedups are less. This can be attributed to the fewer

opportunities for expressing parallelism and the smaller value of

X10_NTHREADS. Here, both the DECAF and the LC create few

tasks at each level. Thus, DECAF is not able to record significant

reduction in task creation/termination operations and show gains.

For kernels DST and MST, DECAF is unable to achieve significant

speedups over LC. This behavior is due to the fewer opportunities

for reduction of task creation and termination operations (number of

async and finish operations < 3k, see Figure 10).

FL is an interesting kernel where, at times, DECAF performs

worse than LC. In FL the task creation occurs inside a doubly nested

loop, while the finish construct is outside the nested loops. Also,

the finish construct cannot be eliminated due to dependencies.

Importantly, the inner loop does not spawn enough tasks to optimize

(to see visible gains). Consequently, the DECAF has less scope for

improvement, which in turn affects the comparative performance.

In case of BY, although DECAF decreases the number of task

creation and termination operations by a good measure, the speedup

is minimal. This is because, in case of BY, the work done by the

majority of the recursively spawned tasks is negligible in comparison

to the work done in the non-recursive data-parallel loops present in

BY; the latter is optimized well by both LC and DECAF.

Figure 11(b) shows the behavior for the eight kernel benchmarks

on the 64 core AMD system. In these plots, we vary the number of

cores and X10_NTHREADS from 2 to 64, in sync. On increasing

the cores from 2 to 16, we observe that the obtained speedups are

similar to that of Figure 11(a). Except in case of HL, where the dip

in speedup discussed in the context of the Intel system, is not seen

here. Thus giving credence to the hypothesis that the dip is related

to some system level scheduling issues.

On moving from 16 - 32 - 64 cores, the improvements derived

from DECAF (in comparison to LC) varied. This is mainly because

of the chosen input sizes that effect (limit) the amount of parallelism

in the programs. In such limiting scenarios, the gains may not be

proportional to the increase in the number of cores.

For kernels DST and MST, as discussed earlier (for the Intel

system), the speedups are not substantial due to less opportunities

for exploiting parallelism.

Overall, with respect to the LC versions, the DECAF versions

achieve speedup in the ranges of 0.96⇥ – 33.34⇥ (geometric mean

of 2.14⇥), on the Intel system, and 1.07⇥ – 22.5⇥, (geometric mean

of 2.53⇥), on the AMD system. We have also compared the DECAF

versions with respect to their serial counterparts and found that the

speedups of the DECAF versions scale well with increasing number

of cores. For example, for 2, 4, 8, and 16 cores on the 16-core Intel

cluster the geomean speedup of the DECAF versions with respect

to their serial counterparts are 1.25, 2.4, 4.45 and 5.4, respectively.

Due to lack of space we skip the reporting of the detailed readings.

Individual impact of reduction in task creation and task termina-
tion operations. DECAF improves the performance of RTP applica-

tions along two dimensions: reducing the task creation operations

and reducing task termination operations. The impact of each of

these dimensions depend on the individual application and the spe-

cific input. To understand these impacts better, we implemented

two other variations of DECAF: DECAF-light (DECAF that only

reduces redundant task creation operations – does not apply the tech-

niques of Section 3.1) and DECAF-LC (DECAF that uses only LC

to reduce task creation operations instead of all the techniques dis-

cussed in Section 3.2). We exclude the DR, HL and FL kernels from

this discussion, as for these three kernels, the DECAF-light versions

match the DECAF versions (see Section 5.1). For the remaining

kernels, Figure 12 presents the execution times of the UnOpt, LC,

DECAF-LC, DECAF-light, and DECAF versions, run on the AMD

system (#cores = X10_NTHREADS = 64).

It can be see that for all of the five listed kernels, DECAF-light

performs better than LC – the exact impact depends on the number

of async operations eliminated (without creating load imbalance

among the threads). To understand this consider BY, BFS and NQ,

where we see that LC performs slightly worse than UnOpt. This is

mainly because the LC scheme is oblivious of the load-imbalance

among the created chunks – thereby increasing the critical path in

some cases. In contrast, DECAF-light addresses this issue well, by

assigning iterations to the free workers only.
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Figure 11: Speedups for varying number of cores; Speedup = (execution time of LC version / execution time of DECAF version)

Kernel UnOpt LC DECAF-light DECAF-LC DECAF

NQ 3911 4500 444 2150 340

BFS 89 90 6 87 4

BY 392 397 356 363 346

DST 2000 541 525 526 493

MST 820 293 291 287 273

Figure 12: Execution times (in seconds) on the AMD system
(#cores = X10_NTHREADS = 64).

Similarly, we see that DECAF-LC performs better than LC; the

exact impact depends on the number of finish operations elim-

inated. For example, DECAF is able to reduce a good number of

finish operations in the BY kernel and the impact can accordingly

be seen. Similarly, in NQ where DECAF reduces a large number of

finish operations, the impact is more visible.

Thus we find that the performance of DECAF-light and DECAF-

LC are better than that of LC. And the numbers of DECAF (last

column) indicate that the individual gains are adding up to realize

overall bigger gains.

5.3 Energy Consumption
Considering the importance of reduction in energy consumption, we

also compared DECAF and LC in terms of the energy consumed (on

the Intel system). We used the Intel Running Average Power Limit
(RAPL) [19] interface for this purpose. We couldn’t find a similar

interface for our AMD system.

Figure 13 depicts the energy consumed by the DECAF versions,

normalized with respect to their LC counterparts. It can be seen

that, in general, DECAF consumes less energy in comparison to

LC. The amount of reduction in energy consumption varies with

respect to the kernel under consideration. Overall, compared to the

LC versions, the DECAF versions consume energy in the range

of 0.025⇥ – 0.997⇥ (geometric mean 0.287⇥). Thus, on average

DECAF consumes 71.2% less energy than LC.

We observe that the maximum energy savings is achieved for

kernels BFS, DR, NQ and HL. These savings directly follow the

significant reduction in the execution time, which in turn is due to

the reduction in task-creation and -termination operations for these

kernels. On the other hand, for DST, MST and FL, there isn’t a

significant reduction in the energy consumption, which is due to the

less task reduction opportunities available in these kernels.

6 RELATED WORK
There have been several works [8, 11, 17, 26, 27, 33] that aim to

reduce the overheads resulting from useless synchronization and
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join operations. Cytron et al. [8] propose reduction of synchroniza-

tion constructs by translating input fork-join code to SPMD code

with reduced number of barriers. Heinz and Philippsen [17] perform

source to source transformations to reduce the barrier synchroniza-

tion operations in data parallel programs. Their optimizations target

the redundant synchronization operations present in the synchronous

FORALL statements by converting them into simplified asynchro-

nous FORALL statements with reduced synchronization overheads.

Tseng [33] extends the work of Cytron et al. by using a combined

fork-join and SPMD model to reduce synchronization overheads.

Ferrer et al. [11] exploit the loop unrolling transformation in the

presence of task parallel constructs. The authors try to aggregate

multiple fine-grained tasks (by unrolling loop) into the larger ones

to achieve performance. Noll and Gross [27] propose task reduc-

tion and synchronization optimizations for the JIT compilers. The

authors propose an optimization that allows merging of small con-

current tasks into a large task. Compared to these, our optimizations

eliminate redundant task creation and termination operations in re-

cursive task parallel programs. Further, we present a scheme to do

the transformations in a semantics preserving manner, even in the

presence of fine grain synchronization (like clocks) and exceptions.

Yonezawa et al. [38] aim at reducing the barrier synchronization

operations, by generating efficient communication code for data

transfer operations in a distributed application. Similarly, Bikshandi

et al. [3] propose methods to efficiently execute outer-most finish

operations. Nagarajan and Gupta [25] use speculative execution to

reduce the overheads associated with barriers. We believe that these

techniques can be used in conjunction with our proposed DECAF,

to further increase the performance gains.

Loop scheduling [21] has been one of the most popular techniques

to efficiently execute loop nests. Some of the popular schemes of

loop scheduling are static (dividing the all the iterations equally

among the declared workers), dynamic (the iterations are divided

into many small chunks and added to a work queue and each free

worker takes a chunk from this work queue to execute), and guided

(similar to dynamic, but the size of the chunks vary dynamically).

Cilk [12] and TBB [30] both implement specialised mechanisms of

loop scheduling at runtime, to achieve load balancing, by control-

ling the number of worker threads and the division of tasks among

the workers. The scheme used by DECAF to reduce task creation

operations, can be seen as a specialization of loop scheduling where

i) iterations scheduled to be executed by the same processor are exe-

cuted sequentially (no task creation overheads), ii) some iterations

of the parallel loop may be executed sequentially, before dividing

the rest of the loop iterations among the idle workers. Importantly,

we handle codes with synchronization and exceptions.

There have been many works [16, 36, 39] that compute and assign

the optimal number of processors / workers to execute a given loop

nest and parallelize the loop accordingly. In contrast, we use a simple

scheme of chunking parallel loops based on the number of idle

worker threads (number of chunks = number of idle workers). It

would be interesting to extend DECAF with more sophisticated

mechanisms to compute the optimal number of worker threads.

Voss and Eigenmann [35] propose an inspector-executor model

that at runtime decides whether to execute a loop in parallel or

serially. The main emphasis behind this scheme is that benefits of

executing a loop in parallel may be amortized if the overheads of

parallel execution are significant. The authors first try to run a loop

in parallel and measure its execution time. They next compare this

execution time with that of the serial version of the loop and decide

whether to run the next versions of this loop in parallel or not.

There have been several prior works that control the parallelism

based on different kinds of thresholds (all measured at runtime).

For non RTP programs, some of the popular threshholds are system

load [6, 22], size of the data structures [1, 18] giving an estimation of

the time the code to be parallelized may take to execute, and profile

based estimated workload in different iterations [29]. For RTP pro-

grams, Duran et al. [10] show the use of a static value of recursion

depth as a cut-off for parallelization. In general it is non-trivial to in-

troduce cut-off related code, especially in programs with barriers and

exceptions, as it may require significant amount of rewriting of the

"serial" part (a serious drawback for programs written in higher level

languages like X10). Further, even for programs with no barriers and

exceptions, obtaining judicious cutoffs for RTP programs is quite

challenging. The best value of cutoff depends on the nature of the

benchmark, input, and the number of hardware cores. Consequently,

the scheme of Iwasaki and Taura [20] does not identify the terminat-

ing conditions (required for static identification of cut-offs) for RTP

kernels like those from IMSuite. Similarly, dynamic cut-offs based

on runtime parameters [9] have also been used for RTP programs.

Their approach requires additional monitoring threads which can

impact the overall performance. Further, it is unclear how to extend

their scheme to programs with synchronization and exceptions.

Recently there have been attempts to aggregate kernel launches [15]

and consolidate workloads [37] in the context of GPUs. These in turn

leads to reduction in the associated runtime overheads. Our proposed

approach reduces task creation and termination overheads in RTP

programs, even in the presence of synchronization and exceptions.

Thoman et al. [32] present a scheme that emits multiple versions

of the code, one of which is executed at runtime, based on the avail-

ability of resources. Their idea revolves around the notion of task

unrolling that is akin to inlining one or more invocations of a re-

cursive function executed by the task. The resulting code will most

likely contain join operations. In complete contrast, DECAF lifts

redundant join operations outside the method. Further, their proce-

dure to eliminate intra-procedural redundant join operations does not

handle clocks and exceptions. The absence of a rule like async-finish

interchange further limits the scope of their optimization. Although

DECAF also generates multiple versions of the code, it has three

fundamental differences: (i) handles parallel loops, (ii) conditional



Optimizing Recursive Task Parallel Programs ICS ’17, June 14-16, 2017, Chicago, IL, USA

serialization in the presence of barriers, and (iii) switching to parallel

execution, if idle workers are found during serial execution.

Lifflander et al. [23] present a runtime approach to improve data

locality and load balance. The authors advocate coarser work steals

which are identified by analysing a steal tree. In contrast, DECAF

creates coarser tasks by combining a set of iterations, and executing

that cluster sequentially. Further, our proposed scheme can switch

from serial to parallel execution based on the available idle workers.

Flattening [4] transforms irregular nested (data-parallel) compu-

tation over nested data structures (for example, arrays of arrays) to

regular computation on flat arrays; it also reduces synchronization-

operations [2]. In contrast, DECAF reduces task-termination oper-

ations in recursive-task-parallel programs (for example, IMSuite

kernels), where it is non-trivial to apply flattening.

Our idea of task creation based on worker availability and “serial

block” can be seen as a compiler based extension of lazy-binary

splitting (LBS) scheme [34] for RTP programs and programs with

synchronization operations. the existing eager work-stealing algo-

rithms. It would be interesting to evaluate the effect of DECAF on

an LBS based runtime scheduler.

We are not aware of any past work that supports optimizing RTP

programs in the presence of synchronization, and exceptions as in

this paper, for languages that support dynamic parallelism with fine

grain synchronization.

7 CONCLUSION
We present a new optimization DECAF to reduce the task creation

and termination overheads in recursive task parallel (RTP) programs.

This optimization improves the performance, both in terms of ex-

ecution time and energy consumption. We implemented DECAF

in the X10v2.3 compiler and performed experiments on two differ-

ent hardware systems (a 16-core Intel system and a 64-core AMD

system). Compared to the loop chunking scheme of Nandivada et

al. [26], DECAF achieved significant improvements in execution

time (geomean of 2.14⇥ and 2.53⇥, on the Intel and AMD system,

respectively), and substantial reduction in the energy consumption

(geomean 71.2% on the Intel system). These significant improve-

ments attest to the scope of the proposed optimizations. Though our

results are shown in the context of X10, we believe that DECAF can

be applied (with similar effect) to other task parallel languages like

OpenMP, Chapel, Cilk and HJ that admit RTP programs.
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