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ABSTRACT
X10 is a partitioned global address space (PGAS) program-
ming language that supports the notion of places; a place con-
sists of some data and some lightweight tasks called activities.
Each activity runs at a place and may invoke a place-change
operation (using the at-construct) to synchronously per-
form some computation at another place. These place-change
operations need to copy all the required data from the current
place to the remote place. However, identifying the required
data during each place-change operation is a non-trivial task,
especially in the context of irregular applications (like graph
applications) that contain large amounts of cross-referencing
objects – not all of those objects may be actually required, at
the remote place. In this paper, we present a new optimiza-
tion AT-Opt that minimizes the amount of data serialized
and communicated during place-change operations.

AT-Opt uses a novel abstraction called abstract-place-tree
to capture place-change operations in the program. For each
place-change operation, AT-Opt uses a novel inter-procedural
analysis to precisely identify the data required at the remote
place, in terms of the variables in the current scope. AT-Opt
then emits the appropriate code to copy the identified data-
items to the remote place. We have implemented AT-Opt in
the x10v2.6.0 compiler and tested it over the IMSuite bench-
mark kernels. Compared to the current X10 compiler, the
AT-Opt optimized code achieved a geometric mean speedup
of 8.61× and 5.57×, on a two-node (32 cores each) Intel and
two-node (16 cores each) AMD system, respectively.
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•Computingmethodologies→ Parallel programming
languages;Distributed programming languages; • Soft-
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def setChildSignal() :

boolean

{//tell children to start

for(i in D){

var atVal:boolean

=at(D(i))setCheck(i);
... } ... }

(a) MST: min spanning tree

def Start() { ...

at(D(p)){
for(j=0;j<nSet(p).neig.

size;j++) {

var k:Point = ...

setDist(k,nSet(p).d+1);

}}}

(b) BF: breadth first search

Figure 1: Snippets from two IMSuite kernels.

1 INTRODUCTION
With the rapid advancement of many-core systems, it is be-
coming important to efficiently perform computations in
models where the memory may be distributed. X10 [23] is a
parallel programming language that uses the PGAS (parti-
tioned global address space) model and provides support for
task parallelism. Importantly, X10 supports the distribution
of data and computation across shared and distributed mem-
ory systems. X10 uses the abstraction of places, where each
place has some local data (created at that place) and one or
more associated activities performing computation over the
local data. To access remote data, the activity has to perform
a place-change operation (using an at-construct). While
such expressiveness aids in programmability and data distri-
bution, it may lead to significant communication overheads.
We explain the same using a motivating example.

Figure 1a shows a code snippet in X10, of the MST (builds
a minimum spanning tree) kernel from IMSuite [13]; the
setChildSignal function checks if any child can start pro-
cessing in parallel. A child ready to start processing would
have already set its corresponding element in the distributed
boolean array this.setCheck. The at expression checks if
a node i has set setCheck(i); this value is stored in atVal.
If any node has set it to true, then the function returns true
(code not shown); D is the distribution of the array.

X10 supports two main types of non-primitive data: dis-
tributed arrays (distributed across one or more places at the
time of creation) and non-distributed objects (need to be sent
to a remote place, if referred at that place). Consequently, for
the code shown in Figure 1a, the X10 compiler emits code to
serialize and send a message containing a deep copy of the
complete this object and a pointer to the code containing
the expression setCheck(i). At the remote location, the
X10 emitted code will deserialize the message, build a copy of
the this object, and evaluate the expression. In general, this
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sending of remote data may incur a significant amount of
overhead and since in Figure 1a this remote communication
happens inside a loop, the overall cost increases with the
number of iterations of the loop.

However, it may be noted that in the code shown, only the
setCheck field of this is getting de-referenced to evaluate
the expression; whereas the X10 compiler copies and trans-
mits the complete this object, which has many other fields.
Note that the current X10 compiler handles distributed arrays
efficiently, and does not require further optimizations. For
example, while copying this.setCheck (as part of copying
this) it only copies the remote-reference of setCheck.
Similar to Figure 1a, Figure 1b shows a snippet of the BF

(breadth first search) kernel of IMSuite. The shown snippet
starts the BFS creation with the root setting the distance
for its neighbors. The function setDist uses the distribu-
tion this.D and the distributed array this.nSet; code not
shown. Like before, at the at-construct, the X10 compiler
emits code to transmit the complete this object, though the
code only requires this.D and this.nSet.

We have studied many distributed kernels and found that
the amount of such copied data can be prohibitively large.
For example, for graphs with 256 nodes, the X10 compiled
MST and BF kernels (snippets in Figure 1), led to copying of
76.5 GB and 3.0 GB data, respectively. We have found that a
large portion of this data is unused and need not be copied.

In general, it is not trivial to identify the precise data to be
copied, especially in the presence of nested at-constructs
and arbitrary operations involving heap.
In this paper, we present a new optimization technique

called AT-Opt that analyzes the whole X10 input program
and then identifies the data required at the remote places.
The crux of the proposed AT-Opt optimization is a novel
inter-procedural, summary-based, flow-sensitive analysis
that precisely tracks the communication across places in
terms of the created objects. Unlike other prior works [1, 2],
that reason about the places, we do not depend on global-
value numbering, as it can be imprecise. Once AT-Opt identi-
fies the required data in terms of the variables in the present
scope, it modifies the X10 input program such that only the
required data is copied to the remote places. This leads to
a significant reduction in remote communication and (con-
sequently) execution time. For example, for the MST and
BF kernels, AT-Opt reduces the amount of copied data from
76.5 GB to 10.3 GB, and 3.0 GB to 0.13 GB, respectively. This
in turn, at two places, leads to a speedup of 6.6× and 31.1×,
respectively, on a two-node (32 cores/node) Intel system.
Barik et al. [6] present a related scheme to reduce the

data communicated during place-change operations by doing
scalar replacement. Though their scheme is interesting, its
impact is limited in irregular benchmark kernels (like the
IMSuite kernels) that have many cross-referencing objects.

For example, in Figure 1, the scalar-replacement scheme of
Barik et al. cannot be applied. This is because (i) They only
focus on scalar fields; setCheck and nSet are distributed
arrays, not scalars. (ii) If an at-construct calls a method
m by passing an object as an argument or receiver, then the
field accesses of that object in m, or in the at-construct
after the call to m, cannot be scalar replaced (Figure 1b).
Note: though setCheck(i) and nSet(p).neig.size are
scalars, they cannot be scalar replaced, as the associated
arrays are distributed across multiple places and cannot be
dereferenced without performing a place-change operation.
Though we discuss AT-Opt in the context of X10, it can

also be applied to other PGAS languages like HJ [14] and
Chapel [7]. Similar to X10, these languages also support
the abstractions/constructs like places/at-constructs and
while executing a place-change operation, the reachable non-
distributed data is required to be copied to the target place.
Contributions:
•We propose a novel analysis to track the flow of objects
across places. We are not aware of any other prior work that
does so, for minimizing communication overheads.
•We propose a new optimization technique (called AT-Opt)
that improves the performance of X10 programs by avoiding
the copying of redundant data across places.
•We have implemented AT-Opt in the x10v2.6.0 compiler.
•We have evaluated AT-Opt over all the IMSuite kernels on
two different hardware systems: a two node (32-cores/node)
Intel system and a two node (16-cores/node) AMD system.
Our evaluations show that compared to the baseline x10v2.6.0
compiler, AT-Opt leads to geometric mean speedups of 8.61×
and 5.57×, on the Intel system and AMD system, respectively.

2 BACKGROUND
In this section, we briefly discuss three X10 constructs and
some pertinent X10 concepts. Interested readers may refer
to the X10 specification [23] for details.
async S : spawns a new asynchronous task to execute S.
finish S : acts as join point and waits for the all spawned
tasks in S to terminate.
at(P) S : the place-change operator is a synchronous con-
struct and executes the statement S at place p. For the ease of
presentation, we represent each such at-construct using
the sequence of three instructions: at-entry; S; at-exit.
In x10v2.6.0, the implementation of an at-construct

of the form ‘at(p) S’ involves sending the serialized data
needed to execute S, to the remote place p, and deserializing
the data at p. To determine the required data the compiler
analyzes S and identifies the referenced variables and sends
across all the non-distributed data reachable from them.

At runtime, the initial count for places and workers can be
set by using the environment variables X10_NPLACES and
X10_NTHREADS, respectively.
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3 AT-OPTIMIZATION
In this section, we propose a compile-time technique to op-
timize X10 programs that use at-constructs. During the
compilation of each at-construct, the existing X10 com-
piler emits code to conservatively serialize all the objects
(and variables of primitive type) that may be referred at the
remote-place. As discussed in Section 1, this leads to sig-
nificant overheads. Our proposed approach (called AT-Opt)
reduces these overheads. For each at-construct, our ap-
proach conservatively identifies the data “required” at the
remote-place (in terms of the local variables, and the reach-
able fields thereof, in the current scope) and emits code to
send/receive only that data. For simplicity, in this section,
we assume that the input programs do not throw exceptions.
In Section 5, we discuss how we handle exceptions.

AT-Opt has two main phases: (1) Analysis phase: to iden-
tify the required data, (2) Code generation phase: to emit the
optimized code. We now discuss both of these phases.

3.1 AT-Opt Analyzer
For each function, in the input program, the analysis phase
of AT-Opt creates two graphs: (1) an Abstract-place-tree that
captures the place-change operations (from a “source” place
to “target” place), and (2) a flow-sensitive points-to graph
that captures the points-to information of X10 objects (as an
extension to the escape-to connection-graph described by
Agarwal et al. [1]). We first elaborate on these two graphs.

3.1.1 Abstract-place-tree (APT). For each function in the
input X10 program, an APT defines the relationship among
the instances of different at-constructs in the function.
Each at-construct corresponds to one ormore place-change
operations at runtime. Say, the set of labels1 of these con-
structs is given by Lp (see Figure 2). An APT is defined by the
pair (Np ,Ep ), where Np = {pi |Li ∈ Lp }. Thus, each pi ∈ Np
represents an abstract place-change operation. Given two
nodes pi ,pj ∈ Np , we say that (pi ,pj ) ∈ Ep , if Lj is present in
the body of pi . An interesting aspect of the APT data struc-
ture is that it exposes the data-flow between places, as per
the X10 semantics: changes done to any data structure (not
a global reference or a distributed array) at a place node are
not visible to its ancestors and siblings. That is, in the APT,
data flows only from the parent to the children.

3.1.2 Points-to Graph (PG). We use the definitions in Fig-
ure 2 and a special object node O⊤ (that represents all the
non-analyzable abstract-objects in the program) to define a
points-to graph. A points-to graph is a directed graph (N ,E),
where N = No ∪Nv ∪ {O⊤}. Similar to the discussion of APT,

1Without any loss of generality, we assume that the input is a simplified
X10 program in three-address-code form [18], each statement has a unique
associated label, and variables have unique names.

L = Set of all the labels in the program.
Lp ∈ L = Set of labels of the at-constructs.
Lo ∈ L = Set of labels of the new-statements.
No = Set of all the abstract-objects created in the program.
Nv = Set of all the variables in the program.
Np = Set of all the abstract places in the program.

Figure 2: Definitions of different sets.

POC : No → Np place of creation
pOf : L → Np place of statement

RSj ⊆ No × Fields

{
read before Lj ;
but defined at ancestor place

MayWSj
MustWSj

}
⊆ No × Fields

{
written before
Lj , at the current place

AALj ⊆ Nv ∪ (No × Fields ) Ambiguous access list

Figure 3: Auxiliary data-structures

each abstract object ∈ No (= {oi |Li ∈ Lo }), may represent one
or more instances of objects created at the corresponding
labels at runtime. We call an abstract object that represents
multiple runtime object instances, as a summary object.
The set E comprises of two types of edges:

1. points-to edges ⊆ Nv ×No ∪ {O⊤}: These edges of the form
v →p o are created because of assignment of objects (for
example, o) to variables (for example, v).
2. field edges ⊆ No ∪ {O⊤} × Fields×No ∪ {O⊤}: These edges
of the form o1 →

f,g o2 are created because of assignment
of objects (for example, o2) to the fields (for example, g) of
objects (for example, o1).

We call an edge v →p o (or o1 →f,g o) to be a weak-edge, if
∃o′ , o, such thatv →p o′ ∈ E (oro1 →f,g o′ ∈ E). Otherwise,
we call it a strong-edge. We use this classification later in this
section to mark objects that can be tracked precisely.
In addition to maintaining APT (global) and PG (at each

statement), we maintain a few other data-structures; listed
in Figure 3. POC returns the place of object-creation and pOf
returns the place node of each statement. For each function
д, we assume that all the statements not contained inside any
at-construct are executed at the special place pд . A pair
⟨oi , f ⟩ ∈ RS j indicates that the field f of oi is used (read) at a
predecessor of Lj at the current place pOf(j ), and the defini-
tion reaching this use is present in one of the APT-ancestors
of pOf(j ). At each label Lj , we maintain two ‘write-sets’:
MayWS j andMustWS j to hold the may and must informa-
tion indicating that the object-field may-/must-be defined at
a predecessor of Lj , at pOf(j ). Note: MustWS j ⊆ MayWS j .
An entry k ∈ AALj indicates that k (a variable or an obj-field
pair) has some weak-edges in the PG j and k is used at pOf(j ).
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3.1.3 Intra-procedural flow-sensitive analysis. We now
discuss our algorithm to perform a flow-sensitive iterative
data-flow analysis to build the APTs (global), the points-
to graphs (at each label) and the auxiliary data-structures,
in a combined manner. The points-to-graph construction
is standard and is shown here for completeness. For the
ease of presentation, in this section, we focus just on the
intra-procedural component of the analysis. We discuss the
inter-procedural extension in Section 4.

Initialization. For each function bar , at the first instruc-
tion: (1) APT is initialized to a single root node (pbar ∈ Np );
(2) PG is initialized to (Ni ,Ei ), where Ni = Nv ∪{O⊤}. In bar ,
for each function parameter aj ∈ Nv (including the 0th argu-
ment this), conservatively, we include an edge aj →p O⊤ in
Ei . Also, we add an edgeO⊤ →f,∗ O⊤ to indicate that all field
edges from O⊤ will points to O⊤. The rest of the auxiliary
data structures are initialized to empty.

Statements and related operations. Figure 4 shows how
we update the APT, PG and auxiliary data structures on pro-
cessing the different X10 statements. For each statement
L : Stmt , each transformation is shown as a transition of the
form X ⇒ X ′, where X is a data-structure before processing
the statement Stmt at label L and X ′ is the updated data-
structure after the processing. Unless otherwise specified,
each data structure is copied (cloned) to the next statement.

The statements which are of interest to our analysis are:
(i) L: at-entry(p) (ii) L: a=new T(); (iii) L: a=b; (iv) L: a=b.f;
(v) L: a.f=b; (vi) L: a=x.bar(b); and (vii) L: at-exit. We
now discuss how the processing of each of these statements
updates APT, PG and the other auxiliary data-structures.

Entering at. Lj :at-entry(p): We create a new place node
pj and add an edge from the current place (given by pOf(Lj ))
to the target place (pj ) in APT (Figure 4a). Further, we reset
AAL = MayWS = MustWS = RS = Φ (not shown). Note:
at-entry is the only instruction that updates the APT.
Exiting at. Lj :at-exit(Li): We restore PG, RS , MayWS ,

MustWS , and AAL to their values at Li , which has the corre-
sponding at-entry instruction.
Allocation statement. Lj : a = new T(): Besides updating

the PG (Rule 1, Figure 4b – creates a new object node oi and
updates the points-to edges), we add (oi , pOf(Lj )) to POC .

Copy statement. Lj :a = b: Besides updating the PG (Rule 2.
Figure 4b), if b has weak-edges, we update AAL to include b,
since b is used here.

Load statement. Lj :a = b .д: Besides updating the PG (Rule
3. Figure 4b), we update RS , keeping in mind that no defini-
tions from the current place are added to RS . If b or b .д has
weak-edges then we add them to AAL set appropriately.

Store statement. Lj : a.д = b: If a has weak-edges or a
points-to a summary node, we perform a weak update; else

Lj : at-entry(p) (Np ,Ep )⇒ (Np ∪ {pj },Ep ∪ {(pOf(Lj ) → pj )})

(a) Impact on the APT

1. Lj : a = new T()
(N ,E) ⇒ (N ∪ {oj }, (E − {a →

p y |a →p y ∈ E}) ∪ {a →p oj })
POC ⇒ POC ∪ {(oi , pOf(Lj ))}
2. Lj : a = b
(N ,E) ⇒ (N , (E − {a →p y |a →p y ∈ E}) ∪ {a →p z |b →p z ∈ E})
AAL ⇒ AAL ∪ {b} // if b has weak-edges.
3. Lj : a = b .д
(N ,E) ⇒ (N , (E − {a →p y |a →p y ∈ E})∪

{a →p z |b →p x ∈ E ∧ x →f,g z ∈ E})
RS ⇒ RS ∪ {⟨oi ,д⟩|b →

p oi ∈ E ∧ ⟨oi ,д⟩ < MustWS }
AAL ⇒ AAL ∪ {b} // if b has weak-edges
AAL ⇒ AAL ∪ {⟨oi ,д⟩|b →

p oi ∈ E ∧ b .д has weak-edges}
4(i). Lj : a.д = b (Strong update)
(N ,E) ⇒ (N , (E − {y →f,g z |a →p y ∈ E ∧ y →f,g z ∈ E})∪

{y →f,g x |b →p x ∈ E ∧ a →p y ∈ E})
MayWS ⇒ MayWS ∪ {⟨oi ,д⟩|a →

p oi ∈ E}
MustWS ⇒ MustWS ∪ {⟨oi ,д⟩|a →

p oi ∈ E}
AAL ⇒ AAL ∪ {b} // if b has weak-edges.
4(ii). Lj : a.д = b (Weak update)
(N ,E) ⇒ (N ,E ∪ {y →f,g x |b →p x ∈ E ∧ a →p y ∈ E})
MayWS ⇒ MayWS ∪ {⟨oi ,д⟩|a →

p oi ∈ E}
AAL ⇒ AAL ∪ {a} // a might not be ∈ AAL, yet
AAL ⇒ AAL ∪ {b} // if b has weak-edges.
5. Lj : a = x .bar (b)

(N ,E) ⇒ (N ,E ∪ {a →p O⊤} ∪ {y →f,∗ O⊤ |x →+ y ∈ E}∪
{z →f,∗ O⊤ |b →+ z ∈ E})

RS ⇒ RS ∪ {⟨oi , ∗⟩|x →
+ oi ∈ E ∨ b →

+ oi ∈ E}
AAL ⇒ AAL ∪ {z |z ∈ {x ,b} ∧ z has weak-edges in E}
AAL ⇒ AAL ∪ {⟨oi ,д⟩|(x →

+ oi ∈ E ∨ b →
+ oi ∈ E)∧

⟨oi ,д⟩ is a weak-edge}

(b) Impact on the points-to-graph PG and the auxiliary data
structures (only the updated data structures are shown).

Figure 4: Rules for intra-procedural analysis.

we perform a strong update (Rule 4, Figure 4b). Besides up-
dating the PG, we add all of the object-field pairs that may
be referred to by a.д toMayWS . These pairs are also added
toMustWS , if we are performing a strong update. we update
AAL to include the variable b, if b has weak-edges. In case
of weak-update, we also add a to AAL, as a might not have
been added so far to the current AAL.
Function call (intra-procedural analysis). Lj :a = x .bar (b):

Here we make conservative assumptions on the impact of
the function call on the arguments, receiver and the return
value. We first update the PG (Rule 5. Figure 4b). We use the
notation p →+ q to indicate that q is reachable from p (in the
current PG) after traversing one or more edges (points-to, or
field). We add all the weak-edges reachable from x and b to
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1 def f ():void{
2 val a:A = new A();

3 a.r1 = ...

4 at(P){
5 a.r2 = ...

6 ... = a.r2;

7 val b:B = new B();

8 b.r1 = ...

9 for(i in D){

10 b.r3 = a;//use of b.r3

is not shown

11 at(D(i)){

12 ... = b.r1;

13 val c:A = a;

14 c.r1 = ...

15 ... = a.r1;

16 } // end of at(i)

17 } // end of for

18 at(Q){
19 ... = a.r1;

20 ... = a.r2;

21 } // end of at (Q)

22 } // end of at (P)

23 } // end of f

Figure 5: Example synthetic X10 code.

points-to p

field f

(a) APT.

(b) PG at line 4 and 23.

(c) PG at line 11 and 17. (d) PG at line 16.

p
O>Va

p
o2a

p
O>Va

p f,*
O>Va

p
o2a

p
o7b

p

o2

c
p

o7b

pa

pf

p4

p11 p18

f,r3f,r3

f,*

f,*

Figure 6: APT and the points-to graph generated by
our analysis for the example shown in Figure 5.

AAL. We conservatively assume that all the fields reachable
from x and b are read in the method bar and add them to RS .

Merge Operation. At each control-flow join point, we
merge the APT , PG and the auxiliary sets. The merging of
graphs is done by taking a union of the nodes and edges.
For RS,MayWS , and AAL, we merge the sets by perform-
ing the set-union operation. We merge theMustWS sets by
performing the set-intersection operation.

Termination. We follow the standard iterative data-flow
analysis approach [18] and stop after reaching a fixed point
(from the point of view of APT and PG).

Post analysis. After computing the APT , PG and auxil-
iary maps, we populate two cumulative sets for each node
in the APT : (i) cumulative read-set CRS ; and (ii) cumulative
ambiguous-access-list CAAL. A pair ⟨oi , f ⟩ ∈ CRSn indicates
that the field f of the object oi is defined at one of the pre-
decessors of n in the APT and that definition may reach a
statement in n or one of its successors in the APT. An entry
k ∈ CAALn indicates that k is in the ambiguous-access-list
of either n or one of its APT successors.

Computation of CAAL and CRS : We use Xi to refer to the
data-structure X before processing the statement labeled Li .
Note that each node inAPT can be represented by a pair ⟨i, j⟩,

RS16 {⟨o7, r1⟩} RS21 {⟨o2, r1⟩,⟨o2, r2⟩} POC {(o2,pf ), (o7,p4)}
CRS⟨1,23⟩ {⟨o2, r1⟩} CRS⟨4,22⟩ {⟨o2, r1⟩, ⟨o2, r2⟩, ⟨o7, r1⟩}
MayWS4 {⟨o2, r1⟩} MayWS11 {⟨o2, r2⟩, ⟨o7, r1⟩, ⟨o7, r3⟩}

MayWS18 {⟨o2, r2⟩, ⟨o7, r1⟩, ⟨o7, r3⟩}
MustWS4 {⟨o2, r1⟩} MustWS11 {⟨o2, r2⟩, ⟨o7, r1⟩, ⟨o7, r3⟩}

MustWS18 {⟨o2, r2⟩, ⟨o7, r1⟩}

Figure 7: Auxiliary data structures at different pro-
gram points and nodes of APT.

where, Li and Lj are the labels of the first and the last in-
struction, respectively, of the node. We traverse the APT in
post-order and for any APT node n = ⟨x ,y⟩ set: (1) CRSn =
RSy ∪⟨p,q⟩∈aptChild (n) (RSq ∪ (CRS⟨p,q⟩ − MustWSq )), and
(2) CAALn = AALy ∪⟨p,q⟩∈aptChild (n) CAAL⟨p,q⟩.

Example: Consider the example code shown in the Fig-
ure 5. Here, Lp = {p4,p11,p18} and Lo = {o2,o7}. Figure 6
shows the generated APT and PGs. For brevity, we only
show the contents of the PG just before the at-constructs.
Note that the nodes in the APT can also be represented as a
pair of indices. For example pf can be represented as ⟨1, 23⟩,
and p4 as ⟨4, 22⟩. Figure 7 shows the contents of RS ,MayWS
andMustWS sets at different representative program points.
CRS and POC maps are shown as seen after the analysis of
the function f . For this example, AAL = ϕ.

3.2 Optimized Code Generation
We now discuss our code generation scheme that uses the
information (APT , PG, RS , CRS , MayWS , POC , and CAAL)
computed in Section 3.1.3 to generate code which ensures
that only required data is copied to the target places during
a place-change operation. For the ease of explanation, we
show the rules to emit X10 optimized code, which can be fed
to the current X10 compiler to generate efficient target code.

While compiling an at-construct, the current X10 com-
piler captures all the free variables (including this) that are
referenced in the body of the at-construct, and emits code
to copy all the data reachable from these free variables. For
example, in Figure 5 for the at-construct at line 11, the
whole of object b will be copied to the target place. We take
advantage of this approach of the X10 compiler and use a
simple scheme to emit optimized code. We first illustrate our
scheme using the code in Figure 5. We emit code to copy
b.r1 to a temporary (say t3) just before line 11. In the body
of the at-construct, we create an empty object (say b1,
of type B), set b1.r1=t3, and replace every occurrence of
b.r1 in the body of the at-construct with b1.r1. Note
that in this generated code, b is not one of the captured free
variables and hence the object pointed-to by b will not be
copied (at the at-construct) by the X10 compiler; t3 will
be copied instead. We now first present a brief discussion
on the impact of objects pointed-to by weak-edges and then
detail our code generation scheme.
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1 at(p1){..//oi and oj created here.

2 at(p2){
3 a.r1 = 9;

4 ... = b.r1; }}

(a) x10 code snippet

oia
p

ojb
p

p

(b) PG at Line 2.

Figure 8: An example to illustrate ‘ambiguous’ objects.

Ambiguous objects: In a points-to graph, we call an
object oi to be ambiguous, if oi is reachable from some node
say x ∈ PG .N , and the path from x to oi in PG contains
a weak-edge. Unlike a non-ambiguous object, we cannot
precisely determine which of the fields of the ambiguous
objects are to be copied. For example, Figure 8 shows a small
snippet of X10 code and its points-to graph (before line 2).
At run-time line 3 may write to field ⟨oi , r1⟩ or ⟨oj , r1⟩ and
hence, the field dereference at 4 may read the value of the
field ⟨oj , r1⟩ written at line 3 or in place p1. Consequently, at
compile time we would not know if b.r1 should be copied
from p1. Because of such inexactness during compilation
time (and to be sound), we deal with the ambiguous objects
(for example, oi and oj , in Figure 8) conservatively and copy
the full objects (provided, the objects are being dereferenced).
We now describe how our code-generation pass handles

the statements discussed in Section 3.1.3. Of these state-
ments, handling the at-construct (described first) is more
involved than the rest (described at the end).

Handling at-construct Lj :at-entry(p). Say the corre-
sponding APT node is ⟨j,k⟩. We first compute the set of all
the ambiguous objects that are reachable from the elements
of CAAL⟨j,k⟩: AOS = {oi |n ∈ CAAL⟨j,k⟩ ∧ n →+w oi ∈ PG j };
here n →+w oi ⇒ oi is reachable from n (in PG j ) ,after
traversing one or more weak edges. During a place-change
operation, the objects in AOS will be copied fully. This code
generation phase for the remaining objects has two parts:

(A) Code emitted immediately before label Lj : Figure 9
emits code to save the field ⟨oi ,д⟩ that is used in the succes-
sor(s) of pOf(j ) (in the APT) if (1) CRS⟨j,k⟩ contains ⟨oi ,д⟩
and oi is non-ambiguous; (2) oi created at pOf(j ) orMayWS j
contains ⟨oi ,д⟩ (that is, ⟨oi ,д⟩may be written to at the parent
place pOf(j )); and (3) either ⟨oi ,д⟩ is a scalar field, or it points
to an ambiguous object (Lines 3-7).
As we will see in Figure 10, we may create new substi-

tute objects inside an at-construct. And in the body of the
at-construct, whenever there is a reference to the original
object, those references have to be replaced by the substi-
tute objects. To aid in this process, we maintain a map H
which takes as input an object oi and returns the name of the
variable pointing to the substitute object. We save the old
value of H before processing an at-construct (at-entry
statement, that is) and restore H to the saved value after
completing the processing of at-exit.

1 Input : PG j ,AOSj ,CRS⟨j,k⟩,MayWS j , POC .
2 begin
3 foreach ⟨oi ,д⟩ ∈ CRS⟨j,k⟩ ∧ oi < AOSj do
4 if POC(oi ) == pOf(j ) ∨ ⟨oi ,д⟩ ∈ MayWSj then
5 bool flag1 = ∃ (oi →

f,g ol ) ∈ PG j .E;
6 bool flag2 = flag1 ∧ (ol ∈ AOSj ) ;
7 if ¬flag1 ∨ flag2 then // Emit code to copy
8 if H.contains(oi ) then // oi is being

referred to by a new temp name
9 x=H .get(oi );

10 else
11 Set x to the name of one of the variables

pointing-to oi in PG j .E;
// Three-address-code input.

Hence, each object is pointed
to by at-least one variable.

12 String T1 = new TempName();
13 Emit ("val " ∥ T1 ∥ "=" ∥ x ∥ ".g;");
14 tMap.put(⟨oi ,д⟩,T1)// Store the mapping

Figure 9: Function to emit the required code before
the at-construct of the APT node ⟨j,k⟩.

To emit the correct code, we need to identify a variable x
that points to the substitute object of oi (if present), or oi in
PG j (Lines 8-11). Then we create a temporary (name in T1)
and emit code to copy x.g to the temporary. We remember
this mapping of ⟨oi ,д⟩ to T1 in a global map tMap.
(B) Code emitted in the body of the at-construct at Lj :

Figure 10 emits code to create an object for oi and re-store
the value of ⟨oi ,д⟩ from temporaries (added in Step A); we
further improve it in Section 6. For each pair ⟨oi ,д⟩ read
in the body of at-construct and oi is not an ambiguous
object, we call the function createObject(oi , H , S) to emit
code to create a substitute object for oi (Line 5); say stored in
a variable named tx0. We then check if ⟨oi ,д⟩ is a non-scalar
field pointing to a non-ambiguous object say oj . If so we emit
code (Line 7) to create a substitute object for oj (say, stored
in a variable named tx1) and initialize tx0.д to tx1 (Line 8).
Otherwise (either ⟨oi ,д⟩ is a scalar, or oj is ambiguous), we
lookup (in tMap) the temporary (say, named tx3) in which
the value of ⟨oi ,д⟩ was stored before the at-construct and
initialize tx0.д to tx3 (Line 9). For each pair ⟨oi ,д⟩ written in
the body of at-construct and oi is not ambiguous, call the
function createObject(oi , H , S) to check and emit code to
create a substitute object for oi (Lines 10- 11).
Handling statements other than the at-construct.

For statements a=b, a=b.f, a.f=b and a=x.f(b), we check
if the objects pointed to by the variables and fields have sub-
stitute objects created in the current scope (and are present
in the H map), and if so we replace the variable names with
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1 Input : PG j ,AOS,RSk ,MayWSk
2 begin
3 Set S = ϕ;
4 foreach ⟨oi ,д⟩ ∈ RSk∧ oi < AOS do
5 createObject(oi , H , S);
6 if ∃ (oi →

f, g oj ) ∈ PG j .E ∧ oj < AOS then
7 createObject(oj , H , S);
8 Emit(H .get(oi ) ∥ "." ∥ g ∥ "=" ∥ H .get(oj ) ∥ ";");

9 else Emit(H .get(oi ) ∥ "." ∥ g ∥ "=" ∥ tMap.get(⟨oi ,д⟩)
∥ ";") ;

10 foreach ⟨oi ,д⟩ ∈ MayWSk∧ oi < AOS do
11 createObject(oi , H , S);

12 Function createObject (o, H, S)

13 begin
14 if ¬S .contains (o) then
15 S = S ∪ o; String T1 = new TempName();
16 Emit ("val " ∥ T1 ∥ "=new " ∥ typeOf(o) ∥ "();");
17 H .put(o, T1);

Figure 10: Emit code to copy data from the tempo-
raries, emitted in Fig. 9. Function createObject emits
code to create a “substitute” object for oi .

names of the temporaries created. See Section 6 for a discus-
sion on further optimization for the statement a=b.

Code generation for our running example: For the
example shown in the Figure 5, our code generation pass
takes the computed data-structures (shown in Figures 6
and 7) and generates code as shown in Figure 11.
As it can be seen, unlike the default X10 compiler that

copies the complete object (for example, in Figure 5 the ob-
jects pointed-to by a, a and b, and a for the at-constructs
at Lines 4, 11, and 18, respectively) to the destination place,
our proposed AT-Opt copies only the required data (for ex-
ample, in Figure 11 see lines 4, 13, and 22), creates the re-
quired substitute objects therein (for example, in Figure 11
see lines 6, 15, and 24), and initializes substitute objects with
the copied data. Note that at Line 6, we only create a sub-
stitute object, but do not (need to) emit additional code to
initialize any of its fields. In contrast, the substitute objects
created at Lines 15 and 24 have some of their fields initialized
explicitly, because those fields are explicitly live from remote
place and referenced later in the code (see Section 6 for a
further optimization in the generated code).

In contrast to AT-Opt, the scalar-replacement technique of
Barik et al. [6] will be serializing the complete object pointed-
to by a, for two reasons: (i) it is copied at Lines 10 and 13.
(ii) one of its fields is written to (a.r2 at Line 5). However,
their scheme can scalar-replace b.r1, if it is a scalar field.
Otherwise, their scheme cannot scalar-replace even b.r1

and has to serialize the complete object pointed-to by b.

1 def f():void{

2 val a:A = new A();

3 a.r1 = ...

4 t1 = a.r1;
5 at(P){

6 val a1:A = new A();
7 a1.r2 = ...

8 ... = a1.r2;
9 val b:B = new B();

10 b.r1 = ...

11 for(i in D){

12 b.r3 = a1;
13 t3 = b.r1;
14 at(D(i)){

15 val b1:B = new B();
16 b1.r1 = t3;
17 val a2:A = new A();
18 ... = b1.r1;
19 val c:A = a2;
20 c.r1 = ...

21 ... = a2.r1; }}

22 t2 = a1.r2;
23 at(Q){

24 val a3:A = new A();
25 a3.r1 = t1;
26 a3.r2 = t2;
27 ... = a3.r1;
28 ... = a3.r2; }}}

Figure 11: Optimized code for Figure 5.

4 INTER-PROCEDURAL AT-OPT
In this section, we present the inter-procedural extension
to the intra-procedural analysis discussed in Section 3. This
is based on an extension to the standard summary-based
flow-sensitive analysis [18]. In addition to maintaining the
standard summaries for points-to information and iterating
till a fixed point, we maintain summaries forCRS and CAAL.
For each function node in the call-graph, we maintain (1)
Input summary: gives the summary of the points-to informa-
tion of the function parameter(s) including the this pointer.
(2) Output Summary: (A) points-to details of function param-
eters (as seen at the end of the function) and return value (B)
cumulative-read-set: CRS as computed for the abstract place
corresponding to the function call. (C) Cumulative ambigu-
ous accesses list: CAAL as computed for the abstract place
corresponding to the function call. As expected, the input
and output summaries are conservative and sound.

Our inter-procedural analysis follows a standard top-down
approach with additional steps to compute or maintain the
specialized summaries under consideration. We now discuss
some of the salient points therein.

Representation of Objects: In addition to the label in
which the object is allocated, we maintain a (finite) list of
labels giving a conservative estimation about the context
(call-chain) in which the object is created; this list is referred
as the context-list of the object.

Initialization. Unlike the intra-procedural analysis, where
the analysis of each function starts with a conservative as-
sumption of its arguments, here the analysis begins with an
initial points-to graph representing the summary points-to
graph of the arguments.

End of analysis of a function. Once we terminate the
analysis of a function bar, besides creating a summary for
the points-to graph, we set the CRS (and CAAL) in output
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Lj : a = x .bar (b) (N ,E) ⇒ (N ∪ {o⟨i,[j,C]⟩ |o⟨i,[C]⟩ ∈ OS .PG .N ∧ [C] = [ll ,C ′] ∧ ll is a label in bar},
E ∪ {a →p o⟨i,[C]⟩ | fr et →

p o⟨i,[C]⟩ ∈ OS .PG .E}
∪ {y →f,g o⟨i,[C]⟩ |this →

+ y ∈ IS .PG .E ∧ y →f,g o⟨i,[C]⟩ ∈ OS .PG .E}
∪ {z →f,g o⟨i,[C]⟩ | f arдb →

+ z ∈ IS .PG .E ∧ z →f,g o⟨i,[C]⟩ ∈ OS .PG .E}
RS ⇒ RS ∪ (CRS⟨m,n⟩ − LocalObjectsbar ) // if the ⟨m,n⟩ is the APT node for bar.
AAL ⇒ AAL ∪ {x } // if x has weak-edges in E.
AAL ⇒ AAL ∪ {b} // if b has weak-edges in E.
AAL ⇒ AAL ∪ {⟨oi ,д⟩|(x →

+ oi ∈ E ∨ b →
+ oi ∈ E) ∧ ⟨oi ,д⟩ is a weak-edge}

AAL ⇒ AAL ∪ (CAAL⟨m,n⟩ − LocalVarsbar ) // if the ⟨m,n⟩ is the APT node for bar.

Figure 12: Rules to translate a function-call instruction for inter-procedural analysis.

summary as the CRS (and CAAL) of the APT node corre-
sponding to the function bar; recall that corresponding to
each function, we create a special place node and that is the
root of the APT for that function.

Processing the statements. All the statements except
that of the function call are handled mostly similar to the
way they were handled during the proposed intra-procedural
analysis (Figure 4). The only difference is that we use the
extended representation for the objects. The newly created
object is represented as o⟨i,[0]⟩, where [0] represents the con-
text. If this allocation site is present in a function f1, another
function f2 calls f1, and this object is made accessible in f2
(for example, via a return statement in f1) then the context-
list of the object is updated to reflect the call of f1 in f2.
We now discuss how we process the function-call state-

ment (shown in Figure 12). The main difference in processing
is related to the handling of input-summary (IS) and taking
into consideration the impact of the output-summary (OS)
on the arguments and return value. This process is followed
for each of the functions that bar may resolve to statically.

Impact on IS of the function bar. In points-to graph present
in the IS of the function bar, the formal parameter corre-
sponding to the actual argument b is updated to additionally
point to the nodes pointed to by b.
Impact of OS of the function bar. Say the APT node for

the function bar is represented by ⟨m,n⟩. (1) For each object
o⟨i,[C]⟩in the merged PG, if it is created in the function bar,
then we append the label Lj to the context-listC . (2) We set b
to point to whatever the corresponding formal parameter of
bar is pointing to in the OS. (3) We set a to point to whatever
the return value is pointing to in the OS. (4) We merge the
entries of CAAL⟨m,n⟩ with the current AAL, after removing
the local variables of bar. (5) We update CRS by taking a
union of current RS with CRS⟨m,n⟩, after removing the local
object pairs of bar.

No exceptions With exceptions
t1=x.f1; t2=x.f2; . . . var F:boolean=false;

if (x==null)
{F=true; t1=def(..); t2=def(..); . . . }
else { t1=x.f1; t2=x.f2; . . . }

// create substitute obj
// and initialize fields
x1 = new X()
x1.f1=t1; x1.f2=t2; . . .

if (F ) x1=null;
else {
x1 = new X()
x1.f1=t1; x1.f2=t1; . . . }

Figure 13: Code generation in presence of exceptions

5 AT-OPT WITH EXCEPTIONS
We now discuss how we handle X10 code that may throw
exceptions. In (a) Analysis phase: The object thrown by the
throw statement at a place p1 may be caught by the catch
statement atp1 or one of its parents in theAbstract-place-tree.
Considering the complexities in identifying the precise catch
statement and its place of execution, we treat the thrown
object conservatively and assume that all the fields reachable
from that object are read in the throw statement. Similarly,
the argument of each catch block is also treated conserva-
tively. Considering that the exceptions are rarely thrown,
our chosen conservative design doesn’t reduce our gains
much. (b) Code Generation phase: Before an at-construct,
we emit code (of the form, t = x . f ) that eagerly dereference
the object fields to copy their values into temporaries. If the
variable x points-to null , such a dereference will throw a
NullPointerException, earlier than the original derefer-
ence point (inside the at-construct) in the input program.
Note: No other exception may be thrown because of our gen-
erated code. To preserve the semantics of the generated code,
as shown in Figure 13, instead of the simple codes (shown in
the left) we emit code shown in the right.
Here, we first check if the variable points-to null , and if

so, we set a flag F to true and initialize the temporaries t1,
t2, and so on, to their default initial values. Later inside the
at-construct, we create a substitute object only if F is false.
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6 DISCUSSION
We now discuss some interesting underlying points about
our proposed optimization scheme.
(a)Ambiguous object: Our idea of ambiguous objects helps
classify objects that need to be copied fully (non-ambiguous)
and those which have to be conservatively copied fully (am-
biguous). We believe that such a classification is novel and
can enable future optimizations (involving remote data).
(b) Array data types: (i) Each write to an array element is
also considered as a read to the array object. (ii) Our AT-Opt
treats non-distributed arrays and rails as a single object and
not as a collection of objects. This can be improved by do-
ing precise array index analysis and only copying the rel-
evant fields. We leave it as a future work. However, in our
experience, we have found that programs rarely access non-
distributed array elements.
(c) Transient and GlobalRef fields: X10 allows variables
and fields to be declared as transient – that are not copied
to the remote place and are hence not relevant to our study.
Similarly, for variables and fields declared as GlobalRef,
only their memory references get serialized – notmuch scope
to optimize and are hence not optimized by us.
(d) Code generation for substitute object: During the
code generation phase (Section 3.2), AT-Opt emits code to
create a new substitute object for different objects and initial-
izes its fields from the temporaries created in the previous
phase (Figure 9). We can further optimize this part by avoid-
ing the creation of new substitute objects (altogether) and
replacing the corresponding field de-references with the tem-
poraries. Such an optimization can be done only if the object
under consideration is not passed to any function call (in-
cluding as the this argument). Note that we emit code to
add a dummy constructor for each user-defined type of the
input X10 program to assist in creating the substitute objects.
(e) Code generation for the statement a=b: During the
code generation phase, if the object oi pointed-to by b is non-
ambiguous, and the code generator has not emitted code to
create substitute object for oi , then it indicates that oi is not
de-referenced/used in the body of the at-construct; likely
dead-code. Hence, we eliminate the statement altogether.
(f) AT-Opt in the compiler: AT-Opt is a high-level optimiza-
tion that does not interfere negatively with other high-level
optimizations but it requires a pre-pass of expression simpli-
fication (to three-address code). AT-Opt should be invoked
before any other high-level-optimization that may change
the structure of at-constructs.
(g) Remote reads/writes instead of AT-Opt. The alterna-
tive of using remote references for local reads/writes of non-
distributed objects is unsuitable as the writes to ‘local’ mem-
ory of a place will be visible to other tasks running on other
places – violates the underlying PGAS semantics.

Name I/P #at serialized-data (GB) % reduction in
Stat Dyn Base AT-Opt c-miss(I) c-miss(A)

BF 256 45 6K 3.00 0.12 91.94 33.48
DST 256 101 15K 7.39 0.50 88.58 31.23
BY 128 69 550K 68.08 0.25 91.14 25.92
DR 256 39 489K 120.07 0.39 95.80 47.11
DS 256 195 542K 140.09 0.26 86.98 35.06
KC 256 121 84K 0.32 0.16 21.97 7.75
DP 256 97 68K 32.18 0.15 95.60 38.08
HS 256 130 400K 1.01 0.22 22.05 5.56
LCR 256 48 197K 0.47 0.09 22.75 8.61
MIS 256 68 18K 8.94 0.13 88.55 42.78
MST 256 254 193K 76.48 10.32 78.95 25.90
VC 256 86 5K 2.27 0.12 86.39 30.68

Figure 14: Characteristics of the IMSuite kernels. Ab-
breviations: c-miss: cachemisses; (I) - Intel; (A) - AMD.

(h) Code generation for at-expr (such as the ones shown
in Figure 1a) is handled in the same way as the at-statement.

7 IMPLEMENTATION AND EVALUATION
In this section, we evaluate our proposed optimization AT-Opt
on two different systems - a two node Intel system, where
each node has two Intel E5-2670 2.6GHz processors, 16 cores
per processor, 64GB RAM per node, and 20MB cache-per
core; and a two node AMD system, where each node has
an AMD Abu Dhabi 6376 processor, 16 cores per processor,
512GB RAM per node, and 2MB cache per core.
We implemented AT-Opt in the x10v2.6.0 compiler x10c

(Java backend) and x10c++ (C++ backend). Based on the
ideas from the insightful paper of Georges et al. [11], we
report the execution times by taking a geometric mean over
thirty runs.
We evaluated AT-Opt using 12 benchmark kernels from

IMSuite [13]: breadth first search (BF - computes the dis-
tance of every node from the root and DST - computes the
BFS tree), byzantine consensus (BY), routing table creation
(DR), dominating set (DS), maximal independent set (MIS),
committee creation (KC), leader election (DP - for general
network, HS - for bidirectional ring network, and LCR - for
unidirectional ring network), spanning tree (MST) and ver-
tex coloring (VC). We also studied many other benchmarks
made available in the X10 distribution, but none of them met
our selection requirements: (a) presence of at-construct
in the program, and (b) de-reference of object (other than
distributed arrays) fields at a remote place.

In Figure 14, columns 2 to 4, show the chosen input sizes,
and the number of remote-communications (number of at
statements) during both compile-time and run-time, for the
chosen input. For all the benchmarks kernels, the chosen
input size was the largest input such that on our 32-core Intel
system, when the input program, compiled using default
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(a) Speedups on the two node Intel system; totalCores=64. Speedup=(execution time using Base / execution time using AT-Opt).

(b) Speedups on the two nodeAMD system; totalCores=32. Speedup=(execution time using Base / execution time using AT-Opt).

Figure 15: Speedups for varying number of places (#P) and threads (#T). Config Ci ≡ #P=i and #T=totalCores/i;

x10c, is run by setting X10_NPLACES=2, it does not take more
than an hour to execute and does not run out-of-memory.

We executed the chosen kernels on the specified inputs by
varying the number of places (in powers of two) and threads
per place such that at any point of time the total number of
threads (= #places × #num-threads-per-place) is equal to the
number of cores. This is achieved by setting the runtime envi-
ronment variable X10_NPLACES and X10_NTHREADS (threads
per place) appropriately. The default X10 runtime divides the
places equally among all the provided hardware nodes.

7.1 Evaluation of AT-Opt
We report experimental results for two cases: (a) Base - the
baseline version without any communication optimizations;
(b) AT-Opt - the optimized version that uses the techniques
described in this paper. In Figure 14, the columns 5 and 6
report the amount of data (excluding some common meta-
data and body of the at-construct) serialized during the
execution of kernel programs, in the context of Base and
AT-Opt, respectively. As it can be seen, compared to Base

the AT-Opt optimized code leads to a large reduction in the
amount of serialized data (2× to 527×). Note that the amount
of data serialized is independent of the number of places and
is only dependent on the number of at-constructs and the
data serialized at each of them. We present the evaluation in
two parts: (i) on a multi-node (distributed) setup, and (ii) on
a single-node (shared memory) setup.
Multi-node setup. Figure 15a and Figure 15b show the

speedups achieved by using AT-Opt, on the two node Intel
system and AMD system, respectively, for varying number of
places and threads. It can be seen that with respect to Base,
the AT-Opt optimizer achieved large speedups: geomean of
8.61× on the Intel system and 5.57× on the AMD system.

It can be seen that except for KC, HS and LCR, the speedups
across the Intel and AMD systems are consistent. The exact
amount of speedup may vary, depending on the input pro-
gram, the input, and the hardware (including the available
cores, memory, cache size and so on).

For kernels KC, HS and LCR, the speedups are not substan-
tial. This is due to the amount of data getting communicated
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across places (in Base, itself) is very less; consequently the
reduction in the communicated data is also less (order of few
hundred MBs; see Figure 14). For the rest of the benchmarks,
AT-Opt leads to significant amount of gains in the execution
time (in line with the reduction in the communicated data).
In case of BY, DS and MST, the relative amount of time they
spend in computation (compared to the communication of
serialized data) is much higher (in contrast to the kernels
like BF, DR, and VC that show large gains). As a result the
speedups in BY, DS and MST look comparatively less.
In general, we find that for very low values of threads

per place, the speedups seem to taper off. This because, the
IMSuite kernels tend to take more time, in such scenarios.
Single-node (shared environment) setup. Figure 16 shows

the geometric mean speedups achieved by the kernels on an
Intel (32 cores) or on an AMD (16 cores) system in different
X10 compiler backend (x10c-Java and x10c++-C++). For Base
x10c (Java) compiler on Intel system: DR, DS andMST ran out
of memory with 16 and 32 places and DP ran out of memory
with 32 places, but as AT-Opt optimizes data across places it
ran successfully, within the available memory. We can see
that AT-Opt leads to significantly high speedups, even on a
single node system: geometric mean of 3.06× and 3.44× on
the Intel system and AMD system, respectively. Naturally,
the speedups on the distributed-memory system are more
because of the reduction in inter-node communication. We
skip the detailed intra-node results for brevity.
To understand the sources of the obtained speedups, we

studied the cache behavior of the generated codes (using the
C++ backend) on a single node Intel and AMD systems. In
Figure 14, the columns 7 - 8 report, the geomean % reduction
(compared to Base) in cache-misses (22-95% for the Intel
system and 5-47% for the AMD system), across C2, C4, C8,
C16 and C32. Thus the overall gains = gains from reduced
copying and data-transfer + reduced memory-access cost
due to reduced cache-misses. It can be seen that reduction
in cache-misses is less on the AMD system. We conjecture
the reason to be related to the cache size: because AT-Opt
reduces the amount of memory usage, which in turn leads
to less cache pollution and the impact of it is more visible
on a system with larger cache (Intel system).

Impact of the inter-procedural analysis. For the benchmarks
under consideration, we found that the inter-procedural com-
ponent was essential for getting the large speedups. This is
because, the intra-procedural analysis alone leads to gains
only in two benchmarks (BY and DP). Even there, the gains
were minimal, as those optimized at-constructs were not
part of the main computation. Details skipped for brevity.
Impact due to the conservative handling of ambiguous-

objects. In the chosen kernels that met our selection require-
ments (Section 7) the impact due to ambiguous objects was
non-existent. This is not unexpected, because in HPC codes,

Figure 16: GeoMean speedups for varying number
of places (#P) and threads (#T) for single node Intel
(#cores = 32) and AMD (#cores = 16) systems using Java
and C++ backends. Config: Ci ≡ #P=i and #T=#cores/i.

it is not common to conditionally create objects and deref-
erence them at remote places. However, we still show the
procedure to deal with them to make sure that our proposed
technique is sound (see Figure 8 and the discussion thereof).
Comparison against the prior work. Barik et al. [6] use a

simple scheme of scalar-replacement to reduce the amount
of data communicated across places. While that scheme iden-
tifies a subset of opportunities identified by our proposed
technique and can be effective in some cases, for the IMSuite
benchmarks, the scalar-replacement scheme had no impact,
whatsoever. This is because in these benchmarks the objects,
whose fields accesses are optimized by our technique, are
passed as arguments (receiver or parameters) to functions,
and consequently scalar-replacement is not performed, as
it may require non-trivial modifications to the method sig-
natures. Further, many of those fields were non-scalar in
nature (violation of the requirement to perform scalar re-
placement [6]). This renders a comparison of AT-Opt against
the scalar-replacement scheme of Barik et al. redundant.

Summary:We have studied the benchmarks and their be-
havior carefully and found that the actual amount of speedup
varies depending on multiple factors: (1) Number of executed
at-constructs. (2) Amount of data getting serialized during
each communication. (3) Amount of other components of
remote communication (meta-data such as runtime-type in-
formation, data related to the body of the at-construct, and
so on) (4) Time taken to perform inter-place communication.
(5) The nature of the input, runtime/OS related factors and
the hardware characteristics. While the factor (2) is the only
one that is different between Base and AT-Opt optimized
codes, the impact of factor (2) can be felt on (4) as well. Since
AT-Opt helps reduce the factors (2) (and consequently factor
(4)) it leads to significant performance gains.
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8 RELATEDWORK
There have been many prior works [3, 5, 6, 9] that aim to
reduce the communication overheads across places resulting
from redundant data transfers. Barik and Sarkar [5] elim-
inate memory loads by scalar replacement in single place
X10 programs. The scalar-replacement scheme of Barik et
al. [6] targets multi-place X10 programs and has similarities
with AT-Opt, but with the following differences: (i) They han-
dle only scalar fields; AT-Opt goes beyond that and reduces
remote-data transfers involving heap objects. (ii) They do not
handle writes to fields; AT-Opt can handle reads and writes
of both mutable and immutable-fields. (iii) They cannot han-
dle ‘ambiguous’ objects (Section 3.2, Figure 8); AT-Opt can.
(iv) Importantly, unlike AT-Opt their scheme cannot be ap-
plied where the object (whose fields may have to scalar-
replaced) is passed to a function as an argument/receiver. Be-
cause of these points, the impact of their scalar-replacement
scheme was negligible on the IMSuite kernels (see Section 7).

Besides the scalar-replacement technique, Barik et al. [6]
also present other compiler optimizations to reduce commu-
nication and synchronization overheads: task localization,
object splitting for array of objects, replicating arrays across
places, distributing loops to specialize local-place accesses
and so on. We believe that these techniques can be effectively
used along with our techniques in an orthogonal manner,
by invoking AT-Opt first and then these optimizations (that
may change the structure of loops/at-construct).
There have been prior works [3, 9] that aim to optimize

communication of fine-grain data by eliminating redundant
communication, use of split-phase communication and coa-
lescing. Similarly, Hiranandani et al. [15, 16] have developed
a framework called Fortran D, which reduces communication
overheads by applying optimizations like message vectoriza-
tion, message coalescing, message aggregation and pipelin-
ing. These techniques are further extended by Kandemir et
al.[17] to optimize the global communication. Our proposed
work targets general communication (not just fine-grain
communication) and can be invoked before their schemes to
take advantage of both the schemes together.

Sanz et al. [22] optimize the communication routines and
block and cyclic distribution modules in Chapel [7] by per-
forming aggregation for array assignments. Paudel et al. [19]
propose a new coherence protocol in the X10 runtime, to
manage mostly-read shared variables. Our proposed tech-
nique can be used on top of such runtime optimizations to
further improve the performance.

There have been many works on points-to and shape anal-
ysis [4, 10, 12, 20, 21, 24]. Chandra et al. [8] use a dependent
type system to reason about the locality of X10 objects. We
extend the escapes-to-connection graph of Agarwal et al. [1]
to reason about the places and objects accessed thereof.

9 CONCLUSION
In this paper, we present a new optimization AT-Opt to re-
duce the communication overheads by paying close attention
to objects getting copied across places in X10 programs. We
implemented AT-Opt in the x10v2.6.0 compiler and evalu-
ated the performance on two different systems (a two node
× 32-core Intel system and a two node × 16-core AMD sys-
tem). We achieved significant gains in execution time with
speedups of 8.61× and 5.57× on the Intel and AMD systems,
respectively. Additionally, the experimental results show that
the AT-Opt optimized programs scale better than the base-
line versions. Though our proposed techniques are discussed
in the context of X10, we believe that AT-Opt can be applied
to other PGAS languages like Chapel, HJ, and so on.
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A ARTIFACT APPENDIX
A.1 Abstract
Our artifact can be evaluated in twoways: using the provided
virtual machine or manual download/build/compile/run ap-
proach. The artifact contains (i) a virtual machine image
(with Base and AT-Opt compilers build in it, data sets and
scripts to evaluate kernels on an x86 virtual machine), and
(ii) source files, data sets, and scripts for ‘manual’ evaluation
of AT-Opt techniques against Base compiler. AT-Opt tech-
niques are implemented on the top of x10v2.6.0. The virtual
machine based evaluation should be sufficient to establish-
ing the overall claims of the paper. The manual evaluation is
required to match the exact evaluation numbers such as the
ones shown in Figure 14, 15a and 15b.
For each of the benchmarks under consideration, the ar-

tifact evaluation can be used to compute (i) the execution
time resulting from using AT-Opt and Base, (ii) the speedup
compared to Base, and (iii) the amount of serialized data
resulting from using AT-Opt and Base. Note that the exact
speedups may differ from the ones reported in the paper,
because of the differences in the actual hardware.

A.2 Artifact check-list (meta-information)
•Algorithm:An optimized code generator for place-change
operations.
• Virtual Machine: OVA file that can be opened using Vir-
tualBox.
• Programs: AT-Opt compiler, and Base compiler.
• Compilation: ant, g++ and java.
• Binary: Binary for the x86 systems included in the virtual
machine.
• Data set: All 12 kernels from IMSuite Benchmarks [13].
• Run-time environment: Our artifact has been devel-
oped and tested on Linux environment. The main software
requirements are g++, Apache ant, and JAVA.
• Hardware: We recommend (a) a two node Intel system,
where each node has two Intel E5-2670 2.6GHz processors, 16
cores per processor, 64GB RAM per node, and 20MB cache-
per core; and (b) a two node AMD system, where each node
has an AMD Abu Dhabi 6376 processor, 16 cores per pro-
cessor, 512GB RAM per node, and 2MB cache per core for
establishing the exact results presented in our paper.
• Output: We provide scripts to generate output files con-
taining (1) the execution times for varying number of places
(C2 to C64), (2) the speedups for varying number of places
(C2 to C64), and (3) total amount of data serialized.
•Workflow frameworks used?: No.
• Publicly available?: Yes.

A.3 Description
A.3.1 How delivered. Our virtual machine image, source

code, benchmarks, and scripts can be obtained from https:
//doi.org/10.5281/zenodo.1317758.

A.3.2 Hardware dependencies. none.
A.3.3 Software dependencies.

1)Using VM: For evaluation using Virtual Machine required
software is already installed in the provided image. A Virtu-
alBox (from Oracle) is required to install the image and do
the evaluation.
2)Usingmanual evaluation: The below-required software
needed to be installed in the system.
• g++ (preferred version 5.4.0 ).
• Apache ant software (preferred version 1.9.6 ).
• Java software.
– Preferred jvm jdk1.8.0_151 (or) java-8-oracle.
– After installation, set JAVA_HOME path in ∼/.bashrc
to point to the installed JAVA bin

A.4 Installation and Evaluation (VM)
A.4.1 Installation. Download the image (ubuntu-16.ova)

from https://doi.org/10.5281/zenodo.1317758 and import it
in the VirtualBox. Login information:

- User Name: ubuntu-16
- Password: admin123

A.4.2 Evaluation. Steps for evaluation:
• Start the ubuntu-16 virtual machine.
• Open a new terminal and run the below commands.
$ cd $ATHOME/script

• For establishing the impact of AT-Opt, when the programs
are run on a 64 core system (similar to the setup used for
Figure 15a):
$ sudo ./eval_64.sh all localhost localhost speedup

The first option tells the script to evaluate all the kernels. One
may replace the keyword “all” with individual kernel names,
such as bfsBellmanFord, bfsDijkstra, kcommitte, leader_elect_dp,
mis, mst, leader_elect_hs, leader_elect_lcr, dijkstraRouting, ver-
texColoring, byzantine, dominatingSet, to obtain the results for
that particular benchmark – much faster. The second and third
options tell the script to use ‘localhost’ as both the nodes. Note:
In the virtual machine to simulate our evaluation platform, we
evaluate the kernels, by specifying both the nodes as “local-
host”. On our personal laptop (intel-i7 processor, 4 cores and
16GB RAM), the script took around 90 minutes to complete.
• For establishing the impact of AT-Opt, when the programs
are run on a 32 core system (similar to the setup used for
Figure 15b):
$ sudo ./eval_32.sh all localhost localhost speedup

On our laptop, the script took around 40 minutes to complete.
• To establish the impact of AT-Opt when the programs are

https://doi.org/10.5281/zenodo.1317758
https://doi.org/10.5281/zenodo.1317758
https://doi.org/10.5281/zenodo.1317758
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run on a single node 32 core machine:
$ sudo ./eval_32_one.sh all localhost speedup

On our laptop, the script took around 40 minutes to complete.
• To establish the results shown in Figure 14.
$ sudo ./eval_ser_data.sh all

On our laptop, the script took around five hours to complete.
For the sake of convenience, we have kept the generated

results in $ATHOME/sample-results/

A.4.3 Expected results. The scripts execute each kernel
for varying number of places (C2 to C64, when the total
number of cores = 64, and C2 to C32, when the total number
of cores = 32). For each kernel, we note two execution times:
execution time when executing code compiled with Base

and that when compiled with AT-Opt.
The output files (execution times + speedup + serialized

data) are in the folder $ATHOME/Results/.
(1) The following command lists the speedups obtained for

each kernel when evaluated on the VM assuming 64 cores:
$ cd $ATHOME/Results

$ grep "Speedup" 64_cores/all_speedup.txt | less

While the speedups listed above may not exactly match
that shown in Section 7, the numbers are still indicative. For
example, for BF, DR, DST, DP, MIS, MST and VC the gains are
very high. And for KC, HS and LCR the gains are between
1x to 2x.

Similar speedups can be observed for the other files in the
Results directory.

(2) Reduction in serialized data: The total "AT" calls made
during run-time, and the total amount of data serialized
by the code compiled using Base and AT-Opt compilers
(columns 4, 5 and 6 of Figure 14) are shown in all_data_ser-
ialized.txt file. For example, the following commands will
output the data of those columns.
$ cd $ATHOME/Results

$ egrep "KERNEL|Dynamic|compiler" \

data_serialized/all_data_serialized.txt | less

A.5 Installation and Evaluation (Manual)
A.5.1 Installation. Steps to build the compilers:

• Install the prior discussed software pre-requisites.
• Open a new terminal and run the following commands.
$ git clone \

https://github.com/arunt1204/ae-atOpt-pact2018.git

$ export ATHOME=$(pwd)/ae-atOpt-pact2018/AE/Manual

$ cd $ATHOME/script

• To build the x10 Base compilers that emit code to calculate
(i) speedup and (ii) amount of data serialized by the baseline
compiler: (on our laptop, each build took nearly 10 minutes)
$ ./build_x10_base.sh # speedup

$ ./build_x10_base_SB.sh # serialized data

• To build the new x10 AT-Opt compilers that emit code to
calculate (i) speedup and (ii) amount of data serialized by
AT-Opt compiler:
$ ./build_x10_AT_Opt.sh # speedup

$ ./build_x10_AT_Opt_SB.sh # serialized data

A.5.2 Evaluation. Steps for Execution:
• For establishing the impact of AT-Opt, when the programs
are run on a two node (say, hostnames given by HOST1
and HOST2) 64 core system (similar to the setup used for
Figure 15a):
$ sudo ./eval_64.sh all HOST1 HOST2 speedup

• For establishing the impact of AT-Opt, when the programs
are run on a two node (say, hostnames given by HOST1
and HOST2) 32 core machine (similar to the setup used for
Figure 15b):
$ sudo ./eval_32.sh all HOST1 HOST2 speedup

• To establish the impact of AT-Opt when the programs are
run on a single node 32 core machine:
$ sudo ./eval_32_one.sh all HOST1 speedup

• To establish the results shown in Figure 14.
$ sudo ./eval_ser_data.sh all

A.5.3 Expected results. Use the commands discussed in
Section A.4.3.

A.6 Experiment customization
We have written the scripts in a simple way for easy un-
derstanding and customization. Apart from evaluating the
kernels through the scripts with pre-decided parameters, the
kernels can also run with different parameters (like varying
input size, number of places and other; see the IMSuite web-
site for details). Further, one can compile their own code and
see the performance as well.
In the VM: the Base compilers can be found in the di-

rectory $ATHOME/x10-base/x10.dist/bin and and the
AT-Opt ones in $ATHOME/x10-atOpt/x10.dist/bin. The
user may use the corresponding x10c and x10c++ compilers.

A.7 Notes
(1) We recommend not to run scripts in parallel.
(2) Sometimes, during executions, the kernels may throw

"host not found" or "place exceptions" in both the Base
and AT-Opt compiler. It is a known bug with X10 run-
time. Solution: rerun the individual kernel.

(3) Detailed notes are available on the Github link (https:
//github.com/arunt1204/ae-atOpt-pact2018).

https://github.com/arunt1204/ae-atOpt-pact2018
https://github.com/arunt1204/ae-atOpt-pact2018
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