
J. Parallel Distrib. Comput. 75 (2015) 1–19
Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

IMSuite: A benchmark suite for simulating distributed algorithms
Suyash Gupta, V. Krishna Nandivada ∗

PACE Lab, Department of Computer Science and Engineering, IIT Madras, 600036, India

h i g h l i g h t s

• Genesis and characterization of a new kernel benchmark suite named IMSuite.
• A methodical approach to implement distributed algorithms in task parallel languages.
• Multiple variations of our kernels in two languages X10 and HJ.
• An involved set of input generators and output validators.
• A detailed evaluation of IMSuite.

a r t i c l e i n f o

Article history:
Received 9 October 2013
Received in revised form
12 May 2014
Accepted 22 October 2014
Available online 28 October 2014

Keywords:
Benchmarks
Distributed algorithms
Performance evaluation
Task parallelism
Data parallelism
Recursive task parallelism

a b s t r a c t

Considering the diverse nature of real-world distributed applications that makes it hard to identify a
representative subset of distributed benchmarks, we focus on their underlying distributed algorithms.
We present and characterize a new kernel benchmark suite (named IMSuite) that simulates some of the
classical distributed algorithms in task parallel languages. We present multiple variations of our kernels,
broadly categorized under two heads: (a) varying synchronization primitives (with andwithout fine grain
synchronization primitives); and (b) varying forms of parallelization (data parallel and recursive task
parallel). Our characterization covers interesting aspects of distributed applications such as distribution of
remote communication requests, number of synchronization, task creation, task termination and atomic
operations. We study the behavior (execution time) of our kernels by varying the problem size, the
number of compute threads, and the input configurations. We also present an involved set of input
generators and output validators.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Large distributed applications find their use in a variety of
diverse domains: banking, telecommunication, scientific comput-
ing, network on chips, and so on. The diverse and complex na-
ture of these distributed applications makes it hard to identify a
representative subset of distributed benchmarks. The absence of
such a benchmark set hinders the design of new optimizations and
program analysis techniques that can be applied uniformly across
many distributed applications.

The common denominators of most of the distributed appli-
cations are the underlying distributed algorithms. Both the dis-
tributed applications and the underlying distributed algorithms
display common traits such as communication, timing and failure.
We argue that compared to the complex distributed applications,

∗ Corresponding author.
E-mail addresses: suyash@cse.iitm.ac.in (S. Gupta), nvk@cse.iitm.ac.in

(V. Krishna Nandivada).

http://dx.doi.org/10.1016/j.jpdc.2014.10.010
0743-7315/© 2014 Elsevier Inc. All rights reserved.
reasoning about these underlying algorithms can be easier and can
also help in analyzing the diverse applications that use them. Thus,
we believe that a kernel benchmark suite implementing popular
distributed algorithms is in order.

We now lay down a set of seven key requirements necessary for
such a kernel benchmark suite. These requirements are categorized
under the following three heads.
(A) Requirements based on characteristics of kernel benchmarks
implementing distributed algorithms: Our study of popular text
books [27,33] and lecture notes [42] on distributed algorithms
helped us derive the important characteristics of typical dis-
tributed algorithms; these characteristics form the basis of our first
three key requirements.

1. The algorithms implemented by the kernel benchmarks must
solve common challenges in distributed systems.

2. The kernels should cover important characteristics of dis-
tributed systems such as communication (broadcast, unicast, or
multicast), timing (synchronous, asynchronous or partially syn-
chronous) and failure.

http://dx.doi.org/10.1016/j.jpdc.2014.10.010
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2014.10.010&domain=pdf
mailto:suyash@cse.iitm.ac.in
mailto:nvk@cse.iitm.ac.in
http://dx.doi.org/10.1016/j.jpdc.2014.10.010


2 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
Fig. 1. Core distributed computing problems and their applications (see [1,9,19,23,24,29,37,41,44]).
3. The benchmark kernels should simulate the behavior of dis-
tributed systems consisting of (partially) independent nodes
and the interconnect thereof.

(B) Requirements based on the target hardware:

4. The execution of the kernels implementing distributed algo-
rithms should not necessarily require a complex hardware
setup; these should be usable in the presence of a shared mem-
ory multicore/distributed memory multicore or even a sequen-
tial system.

(C)Requirements based on best practices in existing benchmark suites:
The final two requirements are derived from the best practices
followed in well known benchmark suites, such as PBBS [36],
NPB [4], BOTS [14], PARSEC [5].

5. The kernels should be small in size and easy to debug.
6. The benchmark suite should provide a variety of inputs (with

varying configurations and sizes) and convenient means to
verify the generated output.

7. The benchmark suite should provide means to analyze static
and dynamic characteristics specific to the domain under
consideration (distributed systems in our case).

Our study of existing benchmark suites [36,4,14,5,6,2,3,7,10,
13,20,26,31,38,43] has found that none of them meet majority
of the aforementioned key requirements. Our goal is to design a
benchmark suite that meets all our stated requirements. As a first
step, we shortlist a set of important problems in the context of
distributed systems.

Fig. 1 shows some of the core problems in the area of distributed
computing and lists a few of their extremely diverse applications.
The centrality of these problems can also be seen from the
importance given to them in popular textbooks and lecture notes
on distributed algorithms [27,33,42]. In this paper, we present and
characterize a new kernel benchmark suite named IMSuite: IIT
Madras benchmark suite for simulating distributed algorithms that
implements some of the classical algorithms to solve these core
problems; we refer to these algorithms as the core algorithms.

IMSuite implements the core algorithms in two task paral-
lel languages X10 [34] and HJ [8]. X10 and HJ languages with
their APGAS-model to easily simulate the distributed systems,
light weight tasks to represent the computation in the distributed
nodes, and clocks/phasers to model lock step synchrony in irreg-
ular and recursive applications, give a convenient way to program
distributed kernels. One of themain advantages of using these lan-
guages is that they can easily simulate a large set of distributed
nodes even in the absence of complex distributed hardware. Even
though the initial uses of X10 and HJ languages were mainly in
the scientific domain, there is increasing interest to use these lan-
guages in other domains. For example, ScaleGraph [11] is an X10
library which can be used for analyzing very large (billion scale)
graphs. Similarly, XGDBench [12] provides a platform for storing
large graph databases in exascale cloud. This trend conforms to the
general trend in the HPC domainwhere the community has started



S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 3
taking increasing interest in irregular computations involving dis-
tributed applications. Some popular examples include Ligra [35],
Pregel [28], Pegasus [22], PowerGraph [16] and Knowledge Discov-
ery Toolkit [25].
Our contributions

• We present a study of a large set of existing benchmark suites
and discuss their limitations with respect to our stated key
requirements (Section 2).

• We give a methodical approach to implement distributed
algorithms in task parallel languages to run on hybrid systems1
(Section 4).

• Considering the different popular parallel programming styles,
we present multiple variations of our kernels in both X10 and
HJ. These variations (totaling 31 per language) can be broadly
categorized under two heads: (a) Varying synchronization prim-
itives: Our benchmark kernels can use fine grain synchroniza-
tion primitives (such as phasers in HJ and clocks in X10), or
can realize synchronization by joining/terminating each task
and recreating them later. (b) Varying forms of parallelization:
IMSuite contains a data parallel implementation for each core
algorithm. Further, IMSuite also includes recursive task paral-
lel versions for some of the core algorithms. Besides these par-
allel versions IMSuite also includes the corresponding serial
implementations (Section 5).

• We provide an algorithm specific input generator that can
generate a variety of inputs with varying configurations. Each
benchmark also includes an output validator.

• We characterize IMSuite on a hybrid system. Our character-
ization covers interesting aspects of distributed applications
such as distribution of remote communication requests, num-
ber of synchronization, task creation, task termination and
atomic operations. We study the behavior (execution time) of
our kernels by varying the problem size, the number of com-
pute threads, and the input configurations. (Section 6).

2. Related work

In this section we categorize some of the popular benchmark
suites catering to parallel and distributed systems and discuss their
limitations with respect to our stated key requirements.
Applications vs. kernels vs. micro-kernels—Many of the well-
known benchmarks consist of a set of representative applications.
Examples include NPB [4], BOTS [14], PARSEC [5] (including its two
prior avatars SPLASH [38] and SPLASH-2 [43]), BenchERL [2], SPEC-
OMP [3], JGF [10], NGB [13], SPEC-MPI [31] and HPCC [26]. While
PARSEC, JGF, NPB and BenchERL also contain a few kernels, bench-
mark suites like PBBS [36] focus only on kernel benchmarks. Sim-
ilarly, JGF contains a few micro-kernels as well, while EPCC [7,6]
and IntelMPI [20] contain only micro kernels. Compared to
the application-oriented benchmarks, the kernel benchmarks are
small in size, simpler to understand, easier to debug and provide
insights on how a certain algorithm behaves. Micro-kernels on the
other hand are helpful to study a specific feature of a language, run-
time or architecture.
Scientific vs. non-scientific—Most of the parallel benchmark
suites target scientific or mathematical computations. Examples
include BOTS, JGF, HPCC, NPB, SPEC-OMP, SPEC-MPI and PARSEC.
The PBBS benchmark suite consists of a mixed bag of scientific and

1 A hybrid systemmay consist of one ormore distributed nodes (with a capability
to communicate with each other), each node may consist of one or more cores, and
each core in turn may have one or more hardware threads.
graph computations. Benchmark suites like BenchERL, EPCC, and
IntelMPI consist of mainly synthetic benchmarks.
Task parallel vs. loop parallel vs. recursive—BOTS and PBBS admit
both task parallel and recursive task parallel computations. In
contrast, JGF, HPCC, SPEC-OMP, SPEC-MPI, IntelMPI, PARSEC, NPB,
NGB, and EPCC suites include computations chiefly depicting loop
level parallelism.
Parallel vs. hybrid systems—Benchmark suites like NPB, JGF, NGB,
BenchERL, SPEC-MPI, EPCC, and IntelMPI contain benchmarks that
can run over hybrid systems, while rest of the benchmark suites
can run only on a parallel system.

Of the seven key requirements discussed earlier in the section,
the first four are specific to the distributed applications and hence
are not satisfied by any of the discussed benchmark suites. The
PBBS benchmark suite satisfies Req#5 and Req#6. On the other
hand, PARSEC, JGF, NPB and BenchERL have a mix of small ker-
nels and large applications, and satisfy Req#5 partially. Similarly,
benchmark suites such as BOTS, BenchERL, HPCC and SPEC include
an output verifier for a pre-defined input, and satisfy Req#6 par-
tially. Req#7 is partially satisfied by PBBS, PARSEC, SPLASH and
BOTS—they allow the user to measure some dynamic character-
istics that are pertinent to parallel programs (such as, number of
tasks, barriers, joins, and so on).

Compared to these benchmark suites, IMSuite satisfies all the
key requirements. It consists of kernels that implement popular
distributed algorithms (mostly graph based) that are mainly
irregular in nature and can be used in both scientific and non-
scientific computations. The kernels in IMSuite exhibit both loop
and recursive task parallelism. While the current implementation
of IMSuite is in X10 and HJ, these kernels can easily be ported to
other languages that support appropriate runtimemodels (such as
APGAS or global address space).

3. Background

3.1. Core algorithms

Considering the importance and popularity of the problems
discussed in Fig. 1, it is not surprising to find a plethora of al-
gorithms in the literature that solve these problems. However, a
benchmark suite can accommodate only a small number of algo-
rithms for each of these problems. Many different schemes can be
used to select such a subset, each with its own set of challenges:
most recent (challenge: this set will keep changing all the time);
most popular/efficient (challenge: hard to find an agreement in the
community and keeps changing with time); classical algorithms
(challenge: may not be recent). Considering pedagogy and popu-
larity we choose the last scheme.

We now briefly describe some of the classical algorithms that
solve the problems discussed in Fig. 1. Fig. 2 presents some
characteristics of these algorithms.
Breadth First Search (BFS): We use two different BFS algorithms
BF [42] and DST [42]. While BF outputs the distance of every node
from the root, DST outputs the BFS tree.
Byzantine agreement: The byzantine agreement (BY )
algorithm [30] builds a consensus among the ‘‘good’’ nodes of a
network that may also contain ‘‘faulty’’ nodes.
Routing: In the Dijkstra routing (DR) algorithm [40] each node in
the network works independently and computes a routing table in
parallel.
Dominating set: The dominating set (DS) algorithm [42] creates a
dominating set using a probabilistic method that depends on the
first and second level neighbors of a node.
k-Committee: For a given integer value of k, the k-committee (KC)
algorithm [42] partitions the input nodes into committees of size
at most k.



4 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
Fig. 2. Core algorithms and their characteristics. Notation: n denotes the number nodes, m denotes the number of edges, and D denotes the diameter, K denotes the
maximum committee size and ∆ denotes the maximum degree of the graph.
Fig. 3. X10 command cheat sheet.
Maximal independent set:MIS [42] uses a randomized algorithm
to compute the maximal independent set for a given input graph.
Leader election: We consider three different leader election algo-
rithms. The LCR andHS algorithms [27]work on a set of nodes orga-
nized in a ring network, where the data flow is unidirectional and
bidirectional, respectively. Compared to that, theDP algorithm [32]
works on a set of nodes organized in any general network.
Minimum spanning tree: The MST algorithm [42] works on a
weighted graph. It starts bymarking every node as an independent
fragment, and proceeds by joining fragments along the minimum
weighted edge, till a lone fragment is left.
Vertex coloring: The vertex coloring (VC) algorithm [42] colors the
nodes of a tree with three colors. It first colors the tree using six
colors using a fast algorithm O(log∗ n) and then uses a shift down
operation (constant time) to color the tree using three colors.

The popularity of the chosen algorithms can be seen from the
large number of works (books and papers) that cite (use and/or
extend) them.

3.2. X10 and HJ background

Fig. 3 presents some constructs of X10 relevant to this manu-
script (see the language manual [34] for details).

We use async to spawn a new task, finish to join tasks, and
atomic to provide mutual exclusion. X10 provides an abstraction
of a Clock that helps tasks make progress in lock step synchrony.
A task may be registered on one or more clocks and all the tasks
registered on a clock make progress in lock step by advancing the
clocks. A clock is considered to have advanced to the next ‘‘clock
tick’’ if all the tasks registered on that clock have requested the
advancement of the clock.

In X10, a place abstracts the notion of computation (multiple
tasks) and data (local to the place). The set of places available to
a program are fixed at the time the program is launched. The at
construct can be used to access remote data.

A region is used to represent the iteration space of loops and the
domain of arrays. A distribution maps the elements of a region to
the set of runtime places.

We define two subsets of X10: (a) X10-FA—uses the finish,
async and atomic constructs for task creation, join and mutual
exclusion, respectively. Synchronization is achieved by joining/
terminating all the tasks and recreating them later. (b) X10-
FAC—uses the abstraction of clocks in addition to the constructs of
X10-FA. Clocks provide efficient synchronization primitives that
canbeused to yield arguablymore compact and efficient programs.
Comparison with HJ: The parallelism related constructs of Ha-
banero Java [8] are similar to that of X10 with minor differences
in syntax and semantics. For example, HJ constructs isolated,
next, and phasermap to corresponding X10 constructs atomic,
Clock.advanceAll and clock (refer to the HJ manual [18] for
details). Similar to the two subsets of X10, we define two corre-
sponding subsets for HJ: HJ-FA and HJ-FAP.

4. Transformation scheme

We now present an overview of our scheme for implementing
distributed algorithms in a task parallel language, to be executed
on a hybrid system.We list someof themain abstractions pertinent



S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 5
to distributed algorithms and lay down a procedure for their
implementation.
Node: A node in a distributed algorithm requires some data (such
as a unique identifier, a mailbox, information about neighbors and
so on) and performs some computations.

The computation of a node can be abstracted by one or more
parallel tasks, in task parallel languages. A distributed node (in-
cluding both computation and data) can be abstracted by an X10
place running only the task(s) corresponding to that node; we refer
to it as the Unique-Place (UP) model. Another model in which a dis-
tributed application can be simulated is one where all the nodes of
the system are simulated at a single place; we term it as the Single-
Place (SP)model. This simulates a particular type of distributed sys-
temwhere the inter-node communication cost is minimal. We can
also consider a more general scenario, where the runtime consists
of multiple places and each place may simulate the tasks corre-
sponding tomore than one node; we term it as theMulti-Place (MP)
model.
Communication: A set of distributed nodes communicate with
each other through message transfer. These messages are trans-
ferred, from one node to another, along the links of the underlying
network.

Our simulation of the transfer of data between two connected
nodes of a network depends on the runtime model (MP, UP or SP
model). In the context of an SP model, the data transfer is done
using the shared memory. On the other hand, in the context of MP
and UPmodels, the data transfer may involve message passing.
Timing: In a distributed system, nodes can work asynchronously
or synchronously. In a synchronous setting there is an assumption
of existence of a global clock and the nodes proceed in a lock-step
fashion, synchronized over the global clock. Contrast to that, in an
asynchronous setting there is no concept of a global clock and each
node works independently.

We achieve lock step synchrony by using fine grain synchro-
nization primitives (such as phasers in HJ and clocks in X10) or by
repeated task-join and task-creation operations (see Section 4.1 for
an example).
Phases and rounds: Distributed algorithms are organized around
the notion of phases and rounds; each phase consists of one or
more rounds. Phases and rounds can be implemented using serial
loops.
Messages and mailbox: Nodes in a distributed system communi-
cate by exchanging messages. The size and structure of a message
depend on the underlying algorithm. Each message is delivered to
the receiver’s mailbox (a FIFO queue). The design of the mailbox
must ensure that it can hold all the messages required at any point
of time.

4.1. Sample transformation

In this section we illustrate our transformation scheme using
an example. Fig. 4 presents the core of the LCR algorithm (see
Section 3.1). Each node j contains three fields: uidj (the unique
identifier of the node), sendj (identifier of the leader as per node j—
initialized to uidj), and statusj (if it is a leader or a common node).
The LCR algorithm runs for n rounds. In each round every node j
sends sendj to its neighbor (successor) and receives the incoming
message from its predecessor. Since LCR algorithmworks on a uni-
directional ring network, a node can at most receive one message
per round. This allows us to set the size of themailbox of each node
to one.

We now briefly explain how we derive a benchmark kernel for
the LCR algorithm. For illustration purposes we use X10-FAC as
the target language and later state the differences between a code
written in X10-FAC and in X10-FA. The structure of theNode class
for our implementation of the LCR algorithm is shown in Fig. 5. We
note two interesting points: (a) the mbox field can hold at most
one message, (b) the nextIndex field can be eliminated by some
Fig. 4. Distributed leader election LCR algorithm.

Fig. 5. Structure of the abstract node for LCR.

(a)

(b)

Fig. 6. (a) Core of the LCR algorithm in X10-FAC; (b) core of the LCR algorithm in
X10-FA; only differences with respect to the X10-FAC version are shown. The X10
specific constructs are shown in bold. See Section 3 for X10 syntax.

smart design decisions (e.g. in a unidirectional ring network the
nextIndex of the jth node can be set to j + 1).

Fig. 6(a) shows the core of the LCR algorithm in X10-FAC. It cre-
ates a blocking distribution D over a region R (of n points, where
n = number of nodes) and allocates the array ndSet (of n ele-
ments), distributed over D. The number of blocks in the distribu-



6 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
tion D is set to the number of places at runtime. In each round,
the parallel task corresponding to each node transmits its message
and waits (by using Clock.advanceAll) for the message from
its neighbor. After that, each task recomputes the leader related in-
formation based on the receivedmessage and proceeds to the next
round.

Fig. 6(b) sketches the X10-FA kernel for LCR, showing only the
differences with respect to the X10-FAC kernel shown in Fig. 6(a).
This X10-FA version uses repeated task-join and task-creation
operations to synchronize the tasks corresponding to the nodes.
X10-FAC implementation can be considered lightweight as it uses
fewer number of task creation (async) and join (finish) operations
and utilizes the lightweight synchronization operations offered by
Clocks.

Compared to LCR, where the X10-FA and X10-FAC implemen-
tations are not much different, there are other kernels (such as DS)
where the differences are significant. This is especially true when
the clock based synchronization operations are nested deep inside
conditional or looping constructs.

5. Internals of IMSuite

In this section, we briefly explain the internal details of
IMSuite. This benchmark suite implements the twelve core algo-
rithms described in Section 3.1. Considering the different popular
parallel programming styles, we have implemented multiple vari-
ations of these algorithms:

Varying the synchronization primitives: We implement all our
variations in two subsets of X10: X10-FA and X10-FAC. All
the core algorithms (except DR) have been implemented in both
X10-FA and X10-FAC. In case of DR, we found no scope of using
low level synchronization primitives like clocks. And hence we
have this algorithm implemented only in X10-FA.

Varying forms of parallelization: For each of the core algorithms
implemented in X10-FA and X10-FAC we present a data parallel
implementation. For five of the core algorithms (BF, DST, BY, DR
and MST ) implemented in X10-FA, we also provide variations
that exploit recursive task parallelism. Further, for three of these
algorithms (BF, DST and MST ) we have efficient implementations
that use clocks (implemented in X10-FAC).

Along with the above discussed variations, we can also vary the
runtime model (MP, UP, or SP model) by setting the number of
places to be a divisor of the input (for MP model), or to the input
size (for UPmodel), or to one (for SPmodel).

For each of the core distributed algorithms we also present a
serial implementation in X10. The serial implementations do not
create any parallel tasks—they simulate the behavior of the parallel
nodes by serializing their execution in a predefined order. Similar
to their parallel counterparts, the runtime behavior of the serial
programs can be controlled by varying the underlying runtime
model (MP, UP or SP). An interesting point to note is that a serial
program whose data is distributed over partitioned global address
spacemimics a distributed systempartly—where accessing remote
data is more expensive than accessing the local data.

In summary, we provide a set of 35 (12 in X10-FA, 11 in
X10-FAC, and 12 serial) iterative kernels and 13 (5 in X10-FA, 3
in X10-FAC, and 5 serial) recursive kernels; 48 kernels in total.

Considering the growing popularity of HJ, we have also im-
plemented these 48 kernels in HJ-FA and HJ-FAP subsets of HJ
(similar to the variations provided by X10-FA and X10-FAC). Ow-
ing to the current limitations of the HJ runtime, these kernels can
only be simulated at a single place. Thus, we can only realize the
SP runtime model here.

Considering the possibility that in practice these core al-
gorithms may do some more computation in addition to that
specified by the algorithm, all our kernel benchmarks take an
additional option to introduce a user specified workload in each
asynchronous task. Currently, we present a naive workload func-
tion that injects a series of arithmetic computations (quantity spec-
ified by the user at runtime) to each asynchronous task in the
kernel. We can foresee a workload function with additional char-
acteristics, such as one that pollutes the L1/L2 cache, or one that
introduces additional packets in the network and so on. The design
of such sophisticated workload functions is left as future work.

5.1. Input generator

The input to all the IMSuite kernels is an abstraction of a dis-
tributed system consisting of the details about its configuration
(for example, nodes, edges, weights and so on). IMSuite comes
with a set of input generators that generate inputs specific to each
kernel benchmark. Depending on the core algorithm under con-
sideration each input generator admits a set of options that can be
used to tune the generated input. Some of the common options are
the number of nodes in the distributed graph (referred as the size
of the input), the type of the graph (complete, sparse and so on),
weights of the edges and so on. Our input generators use a random
number generator to generate the details (such as weights, adja-
cency information, unique identifiers of the nodes, and so on) of
the distributed graph. Tomake the input generation process deter-
ministic, our input generators optionally take a seed (default value
set to the prime number2 101). The users of IMSuite are required
to specify the seed used to generate their input; this can help users
to communicate their findings in a more meaningful manner. Each
input generator is serial in nature and is written in Java.

The different types of graphs generated by our input generators
depend on the target algorithm: ring for LCR and HS, tree for
VC, and any arbitrary graphs for others. Considering the typical
configurations of trees and arbitrary graphs, our input generators
admit additional options (described below).

Trees: We allow three topologies for trees based on the typical
usages: Star, Chain and Random. The last one takes an additional
input that specifies the maximum degree for any node. The choice
of Star and Chain as two predefined topologies stems from the
behavior of the VC algorithm. For a fixed input size, VC takes the
maximum time for a Star topology and minimum for a Chain.

Arbitrary graphs: Our input generators can generate three types
of arbitrary graphs: (i) complete graphs (to help realize fully
connected networks), (ii) sparse graphs (most prevalent form of
graphs in practice, for example, web graph, internet topology
graph, social network, cloud network and so on) and (iii) random
graphs, where the edges are chosen at random.3 The limiting cases
of the sparse graphs (with edges n − 1 and n log n, where n is
the number of nodes) are present as two special options named
SP-Min and SP-Max. To enable the comparison between these two
limiting cases, our input generator ensures that the edge set of SP-
Max variation is a superset of the edge set of SP-Min.

5.2. Output validators

Each kernel also consists of an output validator to validate its
output. The output validator assumes that it has access to the
complete input and output and may reuse some internal data
structures of the main program, for efficiency reasons. The output
validators are serial in nature and are not timed.

5.3. Conformance to the key requirements

We now discuss how the IMSuite kernels conform to the key
requirements specific to distributed systems (Req#1–#3). These

2 A set of interesting anecdotes about the number 101 can be found here:
http://primes.utm.edu/curios/page.php?short=101.
3 Szemerédi Regularity Lemma [39] indicates that properties of dense networks

can be studied using random graphs.

http://primes.utm.edu/curios/page.php?short%3D101


S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 7
(a) Iterative kernels.

(b) Recursive kernels.

Fig. 7. Static characteristics of IMSuite kernels.
kernels are derived from the algorithms that solve some of the core
problems discussed in Fig. 1—Req#1. The IMSuite kernels cover
the important aspects of distributed systems, such as communica-
tion (unicast: LCR, broadcast: BY andDR, multicast: rest all); timing
(synchronous:DP,HS, LCR and VC, asynchronous:DR and the recur-
sive kernels of BY, and partially synchronous: rest all); and failure:
the BY kernels admit ‘‘nodes’’ that may fail (faulty nodes)—Req#2.
Our kernels take as input an abstraction of a set of (partially) in-
dependent nodes and their interconnect. By varying the input type
we can realize varied interconnects—Req#3.

6. Evaluation

We present the characterization of IMSuite on an IBM clus-
ter consisting of four hardware nodes.4 Each hardware node of the
cluster has two Intel E5-2670 2.6 GHz processors, each processor
has eight cores and each core canmake use of (up to) two hardware
threads. Thus, we can have up to 128 dedicated hardware threads
for our simulations. Each core has its own local L1 cache that is
shared by the two hardware threads. The two hardware nodes are
connected by an FDR10 Infiniband interconnect. Our chosen hard-
ware configuration helps us study the impact ofmultiple hardware
threads, multiple cores, multiple processors, and multiple hard-
ware nodes, while simulating different distributed kernels. For our
simulationswe use x10-2.3.0-linux x86 version of X10, jdk1.7.0_09
version of Java and hj-1.3.1 version of HJ.

For evaluating the X10-FA and X10-FAC kernels, we use the
X10 compiler targeting the Java backend (a.k.a. the Managed X10)
and the runtime uses sockets for supporting inter-hardware-node
communication. X10 provides multiple implementations of the
scheduler for the asynchronous tasks, such as work stealing and
fork-join scheduler (default). Similarly, HJ also allows the use of

4 To avoid the confusion between the hardware nodes and the abstraction of
nodes in the input, we explicitly qualify the nodes in the hardware as ‘‘hardware
nodes’’. We use the generic term ‘‘nodes’’ to denote the input nodes.
multiple scheduling algorithms, such as work-sharing blocking
(default), work-sharing cooperative, workstealing help-first, work-
stealing work-first, and work-stealing adaptive. For the purpose of
this evaluation, we limit ourselves to the default options.

Our characterization involves, among other things, analyzing
the behavior of the IMSuite kernels with varying number of
available hardware threads (HWTs). Our hardware configuration
directs thewaywe increase theHWTs for our experiments: 1/2/4/8
HWTs correspond to one/two/four/eight independent cores on
a processor; 16 HWTs correspond to all the cores present in a
hardware node; 32 HWTs correspond to all the cores in a hardware
node running two hardware threads each; 64 HWTs correspond
to 32 HWTs on each of the two hardware nodes; and 128 HWTs
correspond to 32 HWTs on each of the four hardware nodes.

We use the results of the insightful paper of George et al. [15]
and compute the average running time for our kernels after
executing each of them for 30 times. This helps in reducing the
noise in the results arising due to many non-deterministic factors
common in a Java based runtime (for example, thread scheduling,
garbage collection and so on).

Considering the fact that many real life network/distributed
systems are sparsely connected, we restrict our evaluation to
sparse networks. Specifically, we focus on the limiting cases of
sparse inputs: SP-Max and SP-Min. Similarly for VC, we use the two
corresponding limiting case inputs (Star and Chain). We believe
these limiting cases will give us a good understanding of how the
benchmarksmay behave for other intermediate inputs.We refer to
these limiting case inputs as Mx-In and Mn-In, respectively. How-
ever,HS and LCRwork on ring networks and entertain no such vari-
ations in the network configuration (that is, Mx-In = Mn-In).

6.1. Kernel characteristics

In this section, we discuss some of the static characteristics
of our kernels. Fig. 7(a) and (b) present these characteristics for
the iterative and recursive kernels, respectively. In these tables,
Mut is used as a generic name referring to mutex operations—
atomic construct in X10 and isolated construct in HJ. Similarly,



8 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
Bar is used as a generic name referring to barrier operations—
Clock.advanceAll() construct in X10 and next in HJ. We use
Fin to abbreviate the finish operations.

It can be seen that all the kernels in IMSuite are relatively
small in size; their sizes vary approximately between 200 and 900
lines. Further, the number of static finish, mutex and barrier
statements are quite small. However, their dynamic counts vary
depending on the number of actual input. Interested reader can
refer to Appendix for a discussion on the dynamic characteristics
of IMSuite kernels.

6.2. Performance analysis

In this section we study the effect of three key parameters
on the behavior of IMSuite kernels. These key parameters are:
(a) number of available hardware threads (HWTs), (b) input size
(denoting the number of nodes), and (c) number of node clusters.5
Variations in the number of node clusters are achieved by varying
thenumber of runtimeplaces in theX10-FA andX10-FAC kernels.
We study the effect of these parameters both in isolation (by
varying only one parameter and fixing the rest) and in conjunction
with each other (by varying two or three parameters at a time
and fixing the rest). Varying multiple parameters at the same time
may lead to an overly large number of experimental points. We
handle this situation by varying these parameters in ‘‘sync’’ (all
the varying parameters get the same value, for a given evaluation
point). For fixing the first two key parameters we use the following
(arbitrary) policy: when the key parameter ‘‘input size’’ is fixed, we
set it to 64 nodes; when the key parameter ‘‘HWTs’’ is fixed, we set
it to 8. However, for fixing the third key parameter (‘‘number of
node clusters’’), we either set it to 1 (to evaluate the HJ-FA and
HJ-FAP kernels), or fix it in sync with the other key parameters.
For the purpose of this study, we set the input type to Mx-In. Later
(Section 6.2.8), we also analyze the effect of input type (Mx-In and
Mn-In) on the behavior of the IMSuite kernels.

Limits for the key parameters of our study: We vary the input size
between 8 and 512 nodes. This range of inputs allows us to model
mini (8–32), small (64–128) andmedium (256–512) scale clusters.
The execution times were too insignificant for inputs smaller than
8 nodes and it took too long (of the order of several days) to execute
programs with inputs larger than 512 nodes. Our choice of input
sizes conform to sizes of distributed systems used in recent times.
For example, Jabeen et al. [21] utilize 25–120 nodes for small setup
and166–400nodes for a larger setup. SimilarlyGui et al. [17] varied
the number of nodes in the range of 20–120.

We vary the number of HWTs between 1 and 128 (limited by
the experimental systemat hand)whenusing theX10 runtime. The
absence of a distributed HJ runtime limits the maximum number
of HWTs, for running our HJ based kernels, to 32 on our hardware.
We vary the number of clusters between 1 and 128.

6.2.1. Effect of varying the number of HWTs (input size and number
of clusters fixed)

Fig. 8(a) and (b) present the execution time (speedup) statistics
of the X10-FA and X10-FAC kernels, for varying number of
hardware threads in multiples of two. For all these runs we set
the input variation to Mx-In and input size to 64 nodes, which in
turn fixes the maximum of HWTs to 64. We have also studied the
behavior of these kernels for the Mn-In input variation and have
found it to be similar. We plot the execution time of the kernels
with respect to that of the serial implementation in the UPmodel.

5 We assume that the nodes are distributed equally among all the clusters.
These plots show that the overall performance for all the kernels
improveswith increase in thenumber of availableHWTs.However,
for any specific kernel the quantum of improvement varies with
the chosen input and the number of available HWTs and their
configuration.

The performance improvement is more or less linear when we
increase the number of hardware cores from1 to 8 (intra-processor
communication only)—this improvement is because of the in-
creased sharing of workload among the HWTs. On moving to 16
HWTs there is a slight dip in performance improvement (compared
to 8 HWTs), owing to the inter-processor communication that
comes into picture. The performance improvement on 32 HWTs,
compared to 16 HWTs is much less. In case of 32 HWTs, while it
doubles the sharing of workload by HWTs, it does not double other
resources (for example, L1 cache). As a result it incurs additional
overheads due to increased conflicts in accessing shared resources
such as cache, interconnect, and so on. This behavior is quite
pronounced in HS where it leads to a slight dip in performance
(compared to 16 HWTs). On going from 32 to 64 HWTs, the perfor-
mance improvement depends on a host of factors—increased com-
munication cost (inter-hardware-node communication is more
expensive than intra-node), decreased scheduling overheads (each
place runs on a unique HWT), decreased resource conflicts. De-
pending on the specific kernel the effect varies. For example, in
Fig. 8(b), HS shows 13% improvement and BF shows 96% improve-
ment.

An interesting point to note is that in general for fewer hard-
ware threads (1, 2, 4), the serial versions in the UPmodel run faster
than the X10-FA and X10-FAC versions. This is due to the addi-
tional task creation, scheduling and termination overheads present
in these kernels. Aswe increase thenumber of hardware threads (8,
16, 32, 64), the task scheduling overheads decrease, and the effect
of increased workload sharing starts dominating the above men-
tioned overheads.

As discussed in Section 5, our kernels admit an additional option
to introduce a user specified workload in each asynchronous task.
We found that such an option is especially useful when our HJ
based kernels are simulated (on SP model), where the time taken
to execute these kernels is too small (of the order few tens of
milliseconds) to reason about the behavior of these benchmarks;
we tested the benchmarks for input size of 64 nodes. To overcome
this issue, we set a moderate workload of 10 million instructions;
Fig. 8(c) shows a sample plot depicting the behavior the HJ-FA
kernels, for increasing HWTs, for the Mx-In input. For brevity, we
omit the plots of the HJ-FAP kernels as we found their behavior to
be similar. Compared to the X10 based kernels, these HJ kernels
admit increased computational workload. This leads to a minor
variation in their behavior compared to that of the plots shown in
Fig. 8(a). For example, Fig. 8(a) shows a slight dip in performance
in HS when we increase the HWTs from 16 to 32; such a dip is not
visible in Fig. 8(c).

Recursive kernels: Fig. 9(a) and (b) depict the runtime charac-
teristics of recursive X10-FA and X10-FAC kernels, respectively,
with varying number of HWTs. It can be seen that the behavior dis-
played by these kernels is similar to their iterative counterparts.
Similarly Fig. 10(a) and (b) depict the runtime characteristics of our
recursive HJ-FA and HJ-FAP kernels, respectively with varying
number of HWTs. Similar to their iterative counterparts, we use a
workload of 10 million instructions for these recursive HJ kernels.
It can be seen that performance for MST falls when the number of
HWTs is 32 as compared to 16 HWTs. This is due to the relatively
low value of workload in MST, which did not offset the increased
contention among HWTs (compared to the case where the number
of HWTs is set to 16) for the shared resources.

For brevity, in the rest of the section, we restrict ourselves
to a subset of our benchmark kernels. We focus on the iterative
HJ-FA and HJ-FAP kernels when the number of clusters is set to



S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 9
(a) X10-FA plots; input size = 64 nodes, # clusters = 64.

(b) X10-FAC plots; input size = 64 nodes, # clusters = 64.

(c) HJ-FA plot; input size = 64 nodes, # clusters = 1, workload = 10 million instructions.

Fig. 8. Effect of varying HWTs on X10-FA, X10-FAC, and HJ-FA kernels.



10 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
(a) Recursive X10-FA plot. (b) Recursive X10-FAC plot.

Fig. 9. Plots for recursive kernels, for varying # HWTs; input size = 64 nodes, # clusters = 64.
(a) Recursive HJ-FA plot. (b) Recursive HJ-FAP plot.

Fig. 10. Plots for recursive kernels, for varying # HWTs; input size = 64 nodes, # clusters = 64.
1 (Section 6.2.4) and on the iterativeX10-FA andX10-FAC kernels
otherwise.

6.2.2. Effect of varying the input size (number of HWTs and number
of clusters fixed)

We vary the input size from 8 to 512 nodes, in multiples of two.
For our simulations we set both the number of clusters and HWTs
to eight. We choose eight HWTs for this study, as the communica-
tion between this set of HWTs does not involve any inter-processor
or inter-hardware-node communication. For this study, the num-
ber of clusters could have been fixed at any one of 1, 2, 4, or 8 (if
the number of clusters is more than eight then, for smaller inputs,
some clusters may not contain any nodes). We broke the tie and
set the number of clusters to 8; this leads to an interesting config-
uration where each cluster of nodes is simulated on a unique HWT
and all the nodes in a cluster are simulated on a single HWT. We
study the effect of varying the number of clusters in Section 6.2.3
and the combined effect of varying input size and number of clus-
ters in Section 6.2.5.

Fig. 11 presents the behavior of X10-FA and X10-FAC kernels
when run on the above-discussed configurations. It is evident from
the plots that as the input size increases, the execution time for
the kernels also increases. This behavior can be attributed to large
inputs that lead to larger graphs (hence higher memory require-
ment), increased phases/rounds and communication. This effect is
especially pronounced for BY, where the algorithm requires a large
number of rounds to execute and in each round every node has to
communicate with all the other nodes.

6.2.3. Effect of varying the number of clusters (input size and number
of HWTs fixed)

We fix the HWTs to 8 (for the reasons mentioned above), and
input size to 64 nodes. To study the effect of the clustering of nodes
on the IMSuite kernels, we vary the number of runtime places
from 1 to 64 (the upper limit is bound by the input size). Fig. 12
presents the behavior of X10-FA and X10-FAC kernels when run
on the above-discussed configurations.

We note that (for the most part) as the number of places in-
creases there is a proportional increase in the execution time of the
benchmark kernels; this is owing to the increased communication
cost between the tasks running on different places. Note that BY
and DR in Fig. 12(a) and VC, MST, LCR, KC, BY and DST in Fig. 12(b)
show a slight improvement in performance when the number of
places is increased from 1 to 2. Based on our discussions with X10
developers, we conjecture that such curious behavior could be at-
tested to gains resulting froma combination of inter-related factors
concerning the distribution of tasks, such as change in cache ac-
cess patterns and decreased contention in accessing the job queues
(more places ⇒ more number of job queues for a given set of jobs
⇒ less contention for job selection). Whenwe further increase the



S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 11
(a) X10-FA.

(b) X10-FAC.

Fig. 11. X10-FA and X10-FAC plots for varying input size; # HWTs = # clusters = 8. The execution times are normalized with respect to the execution time when the
input size is set to 8.
number of places the increased inter-place communication cost
overshadows any such gains.

6.2.4. Effect of varying the input size and number of HWTs (number
of clusters fixed)

We fix the number of clusters (places) to 1, to avoid the costs in-
curred due to inter-place communication. This setting also enables
us to demonstrate the behavior of our HJ based kernels (HJ-FA
and HJ-FAP); Fig. 13 shows the runtime characteristics of these
kernels. Considering the lower/upper limits on the input size and
HWTs, we vary these key parameters between 8 and 32, in sync.
That is, when the input size is set to k, the number of HWTs is also
set to k; we represent this configuration as Uk.

Note: one may naively assume that increasing the input size
(say from 16 nodes to 32 nodes) will not lead to an increase in
the execution time provided there is a proportional increase in
the number of HWTs (say from 16 to 32). The behavior of our
kernels shows that such a hypothesis does not hold. The execution
time for all the kernel programs increases as we gradually move
from U8 to U32. This is because of the increased computation
and communication at each node, owing to the increased input.
The exact quantum of increase depends on the working of the
particular algorithm (amount of communication, computation and
so on).

6.2.5. Effect of varying the input size and number of clusters (number
of HWTs fixed)

Fig. 14 displays the characteristics of X10-FA and X10-FAC
kernels when the number of HWTs is set to 8 and the input size
and number of clusters are varied from 8 to 128 (in multiples of
two) in sync.6 That is, when the input size is set to k, the number
of clusters is also set to k; we represent this configuration as Vk.

Note that for higher configurations (such as V64 and V128) the
execution times are significantly more than the lower ones (such
as V8 andV16). This is because of three factors: (a) increase in input
size leads to increased amount of work, (b) increase in number of

6 While simulating the kernels for #clusters > 64, the X10 runtime often
threw an error (ERRNO 104—connection reset by peer). To overcome this issue
we performed all the runs (in plots that include larger clusters) by setting the
environment variable X10_LAZYLINKS to true.



12 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
(a) X10-FA.

(b) X10-FAC.

Fig. 12. X10-FA and X10-FAC plots for varying # clusters; input size = 64, # HWTs = 8. The execution times are normalized with respect to the time taken when the #
clusters is set to 1.
nodes leads to increase in overheads due to conflicts in accessing
shared resources (such as hardware threads,memory and so on) by
the tasks created, (c) increased number of clusters (places) leads to
increased (inter-place) communication cost.

6.2.6. Effect of varying the number of clusters and number of HWTs
(input size fixed)

This analysis helps us understand how the clustering and in-
creased hardware threads affect the benchmarks. These character-
istics have already been studied in Sections 6.2.1, 6.2.3 and 6.2.4.
We avoid further analysis of the same, for brevity.

6.2.7. Effect of varying the input size, number of clusters and number
of HWTs

Fig. 15 shows the effect of varying all the three key parameters
in sync: for running a kernel for input consisting of k nodes,
we consider each node to be present in a unique cluster (thus,
leading to k clusters), and the created tasks are run on k HWTs;
we represent this runtime configuration as Wk.
In addition to the cost factors discussed in Section 6.2.4, we now
incur an additional cost (resulting from inter-hardware-node com-
munication) when we go from 32 → 64 → 128 HWTs. These cost
factors explain the increase in program execution time as we go
from W8 → W16 → W32 and a sharper increase as we go from
W32 → W64 → W128. The exact quantum of increase depends
on the working of the particular algorithm (amount of communi-
cation, computation and so on).

6.2.8. Effect of varying the input type
For the X10-FA and HJ-FA kernels, Fig. 16 plots the ratio of the

execution time of these kernels for the input types Mx-In and Mn-
In. We set the input size to 64 nodes and set the number of HWTs
to 32 (themax number of HWTs that can be used by the HJ runtime
on our hardware). The number of clusters (runtime places) is set to
64 for X10-FA kernels and 1 for the HJ-FA kernels.

It can be seen that besides the time taken for performing the
underlying computation, the execution time of a benchmark is
also dependent on (i) the number of task creation and termination



S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 13
(a) HJ-FA.

(b) HJ-FAP.

Fig. 13. HJ-FA and HJ-FAP plots for varying runtime configuration Un; n = # HWTs = input size; # clusters = 1. The execution time numbers are normalized with
respect to that of U8.
operations, and (ii) the amount and cost of communication and
mutex operations. For example, as shown in Fig. 7(a), in the BY
kernel, the numbers of dynamic finish and async operations
for Mn-In input (longer diameter D) are more than that of Mx-
In (shorter diameter D); this increases the execution time for the
HJ-FA version. However, in the context of X10-FA, the cost of
decreased finish and async operations (in Mx-In) gets shad-
owed by the increased cost of communication, which is signifi-
cantly higher than Mn-In; this leads to a reversal of behavior.

7. Scope of the benchmarks

We now briefly discuss the scope of the IMSuite kernels. We
organize our discussion under four heads.
1. Compiler optimizations and programanalysis: An optimizing

compiler can use the IMSuite kernels to estimate its effective-
ness in optimizing distributed applications (involving remote
communication, barriers, load balancing and so on). The met-
rics advocated by the IMSuite kernels (such as number of task
creation, join, mutex, barrier operations) and our kernel behav-
ior evaluation schemes (distribution of communication; behav-
ior with increase in the number of hardware threads, number
of clusters and input size) can give meaningful insights for de-
signing new optimizations. Further, the compiler writers can
use these metrics and evaluation schemes to evaluate the over-
all effectiveness of their proposed optimizations. Developers of
new parallel and distributed program analysis techniques can
use the IMSuite kernels as the basis to test the effectiveness
(scalability, precision and so on) of their proposed schemes.

2. Runtime: Developers of hypervisors, virtual machines and
othermanaged runtimes can use the IMSuite to study and op-
timize the remote communications between different applica-
tions.

3. Simulators: Architecture and network simulators can use the
communication trace generated by the IMSuite kernels, for
varied inputs, to reason about the network traffic in the context
of varied distributed systems.

4. Study of distributed systems: Though our analysis is shown in
the context of a tightly coupled system, the IMSuite kernels
can be run on both tightly and loosely coupled systems. This
enables us to reason about different important aspects of dis-
tributed systems, even in the absence of expensive distributed
hardware.



14 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
(a) X10-FA.

(b) X10-FAC.

Fig. 14. X10-FA and X10-FAC plots for varying runtime configuration Vn; n = # clusters = input size, # HWTs = 8. The execution time numbers are normalized with
respect to that of V8.
8. Conclusion

In this paper, we first identify a set of key requirements nec-
essary for a kernel benchmark suite implementing distributed al-
gorithms. We then present and characterize a new kernel bench-
mark suite (named IMSuite) that simulates twelve classical
distributed algorithms (for varying input and runtime configu-
rations) and meets all the key requirements. Currently, the ker-
nels in IMSuite are available in two task parallel languages:
X10 and HJ. Considering the different popular parallel program-
ming styles, we present multiple variations of our kernels—31
parallel programs per language. To conveniently simulate varied
configurations of distributed systems, we present an input genera-
tor and an output validator for each algorithmunder consideration.
IMSuite can be freely downloaded from http://www.cse.iitm.ac.
in/∼krishna/imsuite.
Future work: (A) We plan to expand the set of IMSuite kernels
to cover more problem areas and algorithms in the domain of
distributed computing. We also plan to expand IMSuite to cover
other modern parallel and distributed languages, such as MPI,
Chapel, Cilk, OpenMP, and COF. To help us in this direction, in near
future, we plan to devise mechanisms to help the wider audience
to contribute to IMSuite. (B) Thoroughly analyzing the behavior of
IMSuite kernels by varying the backend (for example, Managed
X10 vs. Native X10) and by varying the runtime scheduler (for
example, Work-stealing vs. Work-sharing vs. Fork-Join) is another
involved (yet, interesting) task left as future work.

Acknowledgments

We thank the anonymous reviewers for their insightful com-
ments and suggestions on an earlier version of this paper. We
thank T V Kalyan, Tripti Warrier and John Jose for their com-
ments on an earlier version of this paper. We acknowledge Pri-
tam Majumder for the help in plotting the graphs and Aman
Nougrahiya for the help in designing the Input Generators. We
thank John Augustine and V. Kamakoti for the insightful discus-
sions pertaining to popular distributed algorithms. We acknowl-
edge the Virgo Supercomputing Cluster for the computing re-
sources. We thank the X10 developers community, especially Igor
Peshanksy and Vijay Saraswat, for their help in analyzing some of
the obtained results (chiefly for the results in Section 6.2.3). This

http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite
http://www.cse.iitm.ac.in/~krishna/imsuite


S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 15
(a) X10-FA.

(b) X10-FAC.

Fig. 15. X10-FA and X10-FAC plots for varying runtime configuration Wn; n = # HWTs = # clusters = input size. The execution time numbers are normalized with
respect to W8.
Fig. 16. Mx-In vs. Mn-In for X10-FA and HJ-FA; input size = 64, # HWTs = 32; # clusters = 1 (HJ-FA) and # clusters = 64 (X10-FA).



16 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
Fig. A.17. Dynamic characteristics of IMSuite Iterative kernels; D represents the diameter, n represents the number of nodes, ∆ represents the maximum degree, and K
represents the required maximum committee size.
Fig. A.18. X10-FA & X10-FAC dynamic communication and mutex operations;
input size = 64 nodes.

research is partially supported by the New Faculty Seed Grant,
funded by IIT Madras CSE/11-12/567/NFSC/NANV, DAE research
grant CSE/13-14/139/BRNS/NANV and DST Fasttrack grant CSE/13-
14/140/DSTX/NANV.

Appendix. Dynamic characteristics of IMSuite kernels

We discuss the dynamic characteristics of the iterative and
recursive kernels separately. The terminology used (Mut, Bar, and
Fin) is similar to that described in Section 6. We use the following
additional abbreviation: #Comm represents the number of remote
communications (excluding the barrier operations).

A.1. Iterative kernels

We present some of the dynamic characteristics of IMSuite
iterative kernels in Fig. A.17. The number of dynamic finish and
barrier statements vary as a function of the actual input. While the
number of static async statements matches the number of static
finish statements (as shown in Fig. 7(a)), the number of dynamic
asyncs is n times the number of dynamic finish statements.
Unlike the counts of the dynamic finish statements, the counts
of the dynamic mutex and remote communications may depend
on the structure of the input graph. Hence for these operations,
we present the runtime characteristics (of programs written in
X10-FA and X10-FAC) by comparing them for two specific inputs
(Mx-In with 64 nodes and Mn-In with 64 nodes, both run on 64
runtime places), in Fig. A.18.

We avoid presenting the numbers for HJ-FA and HJ-FAP
separately as the number of mutex operations match exactly
that of X10-FA and X10-FAC, respectively, and since HJ-FA and
HJ-FAP kernels run in the context of SPmodel they do not involve
any remote communication.

Note that for a given input, the number of static (and dynamic)
mutex operations is same for both X10-FA and X10-FAC kernels.
This is because these two mainly differ in the synchronization
primitives they use (see Section 5). For the same reason, the
X10-FAC kernels have fewer number of static and dynamic
finish (and async) operations compared to the X10-FA kernels.

A.1.1. Analysis of dynamic mutex operations and communication
As shown in Fig. A.18, the number of mutex operations for

Mx-In is consistently higher than that of Mn-In, except in case of
MST. The MST kernel has an interesting property that the number
of mutex operations is guaranteed not to grow as we introduce
some additional edges and corresponding unique weights. Thus
the number of dynamic mutex operations for the Mx-In is not
higher than that for Mn-In. The kernels DR, HS, LCR, and VC have
no mutex operations and it is reflected in A.18.

An interesting point about MIS is that the amount of dynamic
communication is less than the number of mutex operations. This
is because in MIS, majority of remote communication operations
involve mutex operation, but the other way round is not true.

Note that, except for DST and DR kernels, rest all the kernels
have higher amount of communication forMx-In compared toMn-
In. One characteristic difference between Mx-In and Mn-In is that
the latter increases the diameter of the graph and hence impacts
the algorithms where an increase in diameter causes an increase
in rounds. For DST and DR as the number of rounds increases,
the number of messages (amount of remote communication) also
increases.

A.1.2. Communication distribution
Fig. A.19 shows the amount of remote communication occur-

ring in each round, for the X10-FAC kernels7; for the sake of
illustrationwe set the input size to 64nodes andpresent the results
for two types of inputs: Mx-In andMn-In. For LCR and HS we show
only one curve as in the context of ring network Mx-In = Mn-In.

The behavior of BY, KC and MST for Mx-In and Mn-In is
quite similar. Note that in BY for a specific input the amount of
communication in each round is equal, but the communication per
round inMn-In is less thanMx-In. In case of BF, DST, DR, DS and DP,
compared to Mn-In, the algorithm terminates in fewer rounds in
case of Mx-In. HoweverMIS and VC exhibit a contrasting behavior.

7 Considering the case that we do not have a separate X10-FAC version for DR,
we use the plot of the corresponding X10-FA version here.



S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 17
(a) BF. (b) DST. (c) BY.

(d) DR. (e) DS. (f) KC.

(g) DP. (h) HS. (i) LCR.

(j) MIS. (k) MST. (l) VC.

Fig. A.19. X10-FAC plots for dynamic communication per round; input size = 64 nodes, # clusters = 64.
In MIS, compared to Mn-In where each node has fewer neighbors
than Mx-In, in each round fewer nodes are added to the maximal-
independent-set in case of Mx-In; thus increasing the number of
rounds. In VC, as compared to Mn-In where the algorithm requires
exactly one round to make the graph six colored, in Mx-In the
number of rounds (≥1) depends on the input. The shift-down
operation (Section 3) on the other hand always takes three rounds
to finish (irrespective of the input). For lack of space, we omit the
communication distribution plots for the X10-FA and recursive
kernels.

A.2. Recursive kernels

For our recursive kernels, Fig. A.20(a) and (b) present the run-
time characteristics, for inputsMn-In andMx-In. For themost part,
the comparative behavior (between Mn-In and Mx-In) displayed
by these recursive kernels is similar to their iterative counterparts.
A fewpoints of interest: (i) the recursive BY kernel hasmoremutex
operations than communication. This is because in the recursive
kernel, majority of remote communication operations involvemu-
tex operation, but the other way round is not true. (ii) in case of re-
cursive DST kernel, the reduction in the amount of communication
between the X10-FA and X10-FAC versions is directly impacted
by the number of remote task creation operations present in the
program: X10-FAC has comparatively fewer remote task creation
operations than X10-FA. (iii) in case of MST the number of mutex
operations (in X10-FA and X10-FAC) and barriers (in X10-FAC)
are equal for both Mx-In and Mn-In inputs, as they are indepen-
dent of the structure and type of input. However, the number of
async and finish operations depends on the exact structure of the
graph and the edge weights; thus making it hard to correlate the
numbers for these two operations with the input types.



18 S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19
(a) X10-FA recursive kernel characteristics; input size = 64 nodes.

(b) X10-FAC recursive kernel characteristics; input size = 64 nodes.

Fig. A.20. Recursive kernels—runtime characteristics.
References

[1] R.J. Allison, S.P. Goodwin, R.J. Parker, S.F. Portegies Zwart, R. de Grijs, M.B.N.
Kouwenhoven, Using the minimum spanning tree to trace mass segregation,
Mon. Not. R. Astron. Soc. 395 (2009) 1449–1454.

[2] S. Aronis, N. Papaspyrou, K. Roukounaki, K. Sagonas, Y. Tsiouris, I.E. Venetis,
A scalability benchmark suite for Erlang/OTP, in: Proceedings of the ACM
SIGPLANWorkshop on Erlang, ACM, New York, NY, USA, 2012, pp. 33–42.

[3] V. Aslot, M.J. Domeika, R. Eigenmann, G. Gaertner, W.B. Jones, B. Parady,
SPEComp: a new benchmark suite for measuring parallel computer
performance, in: Proceedings of the International Workshop on OpenMP
Applications and Tools: OpenMP Shared Memory Parallel Programming,
Springer-Verlag, London, UK, 2001, pp. 1–10.

[4] D.H. Bailey, E. Barszcz, J.T. Barton, D.S. Browning, R.L. Carter, L. Dagum,
R.A. Fatoohi, P.O. Frederickson, T.A. Lasinski, R.S. Schreiber, H.D. Simon, V.
Venkatakrishnan, S.K. Weeratunga, The NAS parallel benchmarks-summary
and preliminary results, in: Proceedings of the 1991 ACM/IEEE Conference on
Supercomputing, SC’91, ACM, New York, NY, USA, 1991, pp. 158–165.

[5] C. Bienia, S. Kumar, J.P. Singh, K. Li, The PARSEC benchmark suite: charac-
terization and architectural implications, in: Proceedings of the International
Conference on Parallel Architectures and Compilation Techniques, ACM, New
York, NY, USA, 2008, pp. 72–81.

[6] J.M. Bull, J. Enright, X. Guo, C. Maynard, F. Reid, Performance evaluation of
mixed-modeOpenMP/MPI implementations, Int. J. Parallel Program. 38 (2010)
396–417.

[7] J.M. Bull, F. Reid, N. McDonnell, A microbenchmark suite for OpenMP
tasks, in: Proceedings of the 8th International Conference on OpenMP in a
HeterogeneousWorld, Springer-Verlag, Berlin, Heidelberg, 2012, pp. 271–274.

[8] V. Cavé, J. Zhao, J. Shirako, V. Sarkar, Habanero-Java: the new adventures of old
X10, in: Proceedings of the International Conference on Principles and Practice
of Programming in Java, ACM, New York, NY, USA, 2011, pp. 51–61.

[9] P. Costa, M. Pasin, A.N. Bessani, M. Correia, Byzantine fault-tolerant
MapReduce: faults are not just crashes, in: Proceedings of the 2011 IEEE
Third International Conference on Cloud Computing Technology and Science,
CLOUDCOM’11, IEEE Computer Society, 2011, pp. 32–39.

[10] C. Daly, J. Horgan, J. Power, J. Waldron, Platform independent dynamic
Java virtual machine analysis: the Java grande forum benchmark suite,
in: Proceedings of the Joint ACM-ISCOPE Conference on Java Grande, ACM,
New York, NY, USA, 2001, pp. 106–115.

[11] M. Dayarathna, C. Houngkaew, T. Suzumura, Introducing ScaleGraph: an X10
library for billion scale graph analytics, in: Proceedings of the 2012 ACM
SIGPLAN X10 Workshop, ACM, New York, NY, USA, 2012, pp. 6:1–6:9.

[12] M. Dayarathna, T. Suzumura, XGDBench: a benchmarking platform for
graph stores in exascale clouds, in: Proceedings of the 2012 IEEE 4th
International Conference on Cloud Computing Technology and Science
(CloudCom), CLOUDCOM’12, IEEE Computer Society, Washington, DC, USA,
2012, pp. 363–370.

[13] R.V. Der Wijngaart, M.A. Frumkin, NAS grid benchmarks version 1.0, NASA
Technical Report NAS-02-005, NASA Ames Research Center, Morfett Field, CA,
USA, 2002.
[14] A. Duran, X. Teruel, R. Ferrer, X. Martorell, E. Ayguade, Barcelona OpenMP
tasks suite: a set of benchmarks targeting the exploitation of task parallelism
in OpenMP, in: Proceedings of the International Conference on Parallel
Processing, IEEE Computer Society, Washington, DC, USA, 2009, pp. 124–131.

[15] A. Georges, D. Buytaert, L. Eeckhout, Statistically rigorous Java performance
evaluation, in: Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming Systems Languages and Applications, ACM, New York,
NY, USA, 2007, pp. 57–76.

[16] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, PowerGraph: distributed
graph-parallel computation on natural graphs, in: Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation,
OSDI’12, USENIX Association, Berkeley, CA, USA, 2012, pp. 17–30.

[17] J. Gui, A. Liu, A new distributed topology control algorithm based on
optimization of delay and energy in wireless networks, J. Parallel Distrib.
Comput. 72 (8) (2012) 1032–1044.

[18] Habanero multicore software research project web page.
https://wiki.rice.edu/confluence/display/HABANERO/HJ.

[19] D. Hasenkamp, A. Sim, M. Wehner, K. Wu, Finding tropical cyclones on a
cloud computing cluster: using parallel virtualization for large-scale climate
simulation analysis, in: Proceedings of the 2010 IEEE Second International
Conference on Cloud Computing Technology and Science, CLOUDCOM’10, IEEE
Computer Society, 2010, pp. 201–208.

[20] IntelMPI benchmarks: user guide andmethodologydescription, October 2012.
[21] F. Jabeen, A.A.A. Fernandes, An algorithmic strategy for in-network distributed

spatial analysis inwireless sensor networks, J. Parallel Distrib. Comput. 72 (12)
(2012) 1628–1653.

[22] U. Kang, C.E. Tsourakakis, C. Faloutsos, PEGASUS: a peta-scale graph mining
system implementation and observations, in: Proceedings of the 2009 Ninth
IEEE International Conference on Data Mining, ICDM’09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 229–238.

[23] T. Kono, T. Fushiki, K. Asada, K. Nakano, Fuel consumption analysis and
prediction model for ‘‘eco’’ route search, in: Proceedings of the 15th World
Congress on Intelligent Transport Systems and ITS America’s 2008 Annual
Meeting, CLOUDCOM’11, 2008.

[24] F. Kuhn, R. Oshman, Dynamic networks: models and algorithms, SIGACT News
42 (1) (2011) 82–96.

[25] A. Lugowski, A. Alber, A. Buluç, J.R. Gilbert, S. Reinhardt, Y. Teng, A. Waranis, A
flexible open-source toolbox for scalable complex graph analysis, 2012.

[26] P.R. Luszczek, D.H. Bailey, J.J. Dongarra, J. Kepner, R.F. Lucas, R. Rabenseifner, D.
Takahashi, The HPC challenge (HPCC) benchmark suite, in: Proceedings of the
ACM/IEEE Conference on Supercomputing, ACM, New York, NY, USA, 2006.

[27] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers Inc., 1996.
[28] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G.

Czajkowski, Pregel: a system for large-scale graph processing, in: Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data,
SIGMOD’10, ACM, New York, NY, USA, 2010, pp. 135–146.

[29] T. Milenković, V. Memišević, A. Bonato, N. Pržulj, Dominating biological
networks, PLoS One 6 (8) (2011) e23016.

http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref1
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref2
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref3
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref4
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref5
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref6
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref7
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref8
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref9
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref10
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref11
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref12
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref13
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref14
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref15
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref16
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref17
https://wiki.rice.edu/confluence/display/HABANERO/HJ
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref19
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref21
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref22
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref24
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref26
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref27
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref28
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref29


S. Gupta, V. Krishna Nandivada / J. Parallel Distrib. Comput. 75 (2015) 1–19 19
[30] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University
Press, 1995.

[31] M.S.Müller,M. VanWaveren, R. Lieberman, B.Whitney, H. Saito, K. Kumaran, J.
Baron, W.C. Brantley, C. Parrott, T. Elken, H. Feng, C. Ponder, SPEC MPI2007-an
application benchmark suite for parallel systems usingMPI, Concurr. Comput.:
Pract. Exper. 22 (2010) 191–205.

[32] D. Peleg, Time-optimal leader election in general networks, J. Parallel Distrib.
Comput. 8 (1990) 96–99.

[33] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, Society for
Industrial and Applied Mathematics, 2000.

[34] V. Saraswat, B. Bard, P. Igor, O. Tardieu, D. Grove, X10 language specification
version 2.3, Tech. Rep., IBM, 2012.

[35] J. Shun, G.E. Blelloch, Ligra: a lightweight graph processing framework for
shared memory, SIGPLAN Not. 48 (8) (2013) 135–146.

[36] J. Shun, G.E. Blelloch, J.T. Fineman, P.B. Gibbons, A. Kyrola, H.V. Simhadri,
K. Tangwongsan, Brief announcement: the problem based benchmark suite,
in: Proceedinbgs of the 24th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA’12, ACM, New York, NY, USA, 2012, pp. 68–70.

[37] C. Siefert, E. Sturler, Probing methods for generalized saddle-point problems,
Electron. Trans. Numer. Anal. 22 (2006) 163–183.

[38] J.P. Singh, W. Weber, A. Gupta, SPLASH: Stanford parallel applications for
shared-memory, SIGARCH Comput. Archit. News 20 (1992) 5–44.

[39] E. Szèmeredi, Regular partitions of graphs, in: Problèmes Combinatoires et
Thèorie des Graphes, Colloq. Internat. CNRS, 1976, pp. 399–401.

[40] A.S. Tanenbaum, Computer Networks, Pearson Education, India, 1985.
[41] I. Wallach, R. Lilien, The protein-small-molecule database, a non-redundant

structural resource for the analysis of protein-ligand binding, Bioinformatics
25 (5) (2009) 615–620.

[42] R. Wattenhofer, Lecture Notes on Principles of Distributed Computing, Swiss
Federal Institute of Technology, Zurich, 2011.
[43] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, A. Gupta, The SPLASH-2 programs:
characterization and methodological considerations, SIGARCH Comput. Ar-
chit. News 23 (1995) 24–36.

[44] D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly
using de Bruijn graphs, Genome Res. 18 (2008) 821–829.

SuyashGupta is currently pursuingM.S. in the department
of Computer Science and Engineering at IIT Madras. He
holds a B.Tech degree from Amity School of Engineering
and Technology (affiliated to GGSIP University, New
Delhi). He is interested in Compiler Optimizations and
Multicore systems.

V. Krishna Nandivada is currently an Assistant Profes-
sor in the department of Computer Science and Engi-
neering at IIT Madras. He has been associated with IBM
India Research Lab, Sun Labs and Hewlett Packard for dif-
ferent periods of time. He holds a B.E. degree fromRegional
Engineering Colleges (now known as National Institute of
Technology) Rourkela, M.E. degree from Indian Institute
of Science, Bangalore, and a Ph.D. from University of Cali-
fornia, Los Angeles. His research interests are Compilers,
Program Analysis, Programming Languages, Fault Local-
ization, and Multicore systems.

http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref30
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref31
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref32
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref33
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref34
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref35
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref36
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref37
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref38
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref39
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref40
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref41
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref42
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref43
http://refhub.elsevier.com/S0743-7315(14)00203-2/sbref44

	IMSuite: A benchmark suite for simulating distributed algorithms
	Introduction
	Related work
	Background
	Core algorithms
	X10 and HJ background

	Transformation scheme
	Sample transformation

	Internals of IMSuite
	Input generator
	Output validators
	Conformance to the key requirements

	Evaluation
	Kernel characteristics
	Performance analysis
	Effect of varying the number of HWTs (input size and number of clusters fixed)
	Effect of varying the input size (number of HWTs and number of clusters fixed)
	Effect of varying the number of clusters (input size and number of HWTs fixed)
	Effect of varying the input size and number of HWTs (number of clusters fixed)
	Effect of varying the input size and number of clusters (number of HWTs fixed)
	Effect of varying the number of clusters and number of HWTs (input size fixed)
	Effect of varying the input size, number of clusters and number of HWTs
	Effect of varying the input type


	Scope of the benchmarks
	Conclusion
	Acknowledgments
	Dynamic characteristics of IMSuite kernels
	Iterative kernels
	Analysis of dynamic mutex operations and communication
	Communication distribution

	Recursive kernels

	References


