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ABSTRACT
Task-parallel languages such as X10 implement dynamic light-

weight task-parallel execution model, where programmers are en-

couraged to express the ideal parallelism in the program. Prior work

has used loop chunking to extract useful parallelism from ideal.

Traditional loop chunking techniques assume that iterations in the

loop are of similar workload, or the behavior of the first few itera-

tions can be used to predict the load in later iterations. However, in

loops with non-uniform work distribution, such assumptions do

not hold. This problem becomes more complicated in the presence

of atomic blocks (critical sections).

In this paper, we propose a new optimization called deep-chunking
that uses a mixed compile-time and runtime technique to chunk the

iterations of the parallel-for-loops, based on the runtime workload

of each iteration. We propose a parallel algorithm that is executed

by individual threads to efficiently compute their respective chunks

so that the overall execution time gets reduced. We prove that the

algorithm is correct and is a 2-factor approximation. In addition to

simple parallel-for-loops, the proposed deep-chunking can also han-

dle loops with atomic blocks, which lead to exciting challenges. We

have implemented deep-chunking in the X10 compiler and studied

its performance on the benchmarks taken from IMSuite. We show

that on an average, deep-chunking achieves 50.48%, 21.49%, 26.72%,

32.41%, and 28.84% better performance than un-chunked (same

as work-stealing), cyclic-, block-, dynamic-, and guided-chunking

versions of the code, respectively.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Theory of computation→ Program analysis; • Soft-
ware and its engineering→ Compilers.
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1 INTRODUCTION
Modern languages such as Cilk [3], Chapel [5], HJ [14], X10 [6], and

so on, employ dynamic lightweight task-parallel execution models.
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These languages help the programmers express the ideal parallelism

inherent in the underlying application logic, and the challenging

task of extracting the useful parallelism is left to the compiler and/or

the runtime system. Chunking [22, 29] is a popular mechanism to

bridge the gap between the ideal and useful parallelism.

Loop-chunking is the process of dividing the iterations of a

parallel-for-loop intoC number of chunks, so that each chunk of it-

erations is executed by a different thread, at runtime. TypicallyC is

set to #runtime-threads (= #hardware-cores). The elements in each

chunk are decided by the underlying chunking policy: for exam-

ple, block-chunking assigns equal number of contiguous iterations

to each chunk, and cyclic-chunking assigns iteration i to chunk

i mod C. It has been found that chunking significantly reduces the

overheads to create, terminate, and synchronize tasks [26].

Languages such as OpenMP [27], and Intel Thread Building

Blocks [32] allow the programmer to specify/tune the chunking

policy. Nandivada et al. [26] show that automated loop-chunking is

effective for parallel-for-loops in X10 programs. Prior work [34, Sec-

tion 5.2] has suggested that not only chunking is very effective, the

chosen chunking policy greatly determines the gains obtained from

loop-chunking, and its choice depends on the specific application

under consideration; however, they do not provide any solution to

automate this choosing process. Further, the problem of specifying

the right chunking policy (by the compiler/programmer) becomes

harder as that also depends on input dependent parameters. We

first show an example to illustrate this latter dependence.

Figure 1 shows a code snippet (written in a language similar

to X10 [33]), from the Byzantine benchmark (from IMSuite [12]).

At line 1, the forall construct creates nodes.size() number of

tasks, and each task may execute the body in parallel. The Byzan-

tine kernel achieves consensus in a byzantine network. Here the

execution-time (workload) of the iterations of the forall loop, de-

pend on the predicate of the if-statement (Line 2), and loop-bounds

of the two nested loops (Lines 4 and 7). These parameters are input

dependent and may vary during the program execution. Thus, it is

hard to identify an optimal chunking policy for parallel-for-loops

with such non-uniform workloads.

To address these issues, it is vital to go beyond distributing the

iterations equally and instead focus on optimal distribution of the

workload. Many prior works take cognizance of this insight and dy-

namically distribute the iterations. For example, OpenMP supports

dynamic and guided schedulingwherein theworker threads continu-
ously retrieve blocks of loop iterations from a common work-queue.

Similarly, the Cilk and X10 runtime schedulers use work stealing

queues to achieve a balanced workload among threads. Though, as

shown by Nandivada et al. [26], the default (work-stealing) runtime

performs much worse than even the simple block-chunked code.

This is because all of these runtime based techniques incur syn-

chronization related overheads (to different degrees). Further, since

these are runtime techniques, they do not take into consideration

https://doi.org/10.1145/3392717.3392763
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1 forall(i=0; i<nodes.size (); i++) {

2 if(nodes(i). msgHolder.size() > 0){

3 var m:Message = new Message ();

4 for(j=0;j<nodes(i). msgHolder.size ();j++){

5 m=nodes(i). msgHolder.get(j);

6 nei=nodes(i). neighbors;

7 for(k=0;k<nei.size ();k++){

8 sendMsg(nei(k), m.source , m.vote);}}}

9 else {...} }

Figure 1: Snippet from Byzantine kernel [12].

the overall program behavior; consequently the task scheduling de-

cisions are local in nature. Such decisions can be highly suboptimal,

especially in the presence of non-uniform workloads.

In this paper, we present a new optimization called deep-chunking
to dynamically chunk parallel-for-loops with non-uniform work-

loads. Deep-chunking is based on a combined compile-time and

runtime approach. It uses a compile-time analysis to emit code to

estimates the workload (at runtime) and perform chunking dynam-

ically. It uses a profile guided compile-time analysis to analyze each

parallel-for-loop and formulate a cost-expression for the workload

of each iteration therein; these cost-expressions are efficiently eval-

uated at runtime to obtain the workloads of all the iterations. These

workloads are then used by the individual threads to compute the

respective chunks at runtime, with minimal overheads.

The problem of efficient chunking becomes more challenging in

the presence of atomic blocks (enforce global mutual-exclusion in

X10). Increasing number of threads participating in atomic blocks

increase the overheads associated with the atomic blocks [11]. Thus

sometimes, it may be beneficial to create fewer chunks than the

number of runtime threads. In other words, in the presence of

atomic blocks, we have to carefully calculate the number of chunks

to create, along with the distribution. Deep-chunking proposes a

scheme (inspired by prior work [11, 35, 41]) to model the behavior

of atomic blocks, in order to identify the optimal number of chunks

to be created and then perform the actual chunking effectively. For

example, for the Byzantine kernel (referred in Figure 1), on a 64

core AMD system, for an input size of 512, the execution times

of block-, cyclic-, dynamic-, guided- and deep-chunking versions,

normalized with respect to that of the default work-stealing version,

are 0.95, 0.94, 0.94, 0.86, and 0.28, respectively. This clearly shows

the effectiveness of deep-chunking.

Even though we present the idea of deep-chunking in the context

of X10, it can be used in the context of other task-parallel languages

(such as HJ, Chapel and OpenMP) that admit similar parallel loops.

Contributions:
•We propose a new optimization called deep-chunking to chunk

parallel-for-loops with non-uniform workloads. For each parallel-

for-loop, we emit application specific chunking code that is paramet-

ric on the input values. We compute the values of these parameters

at runtime with low overheads.

•We propose a concurrent lock-free algorithm to efficiently divide

the iterations of the parallel-for-loop among the threads at runtime,

based on their estimated workloads. We prove that the proposed

algorithm 1) leads to a valid set of chunks and 2) is a 2-factor ap-

proximation algorithm.

•We extend deep-chunking to handle atomic blocks by modeling

the impact of atomic blocks on the overall workload of the corre-

sponding parallel-for-loops.

•We have implemented deep-chunking in the X10 compiler and

studied its performance on IMSuite [12] benchmarks. We show

that on average, deep-chunking achieves significantly better per-

formance than the work-stealing, cyclic-, block-, dynamic-, and

guided-chunking versions of the code.

1.1 Related Works
Loop chunking for X10: Nandivada et al. [26] describe how to

chunk (X10) parallel-for-loops that contain synchronization con-

structs like barriers. Similarly, Gupta et al. [13] describe the chunk-

ing of recursive task-parallel programs. Although these works help

in chunking the loops and realizing improved performance (com-

pared to the un-chunked code), they do not identify the most appro-

priate chunking policy. In contrast, our proposed deep-chunking

uses a mixed compile-time and runtime approach to efficiently

chunk parallel-for-loops, without any programmer intervention.

Loop Scheduling: In the context of parallel programs, loop-

chunking is a form of loop scheduling [21] where the iterations

of a chunk execute sequentially. The scheduling can be done both

statically (for example, block-, and cyclic-scheduling) or at run-

time [17, 22, 23, 29, 40]. BinLPT [28] is a loop scheduler for irregular

parallel loops, that requires user-supplied estimation of workload

to partition the iteration space. Lazy Binary Splitting [39] is a user-

level scheduler for programs with nested parallelism, where it uses

dynamic conditions to decide on whether to fork new threads/-

tasks or not. Compared to all these techniques, deep-chunking uses

a mixed compile-time and runtime approach to chunk parallel-

for-loops with non-uniform workloads, and needs no programmer

intervention. Further, our handling of atomic blocks is novel. It

would be interesting to extend our work with some of the prior

techniques of loop scheduling [1, 8, 10, 15, 16, 24, 36, 37] to improve

processor affinity and cache locality.

The OpenMP [27] language supports dynamic and guided sched-

uling. The dynamic- and guided-chunking involve high overheads,

which are proportional to the number of iterations in the parallel-

for-loop. Further, the chunking policies of OpenMP are oblivious

to the structure of the input program and the input parameters.

Similar to OpenMP, Intel TBB [32] supports controlled and auto-

matic chunking for load balancing. Languages such as Cilk [3] and

X10 [6] supports work stealing schedulers (oblivious to the work-

load of the task) that allow stealing of tasks at runtime, in order to

keep the load balanced. Nandivada et al. [26] show the inefficiency

of the default work-stealing based scheduling and instead showed

that basic chunking policies (like blocked-/cyclic-chunking) lead

to significant benefits. In contrast, deep-chunking is an application

and input aware loop-chunking technique, where at runtime, the

chunks are computed (based on the workloads) before starting the

parallel-for-loop, which in turn avoids the overheads of continuous

synchronization to "steal tasks" during the execution of the loop.

Recently Thoman et al. [38] present a smart scheme that uses

a combined compiler and runtime scheme to schedule OpenMP
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loops. They use a compiler pass that computes ‘effort estimation

functions’ for the parallel loop bodies, and these are passed to the

runtime system (a separate parallel thread) to derive optimal loop

schedule. Their compiler pass requires that the loops, if-conditions,

and the indices of loops must be affine in nature, and there should

be no use of heap data structures. Further, they do not handle

critical sections. For example, for the code shown in Figure 1, their

technique would lead to chunks assuming that the workload of

each iteration is the same; thereby leading to inefficiency similar to

block-chunking. In contrast, our techniques can handle “extractable”

(see Section 5) non-affine loops and conditions; and we do not have

any restriction on the data-structures used. We do not require a

separate monitoring thread, thereby avoid any associated overheads

(synchronization, thread contention, and so on). Importantly, we

handle atomic blocks, which is essential in many of the real-world

parallel programs.

Profile Guided Optimization: Profile guided optimization has

also been used in the context of improving the performance of

parallel programs. For example, Chen et al. [7] use the profile data

to improve the mapping of processes to different processors. Bull [4]

uses the (online) profiling information collected from the execution

of one instance of a parallel-loop to aid in loop-scheduling in the

future instances. Kejriwal et al. [20] use the history of currently

executing loop to guide the chunk size of the later iterations. Duran

et al. [9] use online profiling to compute an optimal adaptive cut-

off to decide (using the level of recursion) if the tasks should be

serialized. In this paper, we use offline profiling to compute the

cost of input independent parts of the code, to help in efficient

computation of the workload at runtime to improve loop-chunking.

2 BACKGROUND
We now give some brief background of i) LX10 (a subset of X10)

over which we describe our schemes, ii) PSGb (an extension to the

Program Structure Graph [26]), and iii) different chunking policies.

LX10 Language is a strict subset of X10 [33], with added syntactic

sugar to specify parallel-for-loops. LX10 admits only one other

concurrency related construct: atomic. A parallel loop in LX10 can

be derived from the following grammar:

PLoop ::= /* Parallel loop */ forall (loop-header) S
S ::= /* Statements */ atomic S | seq(S) | ϵ
For a non-terminal X, we use seq(X) to denote the program formed

from X by closing under sequential constructs, such as assignments,

declarations, if statement, function-calls, loops, and so on. Amethod

body can be derived from seq(PLoop).
The forall statement (example in Figure 2(a)) derives a parallel

loop that creates n number of tasks, where each task may execute

the body S in parallel. Each task waits for each other at the end of

the loop. forall terminates only after all the tasks have completed.

LX10 prohibits the nesting of forall loops, at runtime. Without

any loss of generality, we assume that each parallel loop is in nor-

mal form [25] – the loop-index starts at 0, increases by 1 in each

successive iteration, and the loop upper bound is loop invariant.

The atomic statement (of the form atomic S) realizes global
mutual exclusion. Nesting of atomic blocks is prohibited in X10.

Program Structure Graph with blocks (PSGb) is a minor exten-

sion to the Program Structure Graph (PSG) representation [26]. A

forall(j=0 to n−1){ S }

(a) Normalized loop

forall(i=0 to T -1) {

for (j=i;j<n;j+=T ){S }}

(b) Cyclic-chunked loop

forall(i=0 to T -1){

for(j=bS*i;

j<min(n,(i+1)*bS);

j++) { S } }

(c) Block-chunked loop

Figure 2: Example input loop and
code after chunking
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Figure 3: PSGb for the
code shown in Figure 1.

PSGb is a rooted graph (N ,E), where each node o ∈ N can have

one of the following types: root, forall, atomic, loop, if-else,
block, call and leaf. The root represents the start of a method.

The loop represents any serial loop. The leaf represents a sequence
of statements except forall, atomic, loop, if-else, block, and
call. The block represents a sequence of zero or more nodes of

PSGb (except root). The call node represents a function-call; the

child of a call node is a block node representing the body of the

callee, with additional prologue code to copy the actual arguments

to the formal ones. All of the following nodes will have only one

child node: forall, atomic, loop and call. Similarly, an if-else
node has two child nodes.

The set E contains the edges obtained by collapsing the abstract

syntax tree of the program into the above seven node types (except

call), along with special call edges (from call node to its body).

Figure 3 shows the PSGb for the sample code snippet shown in

Figure 1; we treat the unknown (library) calls as simple statements.

We now list some attributes (a.k.a fields) of the PSGb nodes. (i)

if-else node o: The fields o.then and o.else give the nodes repre-
senting the true and false branches, respectively. Further o.condition
gives the LX10 expression corresponding to the predicate of the

if-else construct. (ii) loop node o: It includes four fields prologue,
epilogue, body and loopBound. For a loop of the form for(init;
expr;update) S, prologue refers to the part of the loop consisting

of the code for init and expr; epilogue refers to the part of the loop
consisting of the code for expr and update; body refers to the loop

body (S); and loopBound is the expression given by expr. In case of

a while loop, the init and update are considered to be ‘nop’s. (iii)

call node o: o.calee gives the body of the callee. (iv) block node o:
o.nodes gives the list of nodes in o.
Chunking policies. Cyclic-chunking: The iteration j of a parallel-
for-loop is added to the chunk j % T , where T=#runtime threads.

Figure 2(b) shows the cyclic-chunked code for Figure 2(a).

Block-chunking: We divide the iterations of a parallel-for-loop

into chunks such that each chunk gets contiguous iterations. Let n
be the number of iterations of the parallel-for-loop and the number

of chunks be set to T . If n is divisible by T , each chunk gets n/T
number of iterations. If n is not divisible by T , then the first T − 1
chunks get ⌈n/(T )⌉ iterations and the last chunk gets the remaining



ICS ’20, June 29-July 2, 2020, Barcelona, Spain Indu K. Prabhu and V. Krishna Nandivada

iterations. Figure 2(c) shows a sample block-chunked code for the

loop shown in Figure 2(a). Here bS refers to the block size = n/T .
Dynamic-chunking (pure self scheduling, with chunksize=K ): A

centralised queue is maintained so that whenever a worker is idle,

K number of iterations from the queue are assigned to it.

Guided-chunking (guided self scheduling): Here, the number of

iterations assigned to an idle worker is given by a formula: max(K ,
(#remaining iterations)/(#worker threads)), where K is a constant.

3 DEEP CHUNKING
In this section, we describe our proposed deep-chunking (Dynamic

EfficiEnt Parallel/Parametrized chunking) technique. Our objective

is to transform an input LX10 program P to a semantically equiv-

alent LX10 program P ′, such that the parallel-for-loops in P ′ are
efficiently chunked at runtime; we will assume that there are T
number of threads and hence the number of chunks is also equal

to T . A chunk is a sequence of zero or more contiguous iterations

and each chunk can be represented by a range [s, e], where s and
e mark the starting and ending iterations (both inclusive) of the

chunk. A chunk [s, e] is considered non-empty if s ≤ e , else it is con-
sidered empty. Thus, the task of chunking a sequence of iterations

1, · · · ,n into T chunks is to compute an ordered list L of T ranges

{[1, e1], [s2, e2],. . . , [sT ,n]}, such that (a) ∀1≤i≤T 1 ≤ si ≤ n + 1, (b)
∀1≤i≤T 1 ≤ ei ≤ n, and (c) ∀1≤i≤T−1 si+1 = 1 + ei . The list L may

contain empty chunks.

Ideally, loop-chunking should result in a set of chunks, such that

each chunk has the same execution time – referred to as balanced
chunking. If every iteration of the parallel-for-loop does the exact

same amount of work, then we can get a (near) balanced set of

chunks by simply partitioning the iterations equally (using block- /

cyclic-distribution, see Section 2); However, for parallel-for-loops

with non-uniform workloads, balanced chunking is challenging.

To handle parallel-for-loops with non-uniform workloads, in-

stead of partitioning the iterations equally, we focus on theworkload
of each chunk. Workload of an iteration is an approximation of its

execution time, and the workload of a chunk is the sum of the work-

loads of all the iterations assigned to the chunk. Among the chunks

created, the chunk with maximum workload (= the critical path [2]

of the parallel-for-loop) is called the max-chunk. We aim to create

the chunks such that the workload (a.k.a cost) of our estimated

max-chunk is as close to that of the hypothetical optimum.

Our proposed approach has two components: a) the compile-

time component that emits parametrized chunked loops, and b)

the runtime-component where each thread computes the values

of these parameters and passes them to the parametrized code to

obtain/execute efficient loop-chunks. For the ease of explanation,

in this section, we will assume that the parallel-for-loops in the

input LX10 programs do not have atomics. Later in Section 4, we

extend our scheme to handle atomics. We now elaborate on the

above two components.

3.1 Compile-time component
Figure 4(a) shows the overall block diagram of our compile-time

component. Note that the workload of any iteration may consist of

two parts: input independent part and input dependent part. Thus

the workload of each iteration can be represented as an expression

Input

PSGb

Cost-Expression Runtime-Work-
Divider-Emitter

Parameterized
Loop-Chunk

Optimized

Emitter Emitter

Profile
Information

Compile &
Execute

Profile-Guided
Cost-Estimater

PSGb

(a) Compile-time component

Load
Computation

Deep
Chunking

Work
Division

(b) Run-time component

Figure 4: Overall technique

(called cost-expression) of input dependent parameters and some

constants (corresponding to the input independent parts). Profile-

Guided-Cost-Estimator processes each parallel-for-loop in the in-

put PSGb to generate an instrumented code, which is then executed

(on a small input) to estimate the workloads of the input indepen-

dent (serial) parts. The estimated workloads and the input PSGb are

fed to Cost-Expression-Emitter, which generates cost-expressions

for each iteration (parameterized by the iteration index) and emits

code to evaluate the same at runtime. Work-Divider-Emitter emits

code that is to be executed by each thread. This code uses the list of

workloads (obtained by evaluating the cost-expressions at runtime)

to generate a chunk for each thread. Parameterised-Loop-Chunk-

Emitter emits chunked loops parametrized by the list of chunks.

We now describe each of these sub-components.

3.1.1 Profile-Guided-Cost-Estimator . This phase first generates a

serial version of the input PSGb by replacing all the forall key-

words with for. Then it instruments each of the leaf nodes, such

that on executing the serial code, we get the execution times of

each leaf nodes in the input parallel program. For each such leaf

node B, we compute the average of the execution times (denoted

by Profile(B)). Note that, the number and types of instructions ex-

ecuted in each of these leaf nodes is independent of the program

input. We use a serial version of the input parallel-for-loop for

instrumentation, so as to avoid interference/overheads due to the

parallel threads. Also note that naively assigning unit cost to each

leaf node (and thereby avoiding profiling) may lead to highly in-

accurate cost-estimates as the number of instructions in the leaf

nodes may vary significantly.

3.1.2 Cost-Expression-Emitter. The PSGb corresponding to the

input program P along with the generated profile information is

given as input to the Cost-Expression-Emitter. It processes each

parallel-for-loop of P independently to generate the cost-expression

for each iteration thereof. For any given parallel-for-loop L, the

cost-expression for any of its iteration is given by a unique syntactic

expression, parameterised by the loop-iteration index. For example,

for the code in Figure 1 the cost-expression for iteration i is given by:
nodes(i).msgHolder.size()>0 ? C3 + nodes(i).msgHolder.size()*

(C5_6+C8*nodes(i).neighbors.size()):Str9, whereCx is the work-

load of statement(s) labeled x (as computed by the Profile-Guided-

Cost-Estimator), and Str j is the cost expression of the statement
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1 Function String costFunc(L, S )
Input: L: PSGb node for a parallel-for-loop, S : a child of L

2 switch type of S do
3 case loop node do
4 LBound = extractExpr(L, S.loopBound) ;
5 if LBound,null then // extraction successful
6 Ce = Profile(S.prologue) ∥ "+" ∥ LBound ∥ "*(" ∥

costFunc(L, S.body)∥"+"∥Profile(S.epilogue)∥")";

7 else Ce = "K";// K: a large constant ;

8 case if-else node do
9 cond = extractExpr(L, S.condition);

10 if cond , null then // extraction success
11 Ce = Profile(S.condition) ∥ "+(" ∥ cond ∥ "?" ∥

costFunc(L, S.then) ∥ ":" ∥ costFunc(L, S.else) ∥ ")";
12 else
13 Ce = Profile(S.condition) ∥ "+max(" costFunc(L, S.then)

∥ "," ∥ costFunc(L, S.else) ∥ ")";

14 case call node do
15 if S does not correspond to a recursive call then
16 Ce = costFunc(L, S.callee);
17 else Ce = "K" ;

18 case block node do
19 for s in S.nodes do Ce=Ce ∥"+"∥costFunc(L, s ) ;
20 otherwise do Ce = Profile(S ) ; // leaf node

21 return Ce

Figure 5: Recursive function for cost-expression generation

labeled j. After these expressions are generated, Cost-Expression-
Emitter emits the appropriate LX10 code (just before the parallel-

for-loop) to evaluate the cost-expressions at runtime. These com-

puted workloads are used for chunking.

Generating the Cost-expressions: We perform a post-order

traversal of the input PSGb. Since the workload of the leaf nodes has

already been obtained from the profile information, we compute

the workload of each intermediate node as an expression of some

input dependent parameters and workloads of the children nodes.

Figure 5 shows how we generate the cost-expressions at different

intermediate nodes. For each parallel-for-loop node L in the PSGb,

the function costFunc is invoked, by passing L and the child node

S of L. Note: S corresponds to the body of the L. The function

costFunc returns a string, denoting the cost-expression for S .
The cost-expression generated by costFunc depends on the type

of S . If S is a loop node, then it first invokes the function extractExpr
by passing L and S.loopBound as arguments. Note that we cannot

simply use profiling to estimate the value of loop-bound using

profiling, as it may be input dependent. The extractExpr function
(code not shown) tries to map the expression in S.loopBound to

another expression in terms of variables live immediately before

L. For example, in Figure 1, for the loop at Line 7, the function

extractExpr returns the string "nodes(i).neighbors.size()". If
the extraction succeeds, we generate a string that represents the

cost of the loop body, executed LBound number of times. For exam-

ple, in Figure 1, for the loop at Line 7 the generated cost-expression
string is: "Cp7+nodes(i).neighbors.size()*(C8+Ce7)", where Cp7 ,
C8, and Ce7 represent the costs of executing the S.prologue, S.body

1 long WLArray[];// array of size n=# iterations of L.

2 long partialSum[];//An array of size T
3 long blkSz = (n +T -1 )/ T ;

4 forall(it = 0 ... T ){

5 for(i=T *blkSz ...min(n, T *(blkSz +1))){

6 WLArray(i) = ⟦CL⟧; // CL may be parmetric on i
7 pSum =+ WLArray(i); }

8 partialSum(it)= pSum; }

Figure 6: Inspector loop emitted by the Cost-Expression-
Emitter, immediately before a parallel-for-loop L.

(Statement at Line 8) and S.epilogue (refer Section 2), respectively.

The function extractExpr returns null, if it fails to map the expres-

sion (say, in case of for-loops whose loop-bound changes within

L, or while-loops). In such a case, we set the variable Ce (denoting

the cost expression) to a conservative value K (a large constant).

Section 5 discusses the implementation details of extractExpr and
the impact of the value of K on chunking.

If S is an if-else node, then as in the case of a loop node we
first try to extract the predicate S.condition (by calling extractExpr).
If the extraction is successful, Ce is set to a conditional expression

which uses S.condition to choose the appropriate cost-expression

from S.then and S.else. Otherwise, Ce is set to an expression to

compute the maximum of the costs of S.then and S.else.
If S is a call node then we recursively call the costFunc on the

body of S.callee, if S does not correspond to a recursive call. If S is

a block node then the cost-expressions of all the constituent nodes

are added to obtain the cost-expression for S . Finally, if S is a leaf
node then we set Ce to the cost of S as Profile(S ).

The intuition behind our handling of serial-loops and if-else

statements is that precisely modeling the loop-bounds and predi-

cates can help obtain precise workloads, which in turn can help in

better chunking. Note that in the presence of loops and conditionals,

it is not possible to compute precise workload statically. Hence, we

emit additional code to compute the workload at runtime.

Emitting workload computation code: After computing the

cost-expressions, for each loop L (say, for a target with #runtime-

threads=T ), we emit the code shown in Figure 6 (inspector loop),

immediately before L. We assume that the variable CL contains

the cost-expression string as computed by costFunc and the oper-

ator ⟦X ⟧ emits the value of the variable X . We also assume the

availability of a global variableT containing the number of runtime-

threads (specified in the X10_NTHREADS environment variable).

This variable gives an upper limit to the number of chunks created

in the output program.

The main purpose of the code shown in Figure 6 is to compute

(at runtime) the workload of each iteration (and store in the array

WLArray). In addition, we use Lines 2, 7, and 8 to populate another

helper array partialSum, to maintain the sum of workloads of

blocks of iterations; max iterations in a block = blkSz. In Section 5

we discuss how this array is used by the Work-Divider-Emitter to

emit efficient code to divide the loop-iterations among the threads.

3.1.3 Work-Divider-Emitter. To partition the iterations of a given

parallel-for-loop into different chunks, this phase emits a function
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workDivider . We use WLSum to denote the total workload of the

parallel-for-loop and avgCost to denote the average workload per

chunk (= Σi WLArray(i )/T ). We first list some of the goals behind

the design of our heuristic: (1) Correctness: Each iteration must be

part of exactly one chunk. (2) Efficiency: Each chunk should have

contiguous iterations. This makes it easy to traverse the iterations of

the chunk and may also helps preserve cache locality. (3)Mimicking
equal partition property I: If a chunk contains k (> 1) iterations,
then the sum of workloads of the first k − 1 iterations must be

< avдCost , and the kth iteration should be such that the cost of the

chunk should not be more than 2 × avдCost . (4) Mimicking equal
partition property II: If the workload of an iteration is considered

“large-and-overflowing” (defined below), then that iteration should

be in its own chunk. This ensures that iterations with overly large

workloads are not combined with other iterations – otherwise, it

leads to an increase in the length of the critical path. (5) Concurrency:
The algorithm should be designed in a way such that each thread

may be able to run the algorithm in parallel and compute their

respective chunks.

As discussed earlier in this section, in the case of balanced chunk-

ing, the workload of each chunk will be equal to avдCost . Consid-
ering that we may not achieve this ideal scenario (in general), we

instead propose to make the chunks elastic. That is, instead of sug-

gesting that the desired workload of a chunk is avдCost , we set the
desired workload of a chunk to vary between avдCost × (1 − δ ) to
avдCost × (1 + δ ), where δ is a constant (0 ≤ δ < 1).

The function workDivider (Figure 8) is invoked by each thread

in parallel. To enable such parallelism, for each thread i , we en-

force an additional property that the sum of the workloads of the

threads 0 · · · i−1would be at least (avдCost ×i )−deltaCost , where
deltaCost = δ × avдCost . We store this lower limit in a variable

called ignoreCostLowi . Consider an iteration j of the input parallel-
for-loop , such that Σk=0..j−1WLArray(k ) < ignoreCostLowi and

Σk=0..jWLArray(k ) ≥ ignoreCostLowi . Here, we say that itera-

tion j crosses ignoreCostLowi . The variable costTillNow is set to

Σk=0..j−1WLArray(k ) (Line 9). Figure 7(a) depicts it graphically.
Since the iteration j crosses ignoreCostLowi , it is either part of

the previous thread (i − 1), or the current thread (i). Or in other

words for the chunk Qi (of the thread i), Qi .start is either j or j + 1.
Similarly, if iteration j crossesmaxCostLowi then Qi .end is j or j−1.
We propose a heuristic to make a decision that is consistent across

multiple parallel threads.

Consider the Figure 7(b). The figure depicts three possible sce-

narios based on the location of the end-points of j . In each scenario,

we use -·-·- to depict costTillNow (spanning j − 1 iterations). The

end-points of the jth iteration are shown using either a dot (•) or

an arrow (◁ or ▷). A • •segment indicates that the end-point can

be anywhere on that segment. A • ▷ or a ◁ • indicates that the

end-point can be anywhere in that direction. We define an itera-

tion j to be large-and-overflowing, if ∃ chunk k , such that iteration

j crosses both ignoreCostLowk−1 and ignoreCostLowk . There are

three scenarios:

Scenario A and B: j is a large-and-overflowing iteration: If it-

eration j crosses ignoreCostLowi and ignoreCostLowi+1, but does

not cross ignoreCostLowi−1 then we set Qi .start = j (Scenario A). If
iteration j also crosses ignoreCostLowi−1 then some other thread

WLSum

(i− 1)th chunk (i + 1)th chunkith chunk

maxCostLowi

0

ignoreCostLowi

avgCostdeltaCost

(a) Configuration as seen by WorkDivider (Figure 8), for chunk i .

WLSum

(i + 1)th chunkith chunk

ignoreCostLowi

0

B
A

C

(i− 1)th chunk

(b) start of chunk i

WLSum

(i− 1)th chunk (i + 1)th chunkith chunk

maxCostLowi

0

D
E
F

(c) end of chunk i

Figure 7: Work division heuristics

(with id < i), would have made j a part of its chunk, and hence we

set Qi .start = j + 1 (Scenario B).

Scenario C: j is not a large-and-overflowing iteration: In such a

case, since j is crossing ignoreCostLowi , we leave this iteration for

the i − 1th chunk and set Qi .start = j + 1.
Note that for the first chunk, we skip all calculations and just set

Qi .start=0. These heuristics to set Qi .start are coded in Lines 10-16

(Figure 8).

To set Qi .end, similar to the how we set Qi .start, we find an

iteration j that crossesmaxCostLowi ; we again have three scenarios:

Scenario D and E: j is a large-and-overflowing iteration: If it-

eration j crosses ignoreCostLowi and maxCostLowi then we set

Qi .end = j, indicating that the current chunk will not include any

iteration beyond j. Note: the chunk Qi includes the iteration j,
only if Qi .start ≤ j. If iteration j does not cross ignoreCostLowi , but

crosses maxCostLowi+1 then we set Qi .end = j − 1, indicating that

the current chunk will not include the iteration j.
Scenario F: j is not a large-and-overflowing iteration: Since j is

crossing the maxCostLowi , we set Qi .end = j.
Similar to the first chunk, in case of the last chunk, we skip all

calculations and just set Qi .end=n − 1. All these heuristics to set

the Qi .end are expressed in Lines 19-25 (Figure 8).

Note: if a large-and-overflowing iteration crosses a series of

ignoreCostLowi ... ignoreCostLowi+x then all the chunks i + 1 to

i + x − 1 will be empty.

Example. To illustrate the algorithm described in Figure 8, con-

sider an example where the workloads of the iterations of a parallel-

for-loop are given as follows: WLArray = {4, 4, 22, 1, 3, 2, 4}. SayT=4
and δ=0.25. We choose such an example to illustrate the behavior

of deep-chunking in cases where loops are not balanced (due to

non-uniform load). We now examine how the chunks are assigned.

Thread 0: Due to Line 16, iteration 0 will be part of Q0. Since itera-

tion 1 satisfies the conditions at Line 24, we set Q0 .end = 1.
Thread 1: Since iteration with index 1 satisfies the conditions at

Line 14, we set Q1.start = 2. Iteration 2 is a large and overflowing
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1 Function Chunk workDivider(T , i , n, WLArray)
Input: T : Number of threads, i : thread id, n: total no of iterations,

WLArray: Contains estimated workload of each iteration

2 Chunk Qi ;// to be returned

3 double WLSum =
∑n−1
k=0 (WLArray(k ));

4 double avgCost = WLSum/T ; deltaCost = δ ∗ avgCost;
5 double costTillNow = 0 ;

6 ignoreCostLowi = (avgCost ∗ i ) − deltaCost;
7 maxCostLowi = (avgCost ∗ (i + 1)) − deltaCost;
8 Find the iteration j which crosses ignoreCostLowi ;
9 costTillNow = sum of the cost of all iteration till j excluding j ;

10 if i , 0 then
11 if costTillNow<ignoreCostLowi−1 then // Scenario A

12 Qi .start = j + 1;
13 else
14 if costTillNow + WLArray(j ) ≥ maxCostLowi then

Qi .start = j; ; // Scenario B

15 else Qi .start = j + 1; ; // Scenario C

16 else Qi .start = 0 ;
17 Find the iteration j which crosses maxCostLowi ;
18 costTillNow = sum of the cost of all iteration till j excluding j ;
19 if i , T − 1 then
20 if costTillNow<ignoreCostLowi then // Scenario D

21 Qi .end = j;
22 else
23 if costTillNow + WLArray(j ) ≥ maxCostLowi+1 then

Qi .end = j − 1 ; // Scenario E

24 else Qi .end = j ; // Scenario F

25 else Qi .end = n − 1 ;
26 return Qi ;

Figure 8: Algorithm for deep-chunking

1 forall(i = 0 to T ) {

2 Chunk myChunk=workDivider(T ,i ,n,WLArray);
3 int myChunkStart=myChunk.start;

4 int myChunkEnd=myChunk.end;

5 for(j = myChunkStart to myChunkEnd ){ S } }

Figure 9: Loop emitted by Parameterised-Loop-Chunk-Emitter

iteration and it satisfies the conditions at Line 23. Hence we set

Q1.end = 1. Thus, chunk Q1 is an empty chunk.

Thread 2: Iteration 2 satisfies the conditions at Lines 14 and 21. Thus,

we set Q2 .start=Q2 .end=2. Note: Q2 has only one large and over-

flowing iteration, and the workload of chunkQ2 is 22 > 2×avgCost.
Thread 3: The iteration 2 satisfies the condition at Lines 12. Hence,

we set Q3 .start = 3 Similarly, we set Q3 .end = 6 (Line 25). Thus the
chunks are Q0 = [0, 1],Q1 = [2, 1],Q2 = [2, 2], and Q3 = [3, 6].

And the workloads are 8, 0, 22, and 10, respectively.

3.1.4 Parameterised-Loop-Chunk-Emitter. The Parameterised-Loop-

Chunk-Emitter transforms each normalized parallel-for-loop (of

the form shown in Figure 2(a)) to a normalized-chunked parallel

loop, as shown in Figure 9. It can be seen that the transformed

loop creates only T tasks (as compared the n tasks created in the

input program). Each task is executed by a different thread. The

number and range of iterations of each chunk (executed part of a

different task) are obtained from invoking the functionworkDivider
at runtime.

3.2 Runtime Component
For each transformed parallel-loop, Figure 4(b) shows the flow

diagram of the three different steps that get executed at runtime,

as part of our transformation. (1) Load-Computation. This phase
executes the inspector loop emitted by the Cost-Expression-Emitter

(shown in Figure 6) and populates the elements of WLArray, in
parallel. (2) Work-Division. After each thread has completed the

Load-computation step, they invoke the workDivider function (in

parallel). This function takes WLArray (computed in the previous

step) as an argument. The workDivider function returns the chunk

to be executed by each thread. (3) Deep-chunking. Each thread

executes the iterations of its chunk in parallel.

3.3 Correctness and bound on the algorithm
We now present an argument about the correctness and efficiency

of our proposed workDivider algorithm (Figure 8), which may be

called by T number of threads concurrently.

Theorem 3.1. Correctness: Every iteration of the input parallel-
for-loop gets assigned to exactly one chunk.

Lemma 3.2. If the workload of a chunk Qi is greater than or equal
to 2 × avgCost, then the number of iterations assigned to chunk Qi is
exactly one.

Theorem 3.3. Efficiency: A chunk Qi , either contains exactly
one iteration, or its workload is less than 2 × avgCost.

Corollary 3.4. The concurrent invocation of workDivider func-
tion leads to a 2-approximate solution.

Detailed proofs [30] omitted for space. □

4 ATOMIC BLOCKS AND DEEP CHUNKING
We now extend the deep-chunking techniques presented in Sec-

tion 3 to handle atomics, which bring in new challenges. In the

absence of any atomic blocks, our aim was to distribute the overall

estimated workload (across all the iterations of the parallel-for-loop)

as evenly as possible among the chunks. However, in the presence

of atomic blocks, this goal becomes more challenging as 1) the

overheads associated with the atomic blocks increases with the in-

crease in the number of threads, and 2) the worst-case waiting-time

at any atomic block includes the time taken by other parallel tasks

to execute the atomic blocks. Thus, while the execution time of

the non atomic blocks decreases as the number of threads increase

(assuming T≤#cores), the execution time of the code with atomic
blocks increases with the number of threads [11].

The goal of our approach is to extract useful parallelism (from

the programmer specified ideal parallelism) while ensuring that

overheads due to the atomic blocks are minimal. Our approach

is based on an observation that if the ratio of the workload of

atomic blocks to the total workload inside the parallel-for-loop is

“high” then it is beneficial to spawn a “small” number of tasks. To

leverage this observation, we propose a scheme (inspired by prior

work [11, 35, 41]) to model the workload of the parallel-for-loop,
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in terms of the workloads of the atomic and non-atomic regions.
Our overall scheme remains similar to the one described in Figure 4.

We now explain extensions to the compile-time components below.

Note: the steps followed during the runtime (Figure 4(a)) remain

unchanged for handling atomics.

4.1 Compile-time Component in the presence
of Atomic Blocks

We reuse the Profile-Guided-Cost-Estimator discussed in Section 3.1.1.

We now present the extensions to the Cost-Expression-Emitter and

Work-Divider-Emitter to handle atomic blocks.

Cost-Expression-Emitter in the presence of atomics We first

invoke the costFunc function (Figure 5), by ignoring the atomic
blocks – this returns a string denoting the cost-expression for the

non-atomic regions. After that, we invoke the costFunc-At function
(Figure 10), which returns a pair of strings denoting cost-expression

for the atomic blocks (CA) and an expression NA that can compute

the number of atomic blocks (at runtime).

The functionality of costFunc-At (Figure 10) is similar to that of

costFunc. It mainly aims at generating an expression representing

the workload associated with the statements inside atomic blocks

(as if all the non-atomic input independent part is ignored). To

achieve this costFunc-At takes an additional boolean argument,

which indicates if the current node S is a descendent of an atomic
node. We now discuss the main differences between costFunc and
costFunc-At.

If S is an atomic node we recursively invoke costFunc-At, by
passing a ‘true’ value for the third argument. Since LX10 (similar

to X10) does not allow the nesting of atomic blocks, we set NA=1.

If S is a loop node and if the extractExpr fails then we setCA and

NA to "0". These are set to zero so that we do not overestimate the

cost due to atomic blocks; as we discuss below, overestimating these

costs may lead to underestimating the amount of useful parallelism.

If extractExpr succeeds, then depending on whether the loop is

inside an atomic block or not, we handle it differently. In the first

case, the cost-expression CA is computed, as discussed in Figure 5.

Otherwise, the cost of atomics CA in the loop is given by the

product of the S.loopBound with cost C ′A of atomics of the loop-
body; NA is set similarly.

We handle if-else nodes similarly: the cost of the S.condition
is added toCA, if inAtomic is true. If extractExpr succeeds, then the

computation of CA and NA are similar to the computations shown

in Figure 5. Otherwise, CA and NA are set to zero (like in the case

of the loop node). Similarly, call and block nodes are handled in

a straightforward manner. If S is a leaf node, we set the value of
CA to the value of Profile(S ), only if S is inside an atomic block. Or
else, we set CA to "0".

Similar to the code shown in Figure 6, we emit additional code

to compute WLArrayA and totAtCost. At run-time, for any given

parallel-for-loop L, the array WLArrayA gives the total workload

of atomic blocks in each iteration of L. Similarly, totAtCost gives
the total workload of atomic blocks across all the iterations of L.

Work-Divider-EmitterWe extend the workDivider function (Fig-

ure 8) to take twomore parameters (WLArrayA and totAtCost). Here,
the function workDivider executes (after Line 3, Figure 8) the code
shown in Figure 11 to determine the useful-parallelism and T .

1 Function String costFunc-At(L, S , inAtomic)
Input: L: a parallel-for-loop node, S : a descendent of L in the PSGb;

inAtomic: boolean
2 NA = "0";

3 switch type of S do
4 case atomic node do
5 (CA, N ′A ) = costFunc-At(L, S.body, true); NA = "1";

6 case loop node do
7 LBound = extractExpr(L, S.loopBound) ;
8 (C′A, N

′
A ) = costFunc-At(L, S.body, inAtomic);

9 if LBound,null then // extraction successful
10 if inAtomic == true then
11 CA = Profile(S.prologue) ∥ "+" ∥ LBound ∥

"*(" ∥C′A ∥ "+" ∥ Profile(S.epilogue) ∥ ")";
12 else
13 CA =LBound ∥ "*" ∥C′A ;
14 NA =LBound ∥ "*" ∥N ′A ;

15 else {CA="0"; NA="0"};

16 case if-else node do
17 cond = extractExpr(L, S.condition);
18 if inAtomic == true then CA = Profile(S.condition) ;
19 (C t

A, N
t
A ) = costFunc-At(L, S.then, inAtomic);

20 (Ce
A, N

e
A ) = costFunc-At(L, S.else, inAtomic);

21 if cond , null then // extraction successful
22 CA = CA ∥ "+" ∥ cond ∥ "?" ∥C t

A ∥ ":" ∥C
e
A ;

23 NA = cond ∥ "?" ∥N t
A ∥ ":" ∥N

e
A ;

24 else {CA="0"; NA="0"};

25 case call node do
26 (CA, NA ) = costFunc-At(L, S.callee, inAtomic);
27 case block node do
28 for si in S.nodes() do
29 (C′A, N

′
A ) = costFunc-At(L, si , inAtomic);

30 CA = CA ∥ "+" ∥C′A ; NA = NA ∥ "+" ∥N ′A ;

31 otherwise do // leaf node
32 if inAtomic == true then CA = Profile(S );
33 else CA = "0";

34 return (CA, NA );

Figure 10: Cost-expression generation in the presence of
atomic blocks

The presented extension computes the estimated workload of

the critical thread for varying number of runtime threads (from 1 to

T ) and sets T to that number of threads, which leads to minimum

cost. The workload of the critical thread is computed to include (1)

the cost due to non-atomic region (shared equally among all the

threads – parCost ), (2) worst-case cost arising out of atomic blocks
(totAtCost), and (3) overhead incurred due to interactions between

the threads, while executing the atomic blocks (UnitOverhd ×
maxInteractions). Note I: In LX10, atomic blocks enforce mutual-

exclusion, and hence in the worst-case the critical thread will ex-

ecute the atomic block, only after all the other atomic blocks

have been executed. And hence we set totAtCost as the sum of

all the elements of WLArrayA. Note II: in the worst-case, all the

threads reach the atomic blocks at the same time – leading to

maxInteractions = totAtCost × (i − 1) interactions.
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1 longminCost = Long.MAX_VALUE;

2 long UnitOvrhd = Kd ; // Overhead of one atomic op.

3 long totAtCost =
∑n−1
k=0 WLArrayA (k ); // total atomic cost

4 for i : 1 to T do // compute the cost assuming #threads=i
5 long parCost = WLSum/i ;
6 long maxInteractions = totAtCost ∗ (i − 1) ;
7 long Cost=parCost+totAtCost+UnitOvrhd ×maxInteractions;
8 if minCost > Cost then {minCost=Cost ; nproc=i ;};

9 T = nproc ;

Figure 11: Determine useful parallelism in the presence of
atomic blocks

The algorithm choosesT to be that value of i where the estimated

workload is the minimum. Note that the parCost decreases as the
number of threads increase, and themaxInteractions increase as
the number of threads increase. In the limiting case, where the

number of atomic blocks is 0, our algorithm will leave the variable

T untouched. Similarly, if the body of the parallel-for-loop contains

atomic block only, then we will obtain T = 1. The computation of

the variable Kd , which indicates the overhead associated with one

atomic interaction, is discussed in the next section.

5 DISCUSSION
The extractExpr function. The function extractExpr(L, e), described
in Section 3.1.2, tries to map the input expression e to another

expression e1, in terms of variables that are live before the parallel-

for-loop L. To achieve this, we first identify the loop (parallel or

serial) surrounding e; say it is L1. If L1 is not a for-loop, then we

mark e as non-extractable and return. We compute a chop [18] from

the predecessor of L1 to e . If the chop includes a loop, then we mark

the expression non-extractable. Else, we follow the use-def chains

to compute an expression e2, which is the ’avatar’ of e , in terms of

variables visible before L1. If L1 = L then, we return e2. Otherwise,
it indicates that e is nested insides a loop L1. The algorithms given

in Figures 5 and 10 are written assuming that e is not nested inside

any loop. However, our implementation does handle the case with

loops (details skipped for space).

Impact of the value of K in Figure 5. If extractExpr fails to extract

a valid loop-bound for a loop, we set the cost-expression to be a

constant K . The value of K is conservatively chosen such that it is

very large and it subsumes any other costs that may be part of the

parallel for loop. Hence the parallel-for-loop will be treated as a

balanced loop, and the workDivider will distribute the iterations to
chunks in such a way that it mimics block-chunking (far better than

the default work-stealing based option). Similarly, our worst-case

assumption in if-then-else statements may lead to inaccuracies; this,

in the worst-case, may again mimic block-chunking.

In such conservative scenarios, even though we mimic block-

chunking, the performance may not match exactly that of block-

chunking, as (i) our scheme allows some minor variation due to

the delta-cost variation for each chunk, and so on. Hence, there is

a chance that a very few iterations may end up in a different chunk

than as decided by block-chunking. (ii) our scheme incurs some

minor overheads to perform deep-chunking at runtime.

Value of the constant δ , described in Section 3.1.3. The constant δ is

one of the factors that affect the distribution of the iterations among

chunks. It helps in expanding the desired capacity of a chunk from

avgCost to a maximum of avgCost+deltaCost. The optimal value of

deltaCost may depend on the value ofT , the specific input (value of
n) to the benchmark, and many input application dependent factors

such as the granularity of the workloads of the iterations, and the

distribution of the workload among all the parallel iterations. We

have experimented with different values of δ and found that δ=0.01
gave the best results.

Value of the constantKd . We calculated (using profiling) the value

of the constant Kd , which denotes the overheads associated with a

single atomic operation to be 7 µsec.
Impact on code size. Deep-chunking has a negative impact (albeit

small) on the code size. In terms of the number of lines in a high-

level language like Java, deep-chunking adds around ten lines per

loop. Such an overhead has to be kept in mind when compiling

with hard code size restrictions.

Optimizations: We now discuss four additional optimizations that

we perform, on top of the proposed chunking technique.

• If the compiler can guarantee that the computed values of the

WLArray does not change across multiple instances of a parallel-for-

loop, then the code to compute the WLArray and create chunks can

be executed before the first such instance and the computed chunks

can be re-used. We identify such a parallel-for-loop by analyzing

the cost-expression.

•We first perform a preprocessing step to identify if a parallel-for-

loop L has inner serial for-loops with parallel-loop-variant bounds;

that is, if L has potential workload imbalance. If so, we invoke our

proposed optimization on L. Otherwise, we chunk them using a

default policy (block-chunking).

• When the function workDivider has to find an iteration j that
crosses ignoreCostLowi , iterating through each element of WLArray
can be quite expensive. Instead, we divide the work of summing

the elements of WLArray among the threads. Each thread i pop-
ulates partialSum(i ) with the sum of its block of elements from

WLArray; this is done along with the calculation of the elements of

WLArray (Figure 6). This array partialSum is used by workDivider
to traverse through the iterations efficiently. To find an iteration j
such that j crosses ignoreCostLowi , we traverse the partialSum ele-
ments to find a "block" b such that the sum of the costs of the blocks

till b (but excluding b) is less than ignoreCostLowi and the sum of

the cost of the blocks including b is greater than ignoreCostLowi .

Then to find the exact iteration j, we traverse through the itera-

tions of b, which significantly reduces the number of comparisons

needed to find the iteration j.

6 IMPLEMENTATION AND EVALUATION
We have implemented our proposed fully automated approach in

the X10 compiler; the complete source code can obtained from

GitHub [31]. The profiling pass and the actual optimization pass

are invoked using two different compiler switches designed by us

(-profileForChunking, and -chunkUnbalanced). We evaluated our

proposed techniques on a set of eight shared-memory benchmarks

taken from IMSuite [12] – these are the benchmarks with non-

uniform workloads in at least one of their parallel-for-loops.
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Bench LOC SL SA I/P DL DA

1. BFS-BellmanFord (BF) 386 2 1 32K 8 1M

2. BFS-Dijkstra (DST) 556 7 3 1K 1K 18K

3. Byzantine (BY) 570 3 1 512 325 18M

4. DominatingSet (DS) 721 9 2 1K 171 6K

5. KCommitte (KC) 844 11 2 2K 246 9M

6. LeaderElect-DP (DP) 676 4 2 8K 56 3M

7. MIS 609 5 6 32K 21 12M

8. VertexCol (VC) 641 5 0 16K 17 0

Figure 12: Characteristics of the benchmarks. Abbreviations:
LOC: Lines of code, SL: #static parallel-for-loops, SA: #static
atomic blocks, I/P: input size, DL: #dynamic parallel-for-
loops, DA: #dynamic atomic blocks.

Figure 12 lists some static characteristics of the chosen set of

benchmarks. Except VC, all other benchmarks have atomic blocks

within one or more parallel-for-loops. Columns 2, 3, 4 list the num-

ber of lines of code, parallel-for-loops (static) and atomic blocks

(static). For each of the benchmarks we fixed the largest input size

such that the total execution can finish within 10 minutes (Column

5). The number of dynamic parallel-for-loops and atomic blocks,
for the chosen input, are listed in columns 6 and 7. Except for BF,

DST, and DS, in all the other cases, the extractExpr routine (Sec-
tion 3) succeeded in mapping the loop-bounds and if-predicates

appropriately. For profiling it was sufficient to use a very small

input (size 16); the total compilation overhead was negligible.

All the benchmarks were executed on an AMDOpteron 6320 pro-

cessor, with 4 sockets each having 16 cores (total 64 cores), and total

memory of 512GB. For each benchmark, besides the un-chunked

(using the default work-stealing scheme) version, we evaluated

five different chunked versions (see Section 2): i) Cyclic, ii) Block,

iii) Dynamic, iv) Guided, and v) Deep. The implementations of

block- and cyclic-chunking versions are derived from that of Nan-

divada et al. [26] and that of the dynamic- and guided-chunking

policies are derived from that of OpenMP [27]. In order to execute

a code with T number of worker-threads, we also fix the number

of available cores to T . For the five chunking policies the underly-
ing work-stealing has no effect, as the number of parallel-tasks (=

#chunks) matches T . We plotted (in Figure 13) the execution times

of the above mentioned versions (each normalized to the time taken

by the un-chunked work-stealing based code), for varying num-

ber of worker-threads (2-64). The deep-chunking numbers refer

to the total execution time including the time of inspection and

deep-chunking runtime framework.

As can be seen, with increasing number of threads, the overall

gains due to deep-chunking are increasing: the geometric mean

of the normalized execution time reduces from 0.70 (at 2 threads)

to 0.28 (at 64 threads). Overall, on an average, the proposed deep-

chunking technique achieves 50.48%, 21.49%, 26.72%, 32.41%, and

28.84% better performance than un-chunked, cyclic-, block-, dynamic-

, and guided-chunking techniques, respectively. The observed gains

are due to better load-balancing, handling of atomic blocks, and

low overheads during runtime.

For smaller number of threads, it can be seen that our approach

does not gain many benefits compared to versions chunked using

block-, cyclic-, dynamic- and guided-chunking, as there is much

less scope to divide the work. However, with the increasing number

of threads, the gains mostly improve. As it can be seen in Figure 13,

except DST and DS all other benchmarks show significant gains

for the higher number of threads (32 or 64).

We analyzed the DST and DS benchmarks and found that the rea-

son why deep-chunking does not fare well compared to block- and

cyclic-chunking is that both of these benchmarks have conditionals

that cannot be extracted by the extractExpr function. And these

if-else statements have nested for loops with atomic blocks in-

side them. And our conservative approach did not pay off well,

in these benchmarks. Here, even though the chunking of loops in

the deep-chunked code mimics block-chunking (see Section 5), the

minor performance loss the former incurs (compared to blocked-

chunking) is due to the additional overheads incurred as part of

the deep-chunking runtime infrastructure. However, in contrast,

BF has a similar structured code, where our conservative approach

is still able to perform better than other techniques. We conclude

that the gains depend on the accuracy of workload calculation

and the number of times the parallel-for-loops are executed; ac-

curate prediction + large number of such dynamically executed

parallel-for-loops lead to large gains. But inaccurate prediction +

large number of such dynamically executed parallel-for-loops may

impact the performance negatively.

We observed that for VC the performance gain compared to

un-chunked version of the code is very high: normalized execution

time with respect to un-chunked version is as low as 0.03. This is

because the work to be executed by each iteration of the parallel

for loop is very less compared to the number of iterations (16K).

Hence the un-chunked version (using work-stealing scheduler in

case of X10) creates 16K tasks and suffers from poor performance

due to task creation and migration overheads. At the same time,

for MIS, the un-chunked version performs better than Block or

Guided strategies (Block and Guided with values as high as 1.67

and 1.40). We analyzed the benchmark and found that the workload

of the iterations of the parallel-for-loop is very high for the initial

iterations and very low for the later iterations. Because of this

reason, the guided- and block-chunked codes perform worse than

un-chunked. In contrast, the code generated by deep-chunking

(workload aware) is able to achieve performance gains.

It can be seen that for BY, KC, DP, and MIS, our approach sig-

nificantly outperforms the Block, Cyclic, Dynamic and Guided ap-

proaches. This is because of our handling of atomic blocks, where

we are able to extract useful parallelism more accurately. To under-

stand the impact of our proposed approach to handle atomic blocks
(Section 4), we compared the execution times of these benchmarks

with and without the extensions of Section 4. Figure 14 shows a

comparative plot of these execution times, for varying number of

threads. As can be seen, our proposed extensions are quite effective

and lead to significant improvements to our base technique (up to

76.6%, geomean 42.8%).

Overheads due to the inserted code.We also computed the over-

heads incurred due to the execution of the additional code inserted

by deep-chunking and found it to be quite low. For each benchmark,

we computed the overhead as a percentage over the total execu-

tion time of that benchmark (=100×total-overhead/total-exectime).

Due to lack of space, we avoided presenting the overheads of each

benchmark for each configuration (2/4/8/..64 threads), especially
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Figure 13: Chunking with varying number of threads

because the overheads were very low (most of them < 1%). Across

all the benchmarks, for 2-64 threads, the geometric mean overhead

was found to be 0.92%. Around 90% of this overhead was due to the

inspector loop (which may increase the critical path) and the rest

was from the invocation of the workDivider function.
Impact on codes with uniform workloads. Though the focus of

deep-chunking is codes with non-uniform workloads, for codes

with uniform workloads, where we can statically identify the best

chunking scheme, deep-chunking may still be useful wherein we do

not have to manually try the different popular chunking schemes

and get more or less the best performance. As a minor test, we

ran the X10 version of the LUFact code (from New Java Grande

Forum suite [19]) that has triangular workload (the workload of

the iterations of the parallel-for-loop decreases as the iteration

index increases). We observed that deep chunking achieves 18%

and 22% performance gains compared to Block and un-chunked

(work-stealing), whereas the performance is comparable to Guided,

and has negligible (5-6%) degradation when compared to Cyclic

and Dynamic, respectively.

Overall summary. Figure 13 shows that the performance gains

resulting from different chunking policies vary. The relative perfor-

mance between un-chunked (using the default X10 work-stealing

scheduler), blocked-chunking, cyclic-chunking, guided-chunking,

and dynamic-chunking varies significantly depending on the spe-

cific benchmark, and the runtime configuration (number of cores).

This makes it hard for a compiler to fix upon one of these policies. In

contrast, our proposed technique is able to realize gains (compared

to all the five techniques) in most of the cases, and even in bench-

marks where our approach does not lead to gains, the performance

is more or less comparable to the best of these approaches.

7 CONCLUSION
In this paper we presented an optimization (deep-chunking), to

efficiently perform loop chunking on programs with non-uniform

workloads. We presented a combined compile-time and runtime
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Figure 14: Performance improvements in deep-chunking
due to the techniques discussed in Section 4.

approach, which studies the program structure at compile time and

estimates the workload of iterations at runtime. We also presented

an algorithm which can be invoked by the worker threads to obtain

an optimal distribution of iterations of parallel loops with mini-

mal synchronization overheads. We proved that the algorithm is a

2-factor approximation algorithm. Further, we showed that by mod-

elling the behavior of atomic blocks, we can reduce the overheads

associated with atomic blocks inside parallel loops. We evaluated

our implementation on a set of benchmarks from IMSuite and found

that on an average, deep-chunking achieves 50.48%, 21.49%, 26.72%,

32.41%, and 28.84% better performance than un-chunked, cyclic-,

block-, dynamic-, and guided-chunking policies, respectively.
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