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Abstract
In the era of mult-core systems, one of the key requirements
of achieving better utilization of multiple available cores
is that of parallelization of code across multiple distributed
nodes; this involves (re)distribution of both data and compu-
tation. Such a transformation can be a fairly tedious activity
considering the possible dependencies (data, control) and in-
terference between different segments of the code. Further,
to keep the data accesses local, computation distribution re-
quires appropriate data distribution and vice versa. And this
inter-dependence between distribution of data and compu-
tation makes the problem challenging. Another important
challenge in this context is that the desired distribution may
not be one of the well-known distributions (such as blocked,
cyclic etc), and thus reasoning about it can be non-trivial. We
present a refactoring framework that can help an application
developer to incrementally distribute programs in the context
of distributed memory multi-core systems. Given a loop and
an array accessed therein, the goal of our framework is to
distribute the array based on a specified distribution for the
loop (or vice versa) such that the number of remote accessed
are reduced. Our framework goes beyond the well-known
distributions, and can handle any arbitrary distributions. In
our initial investigation, we have used our transformations
on varied parallel benchmark programs and have been able
to show its applicability along the expected lines.
Categories and Subject Descriptors:
D.3.2 [Language Classification] Concurrent, distributed,
and parallel languages D.1.3 [Concurrent Programming]
Distributed programming
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1. Introduction
Improving the utilization of the available multiple cores is
assuming an important role in the era of multi-core systems.
The impact can be observed in the context of both legacy and
new applications. While the development of new applica-
tions needs to take into consideration the multiple available
cores, the legacy applications have to be either retargeted or
have their runtime (for instance, operating system or hyper-
visor) modified to be able to take advantage of the multiple
cores. The improvements to the runtime are especially ex-
citing to those legacy applications where the source code is
not available, or where the runtime parameters greatly influ-
ence the performance gains, which are otherwise not known
at the source code level. One drawback of this approach is
that the operating system or hypervisor may not be able to
utilize the structure of the program and the expertise of the
programmer who might be able to assist with the task. Thus,
rewriting (or porting) existing application to suit the needs of
the new multi-core systems is gaining interest. The challenge
is compounded in the context of distributed memory multi-
core systems; because of the issues arising out of locality of
data, parallelization of computation across distributed cores
impacts the distribution of data, and vice versa. Thus, such
a transformation can be a fairly tedious job, considering the
possible dependencies (data, control), and interference be-
tween different segments of the code. A tool to selectively
refactor parts of the code (legacy or new) to distribute com-
putation and/or data, would be a great help in this direction.

A refactoring tool can be seen as an aid to incremental
programming [9], and can be part of an incremental pro-
gramming environment [13]. Popular programming environ-
ments like Eclipse provide a popular platform to incremen-
tally improve programs by applying different refactorings.
In this paper, we propose a new refactoring to incrementally
distribute existing applications and thereby port applications
to multi-core systems; we accomplish these with some minor



guidance from the application developer. Another important
use of such an approach is to incrementally develop/tune ex-
isting applications, wherein the programmer starts from the
existing application (legacy or otherwise) and uses the refac-
toring tool to improve the performance in a trial-and-error
method.

In this paper, we present techniques to incrementally dis-
tribute programs written in language frameworks, such as
UPC [11] and X10 [12], that allow distribution of data and
code. A distribution is defined as a map from loop or ar-
ray indices to computing units (cores / places in the context
of X10). Given an application, the programmer may decide
to distribute any particular parallel loop. To ensure that the
array accesses in the distributed loop are held in sync with
the distribution, it is expected that the arrays would also be
distributed (otherwise, the application may have to pay the
penalty of remote accesses of the arrays). Which in turn may
require further appropriate transformations to other loops ac-
cessing the array, and so on.

To illustrate the challenge, we show a snippet of code
from the FluidAnimate benchmark from the Parsec 2.1
suite [5] in Figure 1; we have ported the example to X10
for the sake of presentation, and inlined a method. The
foreach loop creates a parallel loop for each value of i
(varying from 1 to threadnum), and each iteration uses the
smoothed particle hydrodynamics (SPH) method to simulate
an incompressible fluid for interactive animation purposes.
Now, say the foreach loop is to be distributed using a
blocked distribution (with blocking factor K) then the arrays
grids, cells and cnumPars should also be distributed
(incidentally using the same blocking distribution, with a
blocking factor of K) to avoid remote accesses. Additionally,
the array declaration, initialization, and any other accesses
should also be suitably modified. The problem of inferring
suitable distributions for loops/arrays becomes further chal-
lenging in the context of languages like X10, where the pro-
grammer is allowed to specify arbitrary distributions. In this
paper, we address this challenge by generating a new distri-
bution for a loop(array) based on the programmer specified
distribution for the array (loop) and the program syntax such
that the number of remote accesses are minimized.
Contributions

• We present an unified algorithm that can distribute a loop
based on any arbitrary distribution of an array accessed
there in or vice versa. Our approach distributes data and
computation in an interleaved fashion - distribution of
data may result in distributing computation where the
data is accessed, which in turn may require distribution
of other data accessed in the computation and so on.

• We present the loop distribution techniques in the context
of a refactoring tool that can help in incremental distribu-
tion of applications.

int main(...){
final Cell [] cells = ...
final int [] cnumPars = ...
final int framenum = ...;
foreach([i] [1:threadnum]) {
for(int k = 0; k < framenum; ++k) {
...
for(int z=grids[i].sz;z<grids[i].ez;++z)
for(int y=grids[i].sy;y<grids[i].ey;++y)
for(int x=grids[i].sx;x<grids[i].ex;++x)
{ int index = (z*ny + y)*nx + x;
Cell cell = cells[index];
int np = cnumPars[index];
for(int j = 0; j < np; ++j) {
cell.density[j] = ...;
cell.a[j] = ...; } } ... } } }

Figure 1. Snippet of FluidAnimate – a benchmark from
Parsec 2.1 [5].

• We have applied our techniques on a varied set of bench-
marks and have found our techniques to be useful.

In this paper, we use X10v1.4 as the basis language for
discussing the techniques on distributions. However, they
can be applied to other language frameworks as well.

1.1 Related Work
Traditional automatic parallelization techniques have been
well studied in research [7, 15, 18]. There is also work in
the area of refactoring for parallelism [2, 10, 19, 24],which
rely on the programmer to specify what loops to transform.
Dig et al [10] introduce concurrent libraries via a refactoring
mechanism to ensure thread-safety of data types. Markstrum
et al [26] present a refactoring tool based approach for incre-
mental parallelization of code in the context of task parallel
languages like X10. In this paper, we present a framework
to incrementally parallelize programs (by distributing loops
and arrays) in the context of distributed memory multi-core
systems. Automatic data and code distribution has been a
well researched area and the hardness of the problem is well
documented [3, 8]. Mace [25] has studied the optimal data
storage problem as shapes problem and has proved it to be
NP-complete. Most of the prior work deals with finding an
ideal distribution for an array or a loop for efficient execu-
tion, and thus ensuring a better utilization of resources. Koel-
bel et al [20] present a functional language called BLAZE
that lets the programmer specify data partitions and the com-
piler automatically does the process partitioning. Rogers and
Pingali [27] partition the given set of tasks in a sequential
program based on the programmer specified data-partition,
to enhance locality of reference. Prior work in distribution
of data in the context of HPF [4, 14] dealt with inferring pre-
defined data distribution (such as blocked, blocked cyclic,
cyclic and so on) for a given a program text. There has
been prior work on inferring efficient data distribution from a



given distribution of the computation [21, 22], and inferring
efficient distribution for a computation from a given distri-
bution for an array [23].

In contrast to these prior works we chiefly differ in the
following three ways: (a) We identify that distribution of
data and computation are interrelated and present an unified
approach to re-distribute both computation and data. (b) Un-
like prior work where programmer has no control on the dis-
tribution process, we provide the control to the programmer
to decide the target computation or array to be distributed.
(c) Our approach handles arbitrary distributions of data and
computation, even in contexts like X10 that allow specifica-
tion of arbitrary distributions.

Organization: We first present a brief introduction to X10
language in Section 2. Section 3 presents our techniques to
redistribute loops and arrays. We discuss some case studies
in Section 4. Finally we discuss some future directions in
Section 5 and conclude in 6.

2. X10 Background
In this section we present a brief background to some of
the relevant features of X10 for this paper. In this paper,
we confine ourselves to simplified X10 programs that have
only simple expressions (similar to the expressions in three-
address-codes) and every statement has an associated label
with it. Details about standard X10 v0.41 can be found in the
X10 reference manual [12].

async (p) S creates a new child task/activity to exe-
cute S, at place p and this new activity runs in parallel with
the parent activity. Notions of activities and places become
clear through the association of activities to threads of exe-
cution and places to processors in the program. Any derefer-
ence of an object, created at a place p, is considered local if it
is dereferenced in an activity running at place p. The index-
ical constant here evaluates to the place at which the cur-
rent activity is running. Each object has a final field named
location that points to the place where the object was
created. X10 restricts accesses to remote memory and a run-
time exception is thrown if an activity accesses remote data;
note that X10 disallows migration of objects and activities.

future (p) expr creates an activity to evaluate the
expression expr at the place p in an asynchronous way and
returns a handler to the activity. The return value of expr is
received by invoking the force() method on the handler.
A future is different from an async in terms of returning
a value; force waits for the value to become available
before returning. Unlike an async the future construct
is used to evaluate an expression.

finish S is a structured barrier statement, wherein S
is executed with a surrounding barrier such that all activities
created inside S have to terminate (including transitively
spawned activities) for the barrier to terminate.

The statement foreach (point p : R) S creates
a parallel loop iterating over all the points in region R, by

launching each iteration as a separate activity executing S.
A point is an element of an n-dimensional Cartesian space
(n ≥ 1) with integer-valued coordinates and a region is a set
of points. A region can be used to specify an array element
index space or loop iteration space.

ateach (point p: D) S is a parallel loop dis-
tributed over the distribution D. A distribution is a map from
a region (defined by a set of points) to a set of places; both
arrays and loops may be distributed. A loop L distributed
over a distribution DL iterates over all points in the domain
of the DL; each iteration of the loop (say, corresponing to a
point i) is run at a place determined by DL(i). Similarly, for
an array A distributed over a distribution DA the location
of the array element j is determined by DA(j). If A[j] is
accessed in L (say in the iteration corresponding to point i),
then it will result in a remote access unless DA(j) = DL(i).
For efficient layout of data, X10 defines several standard
distributions (such as blocked, cyclic, blocked-cyclic and so
on) and also allows a new distribution to be defined as a
piece of X10 code in the programmer’s code. The signature
of an X10 function representing a distribution is given by
the function place dist (point p).

3. Code and Data Distribution
Ideally, in the context of distributed memory multi-core sys-
tems, the data and the computation should be distributed
in sync, such that the data is maximally accessed locally,
thereby avoiding the cost of data communication across
different cores (or places in the X10). Depending on the
language framework, accessing remote data may be disal-
lowed (X10 explicit syntax) or involve remote communica-
tion (X10 implicit syntax, UPC).

In this paper we present techniques, wherein given a loop
L and an array A accessed therein, the following two key
challenges can be answered:
(i) Given a distribution DA for the array A, derive an effi-
cient distribution DL for L.
(ii) Given a distribution DL for the loop L, derive an efficient
distribution DA for A.
The efficiency of a distribution is measured by the num-
ber of resulting remote accesses (fewer the better). Note
that the two key challenges are interlinked: redistributing a
given loop may require redistribution of the arrays accessed
therein, and redistributing a given array may require redistri-
bution of the loops where it is accessed.

Given a distributed loop L, each iteration of it may be
running at a different place. An array A accessed in L, may
be accessed at multiple program points within it, and at dif-
ferent program points different array elements may be ac-
cessed (Say j1, j2, · · · , jn). If the loop has to be distributed
over a distribution DL then for each of the accesses of A
in every iteration (with index i) to be local, the array A
must be distributed in using a distribution DA, such that
DA(j1) = DA(j2) = · · · = DA(jn) = DL(i). In general, it



Arrays : Set of arrays
L : Set of labels
S-Exprs : Set of statement-expressions
Loops⊆ L : Set of labels of the loops
vExprs = S-Exprs ∪ {void}
F : Loops× Arrays→ P (vExprs)

Figure 2. Helper sets and maps.

is not possible to always guarantee that we can generate such
a distribution for the array, from the given distribution of a
loop (or vice versa). Considering the similarities between the
two key challenges, we present a simple unified approach
based on data flow analysis, backward slicing, and reverse
execution [6] to generate a target distribution so as to reduce
the number of remote accesses.

3.1 Definitions
We first present a few definitions in Figure 2. Arrays is
the set of array variables from the program, and L is the
set of labels in the program1. S-Exprs is the set of all
possible X10 statement-expressions. A statement-expression
is defined as a sequence of zero or more statements, followed
by an expression, called last-expression; the last-expression
may be optionally guarded by a predicate. For any loop
L and an array A accessed in the loop the map F(L,A)
returns the set of all the statement-expressions using which
the different elements of A may be accessed in L. Say, Vf

is the set of zero or more free variables that L may access
(use or define); these are defined in the outside environment
of the loop. One or more of the variables from the set Vf

may also be accessed in F(L,A). Note the set Vf does not
include the loop index variable(s). For any iteration of the
loop L and an element se ∈ F(L,A), se/Vf (evaluation of
se in the presence of the environment Vf ) returns the indices
of the array slots accessed in that iteration, or not return any
value (if no array slot is accessed in that iteration).

Figure 3 presents the pseudo-code for the map F. The al-
gorithm takes as input a loop L and an array A, and returns
a set of statement-expressions using which the array may be
accessed in the loop. For each access of the array A and its
aliases (computed using [1]) in the loop L, we first identify
the variable e using which the array element is accessed2

For each of the expression, we compute the corresponding
statement-expression, by computing a backward slice [28];
we add this statement-expression to the F map return value.
The function Slice(L′, L, e) returns a statement-expression
corresponding to a backward slice bounded within the re-
gion of the loop body of L, starting from node L upto the

1 As discussed in Section 2 we use a simplified syntax wherein every
statement has an unique label associated with it
2 Internally our input program is represented in three-address format. Thus
every array element is accessed using a variable only.

Vector 〈Expr〉 Function F (L, A, success)
Input: Loop L, Array A
Output: boolean success
begin

V ector〈Expr〉 Fk = new V ector〈Expr〉();
success = true;
foreach index variable e used to access the array
A and its may aliases do

L′ = label of the statement where A is accessed
using e;
Block=Slice(L′, L, e);
if Block contains L′ or has side-effects then

success = false;
break ;

Fk.add(Block);
return Fk;

end

Figure 3. Algorithm to evaluate the map F

statement L′, and following the data and control dependence
edges induced by e; e depends on this statement-expression.

Figure 4(a) shows an illustrative program, that evaluates
the randomness of the builin random number generator. It
first generates a large number (10000) of random numbers
and stores them in the array A. It creates a two element
array sum (initialized to zero). In the first loop, it sums
up all the even indexed elements of A into sum[0], and
the odd ones into sum[1], and uses these sum values to
compute the difference. For a large enough sample space,
this difference should approach zero. In the second loop, we
copy the generated random numbers into an array of half
the size, by summing up two numbers at a time, and do
some computation (not shown) on the summed up elements.
Figure 4(b) shows the F map.

We use a new program representation, namely a LAG
(loop array graph), that helps in efficient code and data
distribution. A LAG is a weighted undirectional bipartatite
graph G = (Arrays,Loops, E). An edge (Ai, Lk) ∈ E,
iff Ai ∈ Arrays, Lk ∈ Loops, and Ai is accessed in
Lk. Figure 4(c) shows the LAG for the code in Figure 4(a).
The weights on the edges are indicative of the frequencies of
accesses of the array in each loop it is accessed. We use some
conservative static estimates to derive at these frequencies.

3.2 Distribution Algorithm
Considering the interdependencies and similarities between
loop and array distributions, we develop an unified approach
to answer the key challenges presented at the beginning of
the section 3. To distribute a given node n (loop or array)
in a LAG G, using a distribution D, we invoke the func-
tion redistribute (n, D, G) shown in Figure 5; Initially,
all the edges in G are unmarked. For each unmarked edge
(n, n′), we first mark the edge. We then invoke GenTD-LA,



Region R = [1:10000], R1 = [1:10000];
double []A=new double[R1]

(point [i]){return random()};
double []sum = new double[[1:2]];
L1: finish foreach (point [i]: R){

if(i%2==0){sum[0] += A[i];}
else {sum[1] += A[i];} }

double diff = sum[0] - sum[1];
Region R2 = [1..5000]
double []B == new double[R2];
L2: finish foreach (point [j]: R2){

B[j] = A[j] + A[j+5000]; ... }

(a)
F(L1,A) = if(i%2==0) i;

if(i%2==1) i;
F(L1,sum) = if(i%2==0) 0;

if(i%2==1) 1;
F(L2,A) = j;

j+5000;
F(L2,B) = j;

(b)
B

L2

L1

sum

10000

10000

10000

20000

A

(c)

Figure 4. Example program, the F map, and the LAG.

Function redistribute(Node n, Distribution D,
LAG G)
// (i) Distributes n using D

// (ii) Distributes any other nodes that

might get impacted because of (i)

begin
foreach edge (n, n′) ∈ G do

if edge (n, n′) is already marked then
continue;
mark the edge (n, n′) in G;
if n is an Array then
GenTD-LA(n, n′, D, success);
else GenTD-AL(n′, n,D, success);
if success then
redistribute(n′, n′.dist,G);

end
end

Figure 5. Distribute loops and arrays

or GenTD-AL depending on if the node n′ is an array or
a loop. The function GenTD-LA generates the target dis-
tribution for a loop based on the distribution of an array.
Similarly, the function GenTD-AL generates the target dis-
tribution for an array based on the distribution of a loop. For
each node n′ whose distribution gets modified, we invoke
the function redistribute to further distribute all the
elements that get affected by n′. The input LAG may have
cycles; we use the edge markings to avoid infinite-recursion.

Function GenTD-LA(A, L, D, success)
Input: Array A, Loop L, Distribution D
Output: boolean success
begin

Set cFunc = getDist (L);
if cFunc == null then cFunc = GenEmpty();
foreach e ∈ F (L,A, success) do

if ¬success then break;
addCode(cFunc, e, D, success);
if ¬success then break;

if success then setDist(L, cFunc);
end

Figure 6. Generate Loop Distribution Function

The functions GenTD-LA (Figure 6), and GenTD-AL
(Figure 7) use four helper functions: GenEmpty creates
and returns an empty set; getDist(n) returns the current
distribution of the node n as a set of statement-expressions.
setDist(n, S) associates the set S as the code listing for
the node n. And addCode (cFunc, e, D, success)
adds the input statement-expression e to the code-listing
cFunc, if the set of free variables in e are bound to only
constant values. Further, the last-expression le is replaced
by D(le). The output variable success is set if addCode
updates cFunc.

The function GenTD-LA includes all the statement-
expressions that are used to access the input array, as part of
the distribution of the array. These statement-expressions are
generated from the enumeration of the map F . The function
GenTD-AL is a bit more involved: for each array element
access we generate a statement-expression that corresponds
to the index of the loop in which the element is accessed; we
do this by generating the reverse execution code [6] for the
statement-expression of the array index.

Function GenTD-AL(A, L, D, success)
Input: Array A, Loop L, Distribution D
Output: boolean success
begin

Set cFunc = getDist (A);
if cFunc == null then cFunc = GenEmpty();
foreach e ∈ F (L,A, success) do

if ¬success then break;
e′ = rev(e, success);
if ¬success then break;
addCode(cFunc, e′, D, success);
if ¬success then break;

if success then setDist(A, cFunc);
end

Figure 7. Generate Array Distribution Function



Function emit-dist-map(N )
Input: Node N
begin1

cFunc = getDist (N );2

List CF ′ = Sort the elements of cFunc in3

decreasing order of priority;
boolean all-paths-covered = false;4

foreach statement-expression e in CF ′ do5

emit-code-element(e, all-paths-covered);6

if all-paths-covered then break;7

if ¬all-paths-covered: then8

emit-code(“ return 0;”);9

end10

Figure 8. Emit Distribution Map

Choose

a node nBuild LAG

emit−code

for each

distribution

modified

redistribute(n)

programmer

input

Figure 9. Overall Block Diagram

3.3 Code Generation
The overall block diagram of our framework is shown in
Figure 9. After the redistribute function returns, we
invoke the function emit-dist-map ( Figure 8) for each
node in the LAG whose distribution is modified, to emit the
code for the new distribution. We sort the set of statement-
expressions in the decreasing order of their frequencies and
store in CF ′; the frequency of a statement-expression is
given by the frequency of the corresponding last-expression.
We now construct the body of the distribution map, by emit-
ting the code as given by the elements of CF ′. We use an
auxiliary functions emit-code(e) to emit code; it replaces
the last expression D(le) in e, by returnD(le). If we emit
an unconditional return statement then the output variable
all-paths-covered is set and then we stop emitting further
code; as all the code following an unconditional return
statement would become unreachable. A loop L may not ac-
cess all the elements of an array A. Hence the distribution
function of the loop DL can be used to distribute the only
those array elements which are accessed in L, and not oth-
ers. The algorithm emits an unconditional return 0 state-
ment to handle any eventuality arising because of this, and
guarantees that every element/iteration of the array/loop is
distributed using this generated distribution. We emit this un-
conditional return statement, only if we did not encounter
an unconditional return statement in line 7.

After generating the appropriate distributions for loops
and arrays in the programs, relevant portions of the pro-
gram need to be transformed: (a) For each loop that is redis-
tributed, (i) we modify the loop header to distribute over
the new distribution, (ii) for all the scalar variables that
are created outside the loop and are accessed inside, we
replace the access v.f by (v.location == here)?v.f:
future (v) v.f.force(); (iii) similarly, for all the
scalar variables that are created outside the loop and are
dereferenced to invoke a function, we replace the invocation

v.foo((a1, · · · ) by

(v.location == here)?v.foo(a1, · · · ) :
{final Ta fa1 = a1; · · · ;
future(v) v.foo(fa1, · · · ).force()}

The arguments to the remote function calls are passed via
final variables (a syntactic requirement of X10 – only
final variables are visible across multiple activities). (b)
For each array A that is redistributed using a distribution
DA, we (i) change the declaration of the array, and (b) re-
place the array accesses A[j] by: (DA(j) == here)?A[j] :
future (DA(j))A[j].force();

3.4 Discussion
• It can be seen that, our translation may litter the code with

many ternary operator (?:) accesses, to do place-locality
checks; which can be fairly expensive. We propose to
use the place locality analysis of Agarwal et al [1], to
eliminate most of the place checks.

• In Figure 5, it may be noted that we do not specify the
order of traversal of the edges of the LAG. The order
of traversal has an impact on the resulting distributions.
Consider two loops L1 and L2 accessing two arrays A1

and A2. Say the redistribute function is invoked
to redistribute L1. Based on the order of the edges cho-
sen two possible alternatives exist. The algorithm may
use the distribution of L1 to distrbute A1, then use the
resulting distribution of A1 to distribute L2, and finally
use the distribution of L2 to distribute A2. Alternatively,
the algorithm may use the distribution of L1 to distrbute
A2, then use the resulting distribution of A2 to distribute
L2, and finally use the distribution of L2 to distribute A1.
Thus the resulting distribution function for A1, A2 and
L2 can be different. Identifying the optimal order of edge
traversal for a given LAG is a nontrivial problem, and is
left as a future work.

• The generation of the F maps forms the backbone of
our translation scheme, which in turn depends on alias
analysis. Thus, the efficiency of our translation, depends
on precision of the underlying alias analysis.

• The complexity of our proposed technique is O(n3),
where n is the number of statements in the program.
We pre-compute the F and rev maps and reuse these
maps in the functions GenTD-LA and GenTD-AL each
of which has a complexity of O(n). Since, there can
O(n2) number of edges in the LAG, the complexity of the



dist D = cyclic (R, 2); // dist for L1
// distribution for the array A
Place distA (point i) {

if (i%2 == 0) return D(i);
if (i%2 == 1) return D(i);
return 0; // redundant

}
// distribution for the array sum
Place distSum (point i) { return 0; }
// distribution for the array B
Place distB (point i) { return distA(i); }
// distribution for the Loop L2
Place distL2 (point i){ return distA(i); }

Figure 10. Generated dists for the program in Figure 4(a)

redistribute function is O(n3). Finally, the cost of
invoking the emit-dist-map function for each modi-
fied node is again O(n3). Thus the overall complexity of
our technique is O(n3).

Illustration
Consider the example code shown in Figure 4(a). Say the
programmer identifies the loop L1, and wants it to be dis-
tributed using a cyclic distribution over two places. Since L1
is accessing the arrays A and sum, these arrays need to be
distributed. It can be seen that the array A is also accessed in
loop L2. Once the array A is distributed in the previous step,
we have to distribute the loop L2; which in turn would lead
to redistribution of the array B. Figure 10 shows the gener-
ated distributions. It can be seen that the distribution of L2,
B are same as the distribution of A. We can avoid emitting
such distributions and reuse emitted distributions. A weak-
ness of our framework can be seen in the distribution of sum.
The function GenTD-AL fails (the function rev fails), and
thus all the elements of sum are mapped to place 0; a smarter
analysis could have done better. In the generated distribution
for the array A, the last return statement is redundant – our
code generation can be tuned to this effect.

4. Case Studies
In this section, we discuss our experience in applying the
techniques presented in this paper onto real world bench-
marks. We test the applicability of our techniques on bench-
marks spanning three different benchmark suites – Eight
benchmarks from Java Grande Forum [17] (JGF), Six bench-
marks from HPC Challenge [16] (HPCC), and Ten bench-
marks from Parsec [5].
Moldyn is part of the JGF benchmark suite. Figure 11(a)
shows the parallel version of a part of the Moldyn bench-
mark. The goal is to distribute the first loop using a given
distribution D. Figure 11(b) shows the transformation by our
framework. Our refactoring framework first distributes the
loop, then it distributes the array P, and then distributes the
second and the third loop (all using the distribution D). It also

transforms the code in the function allreduce; which in-
volves distributing the loop therein, and the modification of
the access to the variable t.vir. We have identified simi-
lar opportunities in two other benchmarks in the suite (crypt
and montecarlo).
RandomAccess is part of the HPCC suite. Figure 12(a)
shows the parallel version of the kernel of the RandomAc-
cess program, and Figure 12(b) shows the transformation
by our framework; the goal is to distribute the loop using a
programmer-specified distribution D over the region R. The
loop gets distributed, and so does the array ranStarts
(using D). However, the loop also accesses the array table.
There is no direct co-relation between the loop iterations and
the accesses. And our tool does not change the distribution
of table; as the function GenTD-AL returns with the vari-
able success set to false. Thus, we don’t change the distri-
bution of table, and introduce remote accesses. We have
identified similar opportunities in FT benchmark of the suite.
BlackScholes is a part of the Parsec benchmark suite; it em-
ploys Black-Scholes Partial Differential Equation (PDE) to
do option pricing. Figure 13(a) shows the parallel version
of the snippet of the benchmark ported to X10. The parallel
loop iterates over a region [1:numOption] with a stride
of NCO. The goal is to distribute the array prices using a
blocked distribution (D) over the region [1:numOption]
with a blocking factor of NCO. Our algorithm distributes the
array (say using D) and identifies the outermost loop has to
be distributed using a distribution:
place dist (point i)
{ for (k=0;k<NCO;++k) return D(i+k);}.
(This code can be simplified to return D(i+0).) Our
algorithm further identifies that the same distribution is
applicable to the arrays: sptprice, strike, rate,
volatility, otime, and otype. Our algorithm also
identifies that the array data has to be distributed, but the
function GenTD-AL fails. Thus, our algorithm allocates all
the elements of data at place 0. Note that, the appropriate
distribution for the array data is actually identical to the
distribution specified for the array prices. Similar to the
BlackScholes benchmark, we have identified similar oppor-
tunities in all (ten) of the benchmarks from this suite.

Overall, we have observed that our redistribution algo-
rithm is applicable in many different benchmark programs.
We have also observed that there may be cases where our
generated distributions sometimes are not concise and needs
programmer help for better representation.

Performance gains: We have compared two versions of
the benchmarks (i) benchmarks with only the parallel loops
distributed, (ii) benchmarks where the parallel loops are dis-
tributed, along with other arrays and loops as suggested by
our framework. We obtained the execution time numbers
and observed significant improvement in performance (upto
100 x, for montecarlo). Due to the lack of space, we avoid
presenting the details of these numbers, especially because



final region R=[1:NTHREADS];
void run() {
finish foreach(point [j]:R)

P[j].initialise(...);
...
finish foreach(point [j]:R)

P[j].runiters(...);
...
finish foreach (point [j]:R){

md myNode = P[j];
... } }

void allreduce() {
finish foreach (point [j]: R) {

for(point [k]: [0:(mdsize-1)]){
...
P[j].one[k].zforce = ... }

P[j].vir = t.vir; } }

(a)

final dist D=...(R)...;
void run() {
finish ateach (point [j]: D)

P[j].initialise(...);
...
finish ateach (point [j]: D)

P[j].runiters(...);
...
finish ateach (point [j]: D){

md myNode = P[j];
... } }

void allreduce() {
finish ateach (point [j]: D){

for(point [k]: [0:(mdsize-1)]){
...
P[j].one[k].zforce = ... }

P[j].vir= future(t){ t.vir} .force(); } }

(b)

Figure 11. (a) Parallel Moldyn, (b) Distributed Moldyn. Changes shown in bold.

final region R = [0:maxPlaces-1];
final int[.] ranStarts=new int[R];
for (point p: R) ranStarts[p]=...;

...
finish foreach (point p : R) {
int ran=nextRandom(ranStarts[p]);
for (int count=1; count<=nUpdates;

count++) {
final int j=f(ran);
final int k=smallTable[g(ran)];
final point q = Pt(j);
atomic { table[q]=table[q] ˆ k; }
ran=nextRandom(ran);

} }

(a)

final region R=[0:maxPlaces-1];
final dist D=... (R) ... ;
final int[.] ranStarts=new int[ D];
finish ateach (point p: D) ranStarts[p]=...;
...
finish ateach (point p : D) {
int ran=nextRandom(ranStarts[p]);
for (int count=1; count<=nUpdates;

count++) {
final int j=f(ran);
final int k=smallTable[g(ran)];
final point q=Pt(j);
async(table[q])

{ atomic{table[q]= table[q]ˆ k;}}
ran=nextRandom(ran); } }

(b)

Figure 12. (a) Parallel RandomAccess, (b) Distributed RandomAccess. Changes shown in bold.

the importance of data locality in distributed threads is well
known. These execution time behaviors were studied only
for the benchmarks from JGF and HPCC. The Parsec bench-
marks (written in C/C++ which do not support distributions)
need to be ported fully to a language like X10 to study the
gains; these are large benchmarks and porting them to X10
remains an interesting future work.

5. Future work
Arbitrary distributions: While X10 language description [12]
discusses the idea of programmer-specified distributions, an

efficient implementation of the language runtime that can
support such arbitrary distributions is an open challenge.

Prototype : Implementing the framework in Eclipse type
of environment is an involved exercise in itself and is left
as future work. Further, making such an implementation
applicable to multiple languages is another open challenge.

Optimizations: Our generated code is oblivious to the un-
derlying distribution and thus may loose opportunities for
generating efficient distributions. Identifying newer refactor-
ing patterns and possible optimizations in the generated code
would be an interesting area to explore.



region R=region (1:numOption,NCO);
finish foreach(point [i]: R){
...
BlkSchlsEqEuroNoDiv(i,NCO,sptprice[i],

strike[i], rate[i], volatility[i],
otime[i], otype[i], 0);

for (k=0; k<NCO; k++){
prices[i+k] = price[k]; }

...
for (k=0; k<NCO; k++) {

priceDelta = data[i+k].DGrefval
- price[k]; }..}

Figure 13. Example snippet ported from BlackScholes

6. Conclusion
In this paper, we discuss our preliminary results on distribut-
ing arrays and loops using arbitrary programmer specified
distributions. We feel that lack of automatic techniques to
infer arbitrary distribution of data and computation had been
one of the main reasons for programmers to restrict them-
selves pre-defined distributions. Our paper bridges and im-
portant gap in this context and we expect that there will be
increased interest in the uses of arbitrary distributions by the
application developers.
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