
Gluon-Async: A Bulk-Asynchronous System for
Distributed and Heterogeneous Graph Analytics

Roshan Dathathri∗, Gurbinder Gill†, Loc Hoang§,
Vishwesh Jatala‡, Keshav Pingali∗∗

University of Texas at Austin
{∗roshan, †gill, §loc, ∗∗pingali}@cs.utexas.edu,

‡vishwesh.jatala@austin.utexas.edu

V. Krishna Nandivada
IIT Madras

nvk@iitm.ac.in

Hoang-Vu Dang, Marc Snir
University of Illinois at Urbana-Champaign

{hdang8, snir}@illinois.edu

Abstract—Distributed graph analytics systems for CPUs, like
D-Galois and Gemini, and for GPUs, like D-IrGL and Lux, use
a bulk-synchronous parallel (BSP) programming and execution
model. BSP permits bulk-communication and uses large messages
which are supported efficiently by current message transport
layers, but bulk-synchronization can exacerbate the performance
impact of load imbalance because a round cannot be completed
until every host has completed that round. Asynchronous dis-
tributed graph analytics systems circumvent this problem by
permitting hosts to make progress at their own pace, but existing
systems either use global locks and send small messages or send
large messages but do not support general partitioning policies
such as vertex-cuts. Consequently, they perform substantially
worse than bulk-synchronous systems. Moreover, none of their
programming or execution models can be easily adapted for
heterogeneous devices like GPUs.

In this paper, we design and implement a lock-free, non-
blocking, bulk-asynchronous runtime called Gluon-Async for
distributed and heterogeneous graph analytics. The runtime
supports any partitioning policy and uses bulk-communication.
We present the bulk-asynchronous parallel (BASP) model which
allows the programmer to utilize the runtime by specifying only
the abstract communication required. Applications written in
this model are compared with the BSP programs written using
(1) D-Galois and D-IrGL, the state-of-the-art distributed graph
analytics systems (which are bulk-synchronous) for CPUs and
GPUs, respectively, and (2) Lux, another (bulk-synchronous)
distributed GPU graph analytical system. Our evaluation shows
that programs written using BASP-style execution are on average
∼ 1.5× faster than those in D-Galois and D-IrGL on real-world
large-diameter graphs at scale. They are also on average ∼ 12×
faster than Lux. To the best of our knowledge, Gluon-Async is
the first asynchronous distributed GPU graph analytics system.

Index Terms—Graph analytics, distributed and heterogeneous,
BSP model, asynchronous parallel execution models.

I. INTRODUCTION

Present-day graph analytics systems have to handle large
graphs with billions of nodes and trillions of edges [1]. Since
graphs of this size may not fit in the main memory of a single
machine, systems like Pregel [2], PowerGraph [3], Gemini [4],
D-Galois [5], D-IrGL [5], and Lux [6] use distributed-memory
clusters. In these distributed graph analytics systems, the graph
is partitioned [7], [8], [9] so that each partition fits in the
memory of one host in the cluster, and the bulk-synchronous
parallel (BSP) programming model [10] is used. In this model,

the program is executed in rounds, and each round consists of
computation followed by communication. In the computation
phase, each host updates node labels in its partition. In the
communication phase, boundary node labels are reconciled
so all hosts have a consistent view of labels. The algorithm
terminates when a round is performed in which no label is
updated on any host.

One drawback of the BSP model is that it can exacerbate
the performance impact of load imbalance because a round
cannot be completed until every host has completed that round.
This happens frequently in graph analytics applications for
two reasons: (1) unstructured power-law graphs are difficult
to partition evenly, and (2) efficient graph analytics algorithms
are data-driven algorithms that may update different subsets
of nodes in each round [11], making static load balancing
difficult.

One solution is to use asynchronous programming models
and systems [12], [13], [14], [?], [16], [17], which take
advantage of the fact that many graph analytics algorithms are
robust to stale reads. Here, the notion of rounds is eliminated,
and a host performs computation at its own pace while an
underlying messaging system ingests messages from remote
hosts and incorporates boundary node label updates into the
local partition of the graph. Asynchronous algorithms for
particular problems like single-source shortest-path (sssp) [18]
and graph coloring [19] have also been implemented. Some
of these systems or implementations use global locks or send
small messages, but current communication substrates in large
clusters are engineered for large message sizes. The other
systems send large messages but either do not handle general
partitioning policies like vertex-cuts [37], [20] or do not
optimize communication [5]. Consequently, the performance
of these systems is not competitive with BSP systems like
Gemini [4] or D-Galois [5]. In addition, it is not straightfor-
ward to extend these asynchronous programming or execution
models to execute on heterogeneous devices like GPUs.

In this paper, we explore a novel lock-free, non-
blocking, asynchronous programming model that we call bulk-
asynchronous parallel (BASP), which aims to combine the
advantages of bulk communication in BSP models with the
computational progress advantages of asynchronous models.
BASP retains the notion of a round, but a host is not required to
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Fig. 1: An example of partitioning a graph (Source: Gluon [5]).

wait for other hosts when computation in a round is completed;
instead, it sends and receives messages (if available) and
moves on to the next round. One advantage of the BASP model
is that it is relatively easy to modify BSP programs to BASP
programs. It is also easy to modify BSP-based graph analytics
systems for CPUs or GPUs to implement this model.

In our study, we use D-Galois and D-IrGL [5], the state-
of-the-art distributed CPU and GPU graph analytics sys-
tems, respectively. Both these systems are built using the
communication-optimizing substrate, Gluon [5]. By modifying
Gluon to support the BASP model, we develop the first
asynchronous, distributed, heterogeneous graph analytics sys-
tem; we name this system Gluon-Async. Like Gluon, Gluon-
Async can be used to extend or compile [21] existing shared-
memory CPU-only or GPU-only graph analytical systems for
distributed and heterogeneous execution. For large-diameter
real-world web-crawls, Gluon-Async is on an average ∼ 1.4×
faster than D-IrGL on 64 GPUs and ∼ 1.6× faster than D-
Galois on 128 hosts. Furthermore, it is ∼ 12× faster than Lux,
another BSP-style distributed GPU graph analytics system.

The rest of this paper is organized as follows. Section II
gives an overview of BSP-style distributed graph analytics and
introduces the BASP model. Section III shows how Gluon [5],
the state-of-the-art BSP-style distributed and heterogeneous
graph analytics system, can be converted to BASP-style ex-
ecution, and we believe similar modifications can be made
to other BSP-based systems. Section IV gives experimental
results on Stampede2, a large CPU cluster, and on Bridges, a
distributed multi-GPU cluster. Section V describes the related
work, and Section VI summarizes the results of this study.

II. BULK-ASYNCHRONOUS PARALLEL MODEL

This section introduces the BASP model. We start with an
overview of the BSP model before describing BASP.

A. Overview of Bulk-Synchronous Parallel (BSP) Execution

At the start of the computation, the graph is partitioned
among the hosts using one of many partitioning policies [37].
Figure 1 shows a graph that has been partitioned between
two hosts. The edges of the graph are partitioned between
hosts, and proxy nodes are created on each host for the end-
points of its edges. Since the edges connected to a given vertex
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may be mapped to different hosts, a given vertex in the graph
may have proxies on several hosts. One of these proxies is
designated the master, and the others are designated as mirrors.
During computation, the master holds the canonical value of
the vertex, and it communicates that value to the mirrors when
needed. In Figure 1, host h1 has masters for nodes {A,B,E,F,I}
and mirrors for nodes {C,G,J}.

Execution of the program occurs in rounds. In each round,
a host computes independently on its partition of the graph.
Most existing systems use the vertex programming model
in which nodes either update the labels of their neighbors
(push-style operator) or update their own labels using the
labels of their neighbors (pull-style operator) until quiescence
is reached. Since a vertex in the original graph can have
proxies on several hosts, the labels of these proxies may be
updated differently on different hosts. For example, in a push-
style breadth-first search (BFS) computation on the graph of
Figure 1 rooted at vertex A, the mirror vertex for G on host
h1 may get the label 2 from B while the master vertex for G
on host h2 remains at the initial value ∞.

To reconcile these differences, it is necessary to perform
inter-host communication. A key property of many graph
analytics algorithms is that the differences among the labels
of vertices can be reconciled by communicating the labels of
all mirrors to the master, reducing them using an application-
dependent operation, and broadcasting the result to all mirrors
(as each edge is present on only one host, updates to edge
labels do not involve communication). In the BFS example
considered above, the value 2 will be sent to the master for
vertex G on host h2 where it is reduced with the master’s
label using the “minimum” operation, and the result 2 is
used to update the labels of the master and mirrors. This
pattern of reconciling labels using a reduction operation at
the master followed by broadcast to mirrors can be used for
any partitioning strategy [5]. It can also be used to offload the
computation on any device [5].

In the BSP model, this reconciliation of node labels by inter-
host communication is performed in each round of execution,
and a host must send and ingest all updates from other hosts
in that round before it can proceed to the next round. As a
consequence, the slowest, or straggler, host in a round deter-



1 Graph∗ g ;
2 s t r u c t GNode { / / d a t a on each node
3 u i n t 3 2 t d i s t o l d ;
4 u i n t 3 2 t d i s t c u r ;
5 } ;
6 g luon : : D i s tAccumula to r <u n s i g n e d i n t> t e r m i n a t o r ;
7 . . . / / sync s t r u c t u r e s
8 s t r u c t SSSP {
9 vo id o p e r a t o r ( ) ( GNode s r c ) c o n s t {

10 i f ( s r c . d i s t o l d > s r c . d i s t c u r ) {
11 t e r m i n a t o r += 1 ; / / do n o t t e r m i n a t e
12 s r c . d i s t o l d = s r c . d i s t c u r ;
13 f o r ( a u t o d s t : g−>n e i g h b o r s ( s r c ) ) {
14 u i n t 3 2 t n e w d i s t ;
15 n e w d i s t = s r c . d i s t c u r + g−>we ig h t ( s r c , d s t )

;
16 atomicMin ( d s t . d i s t c u r , n e w d i s t ) ;
17 }
18 }
19 }
20 } ;
21 . . . / / i n i t i a l i z a t i o n , 1 s t round f o r s o u r c e
22 do { / / f i l t e r −based da ta−d r i v e n r oun ds
23 t e r m i n a t o r . r e s e t ( ) ;
24 g a l o i s : : d o a l l ( g−>b e g i n ( ) , g−>end ( ) , SSSP{&g } ) ;
25 g luon : : sync < . . . /∗ sync s t r u c t u r e s ∗ / >() ;

26 } w h i l e ( t e r m i n a t o r . r e d u c e ( ) ) ;

Fig. 3: Single source shortest path (sssp) application in BSP
programming model.

mines when all hosts complete that round. This may increase
the idle time of the other hosts and lead to load imbalance
among hosts. This is exacerbated when the algorithm requires
100s of bulk-synchronous rounds to converge. Large real-
world graph datasets have non-trivial diameter which may
execute for several rounds in the BSP model. This is turn may
result in load imbalance among hosts, hurting performance
(we analyze this in Section IV-D). One way to overcome this
is to relax the bulk-synchronization required in each round.

B. Overview of Bulk-Asynchronous Parallel (BASP) Execution

The bulk-asynchronous parallel (BASP) execution model is
based on the following intuition: when a host completes its
computation in a round, it can send messages to other hosts
and ingest messages from other hosts, but it can go on to the
next round of computation without waiting for messages from
any stragglers. Conceptually, the barrier at the end of each
BSP round becomes a point at which each host sends and
ingests messages without waiting for all other hosts to reach
that point. The correctness of this execution strategy depends
on the fact that graph analytics algorithms are resilient to stale
reads: as long as there are no lost updates, execution will
complete correctly.

Since hosts perform communication only at the end of a
round, the BASP execution model permits the message trans-
port layer to use large messages, which is advantageous on
current systems since they do not handle small messages effi-
ciently. In contrast, the asynchronous model in GraphLab [12]
uses small messages (along with locks) to interleave inter-host

1 Graph∗ g ;
2 s t r u c t GNode { / / d a t a on each node
3 u i n t 3 2 t d i s t o l d ;
4 u i n t 3 2 t d i s t c u r ;
5 } ;
6 g luon : : D i s t T e r m i n a t o r <u n s i g n e d i n t> t e r m i n a t o r ;
7 . . . / / sync s t r u c t u r e s
8 s t r u c t SSSP {
9 vo id o p e r a t o r ( ) ( GNode s r c ) c o n s t {

10 i f ( s r c . d i s t o l d > s r c . d i s t c u r ) {
11 t e r m i n a t o r += 1 ; / / do n o t t e r m i n a t e
12 s r c . d i s t o l d = s r c . d i s t c u r ;
13 f o r ( a u t o d s t : g−>n e i g h b o r s ( s r c ) ) {
14 u i n t 3 2 t n e w d i s t ;
15 n e w d i s t = s r c . d i s t c u r + g−>we ig h t ( s r c , d s t )

;
16 atomicMin ( d s t . d i s t c u r , n e w d i s t ) ;
17 }
18 }
19 }
20 } ;
21 . . . / / i n i t i a l i z a t i o n , 1 s t round f o r s o u r c e
22 do { / / f i l t e r −based da ta−d r i v e n r ou nds
23 t e r m i n a t o r . r e s e t ( ) ;
24 g a l o i s : : d o a l l ( g−>b e g i n ( ) , g−>end ( ) , SSSP{&g } ) ;
25 g luon : : t r y s y n c < . . . /∗ sync s t r u c t u r e s ∗ / >() ;

26 } w h i l e ( t e r m i n a t o r . c a n n o t t e r m i n a t e ( ) ) ;

Fig. 4: sssp application in BASP programming model. The
modifications with respect to Figure 3 are highlighted.

communication with computation, which is difficult to support
efficiently on current systems.

Figure 2(a) shows a timeline for BSP-style computation
on two GPUs. Each GPU is assumed to be a device that is
connected to a host that performs inter-host communication.
In each round, a GPU performs computation, transfers data to
its host, and gets data from its host when that host receives it
from the remote host. One feature of efficient graph analytics
algorithms is that the amount of computation in each round in
a given partition can vary unpredictably between rounds, so
balancing computational load statically is difficult. This means
that in each BSP round, some GPUs may be idle for long
periods of time waiting for overloaded GPUs to catch up. This
is shown in the second BSP round in Figure 2(a): device H1
has more computation to do than device H0 in some rounds
(and vice-versa), so in those rounds, one host must idle or
wait for the other host to finish and send its data. Figure 2(b)
illustrates the same computation under the BASP-model: here,
the idle time has been completely eliminated.

While BASP exploits the resilience of graph analytics
programs to stale reads to compensate for lack of load balance,
stale reads may result in wasted computation. For example,
under BSP execution, a host may ingest an update from
another host and compute immediately with that value in the
next round, whereas under BASP execution, the host may
miss the update, compute with the stale value, and see the
update only in a later round at which point it will need to
repeat the computation with the updated value. Therefore, if
load is already well-balanced under BSP execution, BASP



execution may not be advantageous. We study these trade-offs
by building and analyzing a BASP system.

III. ADAPTING BULK-SYNCHRONOUS SYSTEMS FOR
BULK-ASYNCHRONOUS EXECUTION

In this section, we describe how we adapted a BSP-
style distributed and heterogeneous graph analytics system
for BASP execution using the state-of-the-art communication
substrate Gluon [5]. We first describe the changes required
to Gluon application programs to make them amenable to
BASP execution (Section III-A). We then describe changes
to Gluon to support BASP-style execution (Section III-B).
We use the terms Gluon-Sync and Gluon-Async to denote
BSP-style and BASP-style Gluon, respectively. Finally, we
present a non-blocking termination detection algorithm that is
required for BASP-style execution (Section III-C). Based on
our experience, we believe that other BSP systems can also
be easily adapted to BASP.

A. Bulk-Asynchronous Programs

D-Galois [5] is the state-of-the-art distributed graph analyt-
ical system for CPUs. D-Galois programs are shared-memory
Galois [22] programs that make calls to the Gluon(-Sync)
communication substrate to synchronize distributed-memory
computation. Figure 3 shows a code snippet for single-
source-shortest-path (sssp) application. Each host processes
its partition of the graph in rounds: computation is followed
by communication. The compute phase (shown at Line 24)
processes the vertices in the partitioned graph using a push-
style operator (shown at Line 9) to compute and update the new
distance values for their neighbors. The communication phase
uses Gluon’s communication interface, i.e., the sync() method
(shown at Line 25). Gluon is responsible for coordinating the
communication among all hosts; at the end of this phase, all
hosts have a consistent view of node labels. The application
terminates when there is a round in which no host updates
a node label. This can be detected using Gluon’s distributed
accumulator to determine the number of updates among all
hosts in a round.

Figure 4 shows the same sssp application in the BASP
programming model using Gluon-Async. The changes to
the application are highlighted. The try sync (non-blocking)
call is responsible for coordinating the communication of
labels among the hosts asynchronously. It ensures that each
host eventually receives all the expected messages; in other
words, it ensures that the hosts have a consistent view of
node labels eventually. However, the challenge for each host
then is to detect the termination of an application. This
is handled efficiently using the cannot terminate() method.
The cannot terminate (non-blocking) call is responsible for
terminating if and only if no node labels can be updated on any
host1. It ensures that no host terminates as long as some host
has some computation or communication left to be completed.

1The value set to DistTerminator on each host determines whether “no node
labels are updated” or another quiescence condition is the termination criteria.

Since try sync() and cannot terminate() methods are non-
blocking in nature, a host that performs synchronization can
proceed to next round of computation phase without waiting
for the communication process to complete. Thus, it may
improve the performance.

While we explain these changes using D-Galois, the changes
to other Gluon-based systems are similar because the only
lines of code that changed are those related to Gluon. For
example, in D-IrGL, the state-of-the-art distributed GPU graph
analytical system, an IrGL compiler-generated CUDA kernel is
called instead of galois::do_all, and the sync structures
have CUDA kernels instead of CPU code. None of this
needs to be changed to make the program amenable to BASP
execution.

All programs that can be run asynchronously in exist-
ing distributed graph frameworks like PowerSwitch [14] and
GRAPE+ [17] can use BASP. In addition, if a program can be
run asynchronously in shared-memory, then it can use BASP
on distributed-memory. In shared-memory, BSP programs can
be made asynchronous if the program is resilient to stale reads
and if computation is independent of the BSP round number.
The same condition acts as a pre-requisite for changing BSP
programs to BASP programs. For example, betweenness cen-
trality [23] uses round number in its computation and requires
BSP-style execution for correctness, so it cannot be changed
for BASP-style execution. Most other BSP graph programs
that have been used in the evaluation of distributed graph
processing systems [3], [4], [5], [6], [21] can be changed to
BASP-style execution by changing only a few lines of code.

B. Bulk-Asynchronous Communication

Recall from Section II that algorithm execution in both
Gluon-Sync and Gluon-Async is done in local rounds where
each round performs bulk-computation followed by bulk-
communication. The bulk-communication itself involves a
reduce phase followed by a broadcast phase. Thus, each
round has 3 phases: computation, reduce, and broadcast. The
computation phase is identical in Gluon-Sync and Gluon-
Async, but the other phases differ.

The reduce and broadcast phases are blocking in Gluon-
Sync and non-blocking in Gluon-Async. In Gluon-Sync, hosts
exchange messages in each phase (even if the message is
empty) and hosts wait to receive these messages; this acts
like an implicit barrier. Messages are sent in the reduce or
broadcast phase of Gluon-Async only if there are updates to
mirror nodes (empty messages are not required due to relax-
ation of synchronization barriers) and no host waits to receive
a message. The action for the received messages in Gluon-
Async depend on whether they were sent in the reduce or
broadcast phase. As there are two phases and messages could
be delivered out-of-order, we distinguish between messages
sent in reduce and broadcast phases using tags. We describe
this more concretely next.

Let host hi have the set of mirror proxies Pi for which
the set of master proxies Pa are on host ha. Let Ui be the
set of mirror proxies on hi that are updated in round r (by
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definition, Ui ⊆ Pi). Let Ua be the master proxies on ha that
are updated in round r, during either computation or reduce
phases (by definition, Ua ⊆ Pa).

In Gluon-Sync, the Gluon substrate performs the following
operations for every pair of hi and ha:

• Reduce phase for hi: Sends one message mR containing
values of Ui to ha (if Ui = ∅, then an empty message is
sent) and resets the values of Ui to the identity element
of the reduction operation.

• Reduce phase for ha: Waits to receive mR from hi and,
once received, uses the reduction operator and the values
in mR to update the corresponding master proxies in Pa.

• Broadcast phase for ha: Sends one message mB contain-
ing values of Ua to hi (if Ua = ∅, then an empty message
is sent).

• Broadcast phase for hi: Waits to receive mB from ha

and, once received, uses the values in mB to set the
corresponding mirror proxies in Pi.

To support BASP-style execution of Gluon-Async, we
modified the Gluon communication-optimizing substrate to
perform the following operations (instead of the above) for
every pair of hi and ha:

• Reduce phase for hi: If Ui 6= ∅, sends a reduce-tagged
message mR containing values of Ui to ha and resets
the values of Ui to the identity element of the reduction
operation.

• Reduce phase for ha: For every reduced-tagged message
mR received from hi, uses the reduction operator and the
values in mR to update the corresponding master proxies
in Pa.

• Broadcast phase for ha: If Ua 6= ∅, sends a broadcast-
tagged message mB containing values of Ua to hi.

• Broadcast phase for hi: For every broadcast-tagged mes-
sage mB received from ha, uses the reduction operator
and the values in mB to update the corresponding mirror
proxies in Pi.

If the reduction operator is not used in the broadcast phase
of Gluon-Async, algorithms may not yield correct results (or
even converge). To illustrate this with an example, we show
the synchronization of proxies in Figure 5 for the single-
source shortest path (sssp) code in Gluon-Async (shown in
Figure 4). The label dist_current (shortened as dc), is
reduced during computation using the “minimum” operation.
Consider a vertex v with proxies on hosts h1 and h2, where
the master proxy is on h1 and the mirror proxy is on h2. The
label dc is initialized to∞ on both proxies. Say host h2 sends

values 10, 7, and 6 after executing its local rounds 1, 2, and 3,
respectively. Say host h1 receives all these values in the order
10, 6, and 7 at the end of its round 2. Host h1, which still
has ∞ value for its proxy, reduces the received values one-
by-one, yielding the update 6, and broadcasts this value to h2.
Host h1 reduces its proxy value during computation to 5 and
broadcasts it to h2 after its round 3. Host h2 receives both
these values in the order of 5 and 6. The mirror proxy value
on h2 is 6 (because reset is a no-op for minimum operation).
If host h2 had set the received values (in order) like in Gluon-
Sync, then the final value of h2 would be 6, which would be
incorrect. Host h2 instead reduces the received values one-
by-one yielding the update 5. The proxies on both hosts are
not updated thereafter and thus, both proxies have the same
values.

An important point to note is that if the message is not
empty, then Gluon-Sync and Gluon-Async send the same
message. Gluon-Async thus retains the underlying advantages
of Gluon-Sync. Gluon-Async supports any partitioning policy
and performs bulk-communication, thereby utilizing Gluon’s
communication optimizations that exploit structural and tem-
poral invariants in partitioning policies [5]. Gluon-Async can
be plugged into different CPU or GPU graph analytics systems
to build distributed-memory versions of those systems that use
BASP-style execution. As shown in Figure 2, communication
between a GPU device and its host is a local operation. Gluon-
Async treats this as a blocking operation like Gluon-Sync.
While this can be made non-blocking too, it is outside the
scope of this paper.

We showed that BASP-style execution can be used in
Gluon-Async without any blocking or waiting operations
among hosts. The messages, if any, will be eventually deliv-
ered. The key to this is that hosts must not terminate until there
are messages left to be delivered. This requires non-blocking
termination detection, which we explain next.

C. Non-blocking Termination Detection

BASP-style execution requires a more complicated termina-
tion algorithm than BSP-style execution. We describe a non-
blocking termination detection algorithm that uses snapshots
to implement a distributed consensus protocol [24] that does
not rely on message delivery order.

The algorithm is based on a state machine maintained
on each host. At any point of time, a host is in one of
five states: Active (A), Idle (I), Ready-to-Terminate1 (RT1),
Ready-to-Terminate2 (RT2), and Terminate (T ). The goal of
termination detection is that a host should move to T if and
only if every other host will move to T . We describe state
transitions and actions for ensuring this.

Hosts coordinate with each other by taking non-blocking
snapshots that are numbered. When a host takes a snapshot
n, it broadcasts its current state to other hosts (non-blocking).
Once a host h takes the snapshot n, it cannot take the next
snapshot n+1 until h knows that every other host has taken the
snapshot n. In other words, before h takes the next snapshot
n + 1, h should not only have completed the broadcast it



A

I

RT1

RT2 

T

State
transition

States:
A     : Active
I       : Idle
RT1 :  Ready-to-Terminate1
RT2 :  Ready-to-Terminate2 
T      : Terminate

Fig. 6: State transition diagram for termination detection.

Start Condition for state transition End Action
State (boolean formula) State

A inactive I
I ¬inactive A
I inactive ∧ inspected RT1 Snapshot
RT1 ¬inactive A
RT1 inactive ∧ inspected RT2 Snapshot
RT2 ¬inactive A
RT2 inactive ∧ inspected ∧ ¬affirmed RT2 Snapshot
RT2 affirmed T Terminate

TABLE I: Conditions required for state transitions during
termination detection.

initiated for n but also have received broadcast messages
from every other host for n. Thus, eventually, every host will
know the states that all other hosts took their snapshots from.
For example, all hosts will know whether all hosts took the
snapshot n from the same state RT2 or not. We use this
knowledge to transition between states.

Each host has a dedicated communication thread that is
started when the program begins (and terminated when pro-
gram ends). It receives messages throughout program execu-
tion. Every host takes a (dummy) snapshot initially. Subse-
quent snapshots are taken by a host h only if h is ready
to terminate. Intuitively, hosts can terminate only if every
host knows that ”every host knows that every host wants
to terminate”. This requires two consecutive snapshots to
be taken with all hosts indicating that they are ready-to-
terminate (RT). We use RT1 and RT2 to distinguish between
two consecutive snapshots of RT.

On each host h, the termination detection algorithm is
invoked at the end of each local round r; all the state
transitions occur only at this point in the program. Note that
r is incremented each time cannot terminate() is invoked (see
Figure 4 for example). Let n be the last snapshot that h has
taken. When the termination detection algorithm is invoked,
we first check if h is inactive, inspected, or affirmed.

A host h is considered to be inactive if the following
conditions hold:

1) No label was updated in round r in computation, reduce,
or broadcast phases.

2) All non-blocking sends initiated on this host are complete.
3) All non-blocking receives initiated on this host are com-

plete.

The first condition checks whether work was done in r while
the other conditions check whether any work is still pending.
These conditions must hold for h to take the next snapshot
n+ 1.

A host h is considered to be inspected if it knows that all the
hosts have taken the previous snapshot n. This condition must
hold for h to take the next snapshot n+1. Similarly, a host h
is considered to be affirmed if (i) h has been inspected and (ii)
it knows that all the hosts have taken the previous snapshot n
from state RT2 (that is, other hosts have also affirmed their
readiness to terminate). This condition must hold for h to
terminate.

Initially, every host is in state A. Figure 6 shows the possible
state transition on a single host. Table I shows the conditions
that must hold for each state transition and the action, if
any, taken after the state transition. No action is taken with
transitions to states A and I . When h transitions to RT1 or
RT2, it takes a snapshot. When h transitions to T , h decides
to terminate (returns false in Line 26 in Figure 4). A host
moves from A to I only if the host is inactive. If a host is not
inactive, then it moves to A from the I , RT1, or RT2 states.
If h is inspected and is in I , then it moves to RT1. If h is
inspected and is in RT1, it moves to RT2. If h is affirmed,
then it moves from RT2 to T .

Consider an example with two hosts, h1 and h2. Initially,
both of them initiate (dummy) snapshot n0. When h2 becomes
inactive, it moves to I. As both hosts initiated the previous
snapshot n0, h2 moves to RT1 and initiates the next snapshot
n1. Meanwhile, h1 sends a message to h2, becomes inactive,
and moves to I. As n0 has ended, h1 moves to RT1 and
initiates n1. In the next round, h1 detects that h2 also has
initiated n1. Note that it would be incorrect for h1 to terminate
at this point, although both h1 and h2 initiated n1 from RT1.
Our algorithm uses two RT states to detect this, so h1 moves
to RT2 instead of terminating and initiates the next snapshot
n2. During this time, h2 received the message from h1 which
made it active and moved it to A. Later, it moves to I and then
RT1 to initiate n2. In the next round, h2 observes that n2 has
ended, so it moves to RT2 and initiates n3. h1 also observes
that n2 has ended and initiates n3 while remaining in RT2.
Now, in the next round on both hosts, each host observes that
n3 has ended and that the other host has initiated n3 from
RT2, so both hosts affirm to terminate and move to T .

To implement our termination detection algorithm in Gluon-
Async (Line 26 in Figure 4), we use non-blocking collectives
to take a snapshot. For the reduce and broadcast phases,
we modify the communication substrate to send messages
in synchronous mode instead of standard mode. In standard
communication mode of MPI or LCI [25], a send (call) may
complete before a matching receive is invoked. Hence, both
the sender and the receiver may become inactive and terminate
while the message is still in-flight. In contrast, in synchronous
mode, a send is considered complete only if the receiver has
initiated receive. Consequently, when a message is in-flight,
either the sender or the receiver is in active state A. Thus,
synchronous communication mode sends are necessary for our



TABLE II: Input graphs and their key properties (we classify graphs with estimated diameter > 200 as high-diameter graphs).

Small graphs Large graphs
twitter50 rmat27 friendster uk07 gsh15 clueweb12 uk14 wdc14 wdc12

|V | 51M 134M 66M 106M 988M 978M 788M 1,725M 3,563M
|E| 1,963M 2,147M 1,806M 3,739M 33,877M 42,574M 47,615M 64,423M 128,736M
|E|/|V | 38 16 28 35 34.3 43.5 60.4 37 36
Max OutDegree 779,958 453M 5,214 15,402 32,114 7,447 16,365 32,848 55,931
Max InDegree 3.5M 21,806 5,214 975,418 59M 75M 8.6M 46M 95M
Estimated Diameter 12 3 21 115 95 498 2,498 789 5,274
Size (GB) 16 18 28 29 260 325 361 493 986

termination detection protocol. Note that our protocol does
not rely on the order of message delivery of Gluon or the
underlying communication substrate such as MPI or LCI [25].

Note that goal of termination detection is that a host should
move to T if and only if every other host will move to T . We
now argue how our termination detection algorithm satisfies
this property. A non-active, non-terminated host h can move
back to state A only if it receives data from another host –
in this case, the inactive flag will become false. Since the
program is correct, at least one host will not reach the RT2

state until the final value(s) are computed (no false detection of
termination). A host h can reach the state RT2 from RT1 or
RT2 only if it is inspected and inactive, which means that
h did not update any labels and did not send nor receive
data. If every host took the snapshot from RT2, then no
host computed, sent, or received data between two snapshots.
Consequently, no host can receive a message and move to A
after that, so every host must terminate.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the benefits of Bulk-
Asynchronous Parallel (BASP) execution over Bulk-
Synchronous Parallel (BSP) execution using D-Galois [5] and
D-IrGL [5], the state-of-the-art graph analytics systems for
distributed CPUs and distributed GPUs, respectively. Both
these systems are built on top of a Gluon [5]. In this paper, we
use the name Gluon-Sync to refer to these two systems. We
modified D-Galois and D-IrGL BSP programs as described
in Section III-A to make them amenable for BASP-style
execution. As described in Sections III-B and III-C, we
modified Gluon to support BASP-style execution for both
systems, which we call Gluon-Async (source code is publicly
available [?]).

We also compare the performance of Gluon-Async with that
of Lux [6], which is a multi-host multi-GPU graph analytical
framework that uses BSP-style execution; note that there are
no asynchronous distributed GPU graph analytical systems to
compare against. GRAPE+ [17] and PowerSwitch [14] are
asynchronous distributed CPU-only graph systems, and we
compare them with Gluon-Async.

We first describe our experimental setup (Section IV-A). We
then present our evaluation on distributed GPUs (Section IV-B)
and distributed CPUs (Section IV-C). Finally, we analyze
BASP and BSP (Section IV-D) and summarize our results
(Section IV-E).
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Fig. 7: Strong scaling (log-log scale) of Lux, Gluon-Sync, and
Gluon-Async for small graphs on Bridges (2 P100 GPUs share
a physical machine).

A. Experimental Setup

We conducted all the GPU experiments on the Bridges
cluster [26] at the Pittsburgh Supercomputing Center [27],
[28]. Each machine in the cluster is configured with 2 NVIDIA
Tesla P100 GPUs and 2 Intel Broadwell E5-2683 v4 CPUs
with 16 cores per CPU, DDR4-2400 128GB RAM, and 40MB
LLC. The machines are interconnected through Intel Omni-
Path Architecture (peak bandwidth of 100Gbps). We use up
to 64 GPUs (32 machines). All benchmarks were compiled
using CUDA 9.2, GCC 7.3, and MVAPICH2 2.3b.

All the CPU experiments were run on the Stampede2 [29]
cluster located at the Texas Advanced Computing Center.
Each machine is equipped with 2 Intel Xeon Platinum 8160
“Skylake” CPUs with 24 cores per CPU, DDR4 192GB
RAM, and 66MB LLC. The machines in the cluster are
interconnected through Intel Omni-Path Architecture (peak
bandwidth of 100Gbps). We use 48 threads on each machine
and up to 128 machines (6144 cores or threads). Benchmarks
were compiled with GCC 7.1 and IMPI 17.0.3.

Table II shows the input graphs along with their key
properties: twitter50 [30], [31] and friendster [32] are social
network graphs; rmat27 is a randomized synthetically gener-
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Fig. 8: Speedup of Gluon-Async over Gluon-Sync for large
graphs on Bridges (2 P100 GPUs share a physical machine).

ated graph using with an RMAT generator [33]; uk07, gsh15,
clueweb12 [34], uk14 [30], [31], [35], wdc14, and wdc12 [36]
are among the largest public web-crawls (wdc12 is the largest
publicly available graph). Table II splits the graphs into two
categories: small and large. Small graphs are only used for
comparison with Lux, GRAPE+, and PowerSwitch (we could
not run these systems using the large graphs), while we use
large graphs for all other experiments. We also classify the
graphs based on their estimated (observed) diameter. All small
graphs are low-diameter graphs with diameter < 200, while
all large graphs, except gsh15, are high-diameter graphs with
diameter > 200.

We evaluated our framework with 5 benchmarks: breadth-
first-search (bfs), connected components (cc), k-core (kcore),
pagerank (pr), and single source shortest path (sssp). For pr, we
used a tolerance of 10−6. For bfs and sssp, we considered the
vertex with maximum out-degree as the source. For kcore, we
use a k of 100. All benchmarks are executed until convergence.
We report the total execution time, excluding the graph load-
ing, partitioning, and construction time. The reported results
are a mean over three runs.

For Gluon-Sync and Gluon-Async, the partitioning policy
is configurable as it uses the CuSP streaming partitioner [37].
Based on the recommendations of a large-scale study [20],
we choose the Cartesian Vertex Cut (CVC) [9], [5] for all our
experiments2. We use LCI [25] instead of MPI for message
transport among hosts3.

2sssp, clueweb12, GPUs uses Outgoing Edge Cut due to memory limits.
3Dang et al. [25] show the benefits of LCI over MPI for graph applications.
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Fig. 9: Speedup of Gluon-Async over Gluon-Sync for large
graphs on Stampede (each host is a 48-core Skylake machine).

For Lux, we only present results for cc and pr as the other
benchmarks are not available or produce incorrect output. pr
in Lux does not have a convergence criterion, so we executed
it for the same number of rounds as that of Gluon-Sync4

(Gluon-Async might execute more rounds to converge). Note
that Lux uses an edge-cut partitioning policy and dynamically
re-partitions the graph to balance the load.

GRAPE+ [17] is not publicly available. We present results
used in their paper (and provided by the authors). They
use a total of 196 cores in their study; to compare with
them, we use 12 machines of Stampede with 16 threads (196
cores). They use partitions provided by XtraPulp [8]. They
present results only for cc, pr, and sssp on friendster. When
comparing with them, we use the same partitioning policy,
we use the same source nodes for sssp (5506215, 6556728,
1752217, 3391590, 782658), and we use the same tolerance
for pr (10−3). For a relative comparison, we also present the
corresponding PowerSwitch [14] results from their paper [17].
We do not evaluate PowerSwitch ourselves because it is an
order of magnitude slower.

B. Distributed GPUs

Small graphs: Figure 7 shows the total execution time of
Gluon-Async, Gluon-Sync, and Lux on small graphs using up
to 16 GPUs. Missing points indicate that the system ran out of

4Both Gluon-Sync and Lux are BSP-style and use the same algorithm.



TABLE III: Total execution time of Gluon-Sync and Gluon-
Async on 192 cores of Stampede; PowerSwitch and GRAPE+
on 192 cores of a different HPC cluster [17].

Benchmark Input PowerSwitch GRAPE+ Gluon-Sync Gluon-Async

cc
friendster

61.1 10.4 1.7 1.7
pr 85.1 26.4 21.3 21.9

sssp 32.5 12.7 5.8 5.5

memory (except for Lux with cc on rmat27 using 16 GPUs,
which failed due to a crash). The major trend in the figure
is that both Gluon-Async and Gluon-Sync always outperform
Lux and scale better. It is also clear that Gluon-Async and
Gluon-Sync perform quite similarly. In some cases, Gluon-
Async is also noticeably slower (pr on twitter50). We do not
expect Gluon-Async to perform better than Gluon-Sync for
low-diameter graphs like these because most benchmarks in
Gluon-Sync execute very few (< 100) rounds for these. We
will analyze this later using larger graphs (Section IV-D). Nev-
ertheless, both Gluon-Async and Gluon-Sync are on average
∼ 12× faster than Lux.
Large Graphs: Figure 8 shows the speedup in total execution
time of Gluon-Async over Gluon-Sync for large graphs using
up to 64 GPUs (Lux runs out of memory for all the large
graphs, even on 64 GPUs). Missing points indicate that either
Gluon-Sync or Gluon-Async ran out of memory (almost
always, if one runs out of memory, the other also does; only
in a couple of cases, Gluon-Async runs out of memory but
Gluon-Sync does not because Gluon-Async may use more
communication buffers). 64 GPUs are insufficient to load
wdc12 as input, partition it, and construct it in memory; so
both Gluon-Sync and Gluon-Async run out of memory. It is
apparent that Gluon-Async always outperforms Gluon-Sync
for large graphs. We observe that the speedup depends on both
the input graph and the benchmark. Typically, speedup is better
for clueweb12 and wdc14 than gsh15. The speedup is also
usually lower for pr than for other benchmarks. We also see
that in most cases, the speedup of Gluon-Async over Gluon-
Sync increases with an increase in the number of GPUs. This
indicates that Gluon-Async scales better than Gluon-Sync. For
high-diameter graphs on 64 GPUs, Gluon-Async is on average
∼ 1.4× faster than Gluon-Sync.

C. Distributed CPUs

Small graphs: Table III shows the total execution time of
PowerSwitch, GRAPE+, Gluon-Sync, and Gluon-Async for
friendster with 192 threads. Note that Gluon-Sync and Gluon-
Async used machines on Stampede, whereas PowerSwitch and
GRAPE+ used machines on a different HPC cluster. Similar
to GPUs, the performance differences between Gluon-Async
and Gluon-Sync are negligible because friendster is a low-
diameter graph. Although both GRAPE+ and PowerSwitch
are asynchronous systems, they are much slower than Gluon-
Sync and Gluon-Async. Both Gluon-Sync and Gluon-Async
are on average ∼ 2.5× and ∼ 9.3× faster than GRAPE+ and
PowerSwitch, respectively. This shows that a well-optimized

TABLE IV: Minimum BSP-rounds for Gluon-Sync on CPUs.

Input Estimated Minimum Number of Rounds

Diameter bfs cc kcore pr sssp

gsh15 95 61 11 239 172 62
clueweb12 498 184 25 696 161 200
uk14 2,498 1,825 80 443 161 1,976
wdc14 789 503 196 146 180 507
wdc12 5,274 2,672 401 277 183 3,953

existing bulk-synchronous system (Gluon-Sync) beats the ex-
isting asynchronous systems and that it is challenging to
reap the benefits of asynchronous execution. Gluon-Sync uses
Galois [22] computation engine and Gluon [5] communication
engine. Both have several optimizations that help Gluon-Sync
outperform PowerSwitch and GRAPE+. It is not straight-
forward to incorporate these optimizations in PowerSwitch
and GRAPE+ due to the way they perform asynchronous
communication. Gluon-Async introduces a novel way for
asynchronous execution while retaining all the performance
benefits of on-device computation engines like Galois and
IrGL [38] and the inter-device communication engine, Gluon.
While Gluon-Sync and Gluon-Async perform similarly for
small graphs, we show that on large graphs, Gluon-Async can
be much faster than Gluon-Sync.
Large graphs: Figure 9 shows the speedup in total execution
time of Gluon-Async over Gluon-Sync for large graphs using
up to 128 Skylake machines or hosts. Missing points indicate
that either Gluon-Sync or Gluon-Async ran out of memory.
The trends are similar to those on GPUs. The speedup depends
on both the input graph and the benchmark. Gluon-Async
mostly outperforms Gluon-Sync; its performance is similar
or lower than that of Gluon-Sync on 64 or fewer hosts in
some cases for pr or in some cases for the input gsh15. The
speedup of Gluon-Async over Gluon-Sync increases with the
increasing number of hosts indicating that on distributed CPUs
also, Gluon-Async scales better than Gluon-Sync. For high-
diameter graphs on 128 CPUs, Gluon-Async is on average
∼ 1.6× faster than Gluon-Sync.

D. Analysis of BASP and BSP

Using Gluon-Async and Gluon-Sync, we now analyze the
performance difference between BASP-style and BSP-style
execution, respectively, on both distributed GPUs and CPUs.
Specifically, we focus on: (1) why the difference arises (load
imbalance), (2) where the difference exists (idle time), and
(3) how the difference manifests itself (rounds executed).
Load imbalance: Table IV shows the number of rounds
executed by benchmarks in Gluon-Sync for the large graphs.
It can be observed that higher diameter graphs are likely to
execute more rounds, except for pr. We next measure the load
imbalance by calculating the total time spent by each host
in computation and determine the relative standard deviation
(standard deviation by mean) of these values. Figures 10(a)
and 10(b) presents these values for Gluon-Sync as a box-
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Fig. 10: Load imbalance in Gluon-Sync (presented as relative standard deviation in computation times among devices).

plot5 for all the number of devices (CPUs or GPUs) for
each benchmark and input graph on Bridges and Stampede,
respectively. Each point in a box-plot is a value for a distinct
configuration of the number of devices (CPUs or GPUs) for
that benchmark and input graph. The load imbalance and
the number of rounds can be used to tell whether Gluon-
Sync can benefit from switching to BASP-style execution.
As cc on gsh15 is well balanced and executes very few
rounds, it does not benefit much from BASP-style execution.
In contrast, benchmarks using clueweb12 are more imbalanced
and benefit significantly from BASP-style execution, even if it
executes very few rounds like in cc. For high-diameter graphs,
load balance is difficult to achieve in efficient data-driven
graph applications [11] because different subsets of nodes may
be updated in different rounds. We show that Gluon-Async
circumvents this by using BASP-style execution.
Idle time: We define busy time of a host as the time spent
in computation, serialization (for packing messages to be
sent), deserialization (for unpacking and applying received
messages), and communication between host and device. The

5The box for an input graph and benchmark represents the range of 50%
of these values for that input graph and benchmark; the line dividing the box
is the median of those values and the circles are outliers.

rest of the total time is the idle time; in BASP, idle time
includes the time to detect termination. Different hosts can
have different busy and idle times (stragglers have smaller
idle times), so we consider the minimum and maximum across
hosts. Figure 11 show the breakdown of execution time into
minimum busy time, minimum idle time, and the difference
between maximum and minimum idle time. As expected, BSP
has high maximum idle time due to load imbalance and BASP
reduces idle time, which is one of the main advantages of
having bulk-asynchronous execution. However, this reduction
in idle time could lead to a corresponding increase in busy
time because the host could be doing redundant or useless
work by operating on stale values instead of being idle. This
depends on the input graph and the benchmark. In some cases
like pr, the busy time increases even though the idle time is
reduced. In most other cases, the busy time does not increase
by much. Nevertheless, it is clear that the difference between
BASP and BSP is in the idle time, and the total execution
time will be reduced only if the idle time is reduced without
an excessive increase in busy time.
Rounds executed: All hosts execute the same number of
rounds in BSP (Table IV), whereas different hosts may execute
different numbers of local rounds in BASP. The minimum
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Fig. 11: Breakdown of execution time (sec); the minimum number of rounds executed among hosts is shown on each bar.

rounds executed in BSP and BASP are shown on each bar
in Figure 11. We use the minimum local rounds among hosts
to estimate the critical path in the execution. We count the
number of edges processed (locally) on each host and use
the maximum among hosts to estimate the work done in
the execution. Figure 12 presents the correlation between the
speedup in execution time, the increase or growth in the work
done (maximum local work items or edges processed), and the
reduction in the critical path (minimum local rounds). Each
point is a value for a distinct configuration of benchmark,
input, and number of devices (CPU or GPU); we have omitted
outliers. Red (closer) points have lower growth in the work
done and higher points (taller lines) have more reduction in
the critical path. If BASP reduces both the work done (growth
< 1) and the critical path (reduction > 1), then it would
obviously be faster. As shown in the figure, BASP is faster
than BSP (speedup > 1) when work done is reduced. More
importantly, BASP does more work than BSP in many cases,
but it is faster due to a reduction in the critical path. When
BASP is slower than BSP (speedup < 1), it is due to a high
growth in work done without sufficient reduction in critical

path. Although the minimum number of local rounds in BASP
may be smaller than that of BSP, the maximum number of
local rounds in BASP may be higher because the faster hosts
need not wait and may execute more local rounds. Instead of
waiting after every round in BSP, faster hosts in BASP may
execute more rounds. Consequently, faster hosts could make
more progress and send updated values to the stragglers or
slower hosts. The straggler hosts receive these updated values
before they move to the next round, saving them from doing
redundant work using stale values. Thus, straggler hosts doing
fewer local rounds leads to faster convergence in BASP.

E. Summary and Discussion

Table V compares the performance of Gluon-Sync and
Gluon-Async using the best-performing number of CPUs
and GPUs. Both Gluon-Sync and Gluon-Async mostly scale
well, so their best performance is usually on the maximum
number of CPUs or GPUs we evaluated. For low-diameter
graphs, Gluon-Async and Gluon-Sync are comparable. For
high-diameter graphs, Gluon-Async is on average ∼ 1.5×
faster than Gluon-Sync. The speedup varies depending on the
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Fig. 12: BASP over BSP: correlation between speedup, growth
in maximum # local work items, and reduction in minimum
# local rounds for all benchmarks, inputs, and devices (CPUs
or GPUs). Red color indicates lower growth in work items.

benchmark, the input, and the scale (number of devices). The
speedup is typically best for high-diameter graphs at scale.
This is similar to what has been observed for asynchronous
execution on CPUs [22] or GPUs [39]. Thus, Gluon-Async
helps scaling out large real-world graph datasets.

V. RELATED WORK

Asynchronous Distributed Graph Analytics Systems. The
popularity of the bulk-synchronous parallel (BSP) model [10]
of computation has led to work that improves its performance
by improving the underlying asynchrony and reducing the
wait time. GraphLab [12] and PowerSwitch [14] systems
use their gather-apply-scatter model along with distributed
locking for non-blocking, asynchronous execution. None of the
other systems, including Gluon-Async, use locks. Systems like
Aspire [13], GRACE [?], Giraph++ [16], and ASYMP [40],
which are based on asynchronous parallel (AP) model, avoid
delaying the processing of the already arrived messages.
GiraphUC [41] proposes the barrierless asynchronous parallel
(BAP) model that uses local barriers to reduce the message
“staleness” and overheads due to global synchronization.
While GiraphUC is lock-free and asynchronous, it blocks
during synchronization until it receives the first message
(from any host). Most recently, Fan et al. [17] show that the
Adaptive Asynchronous Parallel (AAP) model used in their
GRAPE+ system can be used to dynamically adjust the relative
progress of different worker threads and reduce the stragglers
and stale computations. Similarly, Groute [39] proposes an
asynchronous system, but it is limited to a single node system.

Most of these existing systems either perform fine-grained
synchronization or do not support general partitioning policies.

TABLE V: Fastest execution time (sec) of Gluon-Sync and
Gluon-Async using the best-performing number of hosts (# of
hosts in parenthesis; “-” indicates out of memory; best among
Gluon-Sync and Gluon-Async in bold and highlighted).

Bench- Input CPUs (Stampede) GPUs (Bridges)

mark Gluon-Sync Gluon-Async Gluon-Sync Gluon-Async

bfs

gsh15 1.3 (128) 0.8 (128) 0.9 (64) 0.7 (64)
clueweb12 4.5 (128) 3.0 (128) 4.2 (64) 2.4 (64)
uk14 13.0 (128) 8.8 (128) 8.8 (64) 7.4 (64)
wdc14 9.3 (128) 6.5 (128) 7.6 (64) 4.6 (64)
wdc12 110.3 (128) 48.9 (128) - -

cc

gsh15 1.0 (128) 1.0 (128) 1.2 (64) 1.1 (64)
clueweb12 5.8 (128) 2.3 (128) 10.7 (64) 6.6 (64)
uk14 2.2 (64) 1.3 (128) 10.4 (64) 6.1 (64)
wdc14 7.3 (128) 5.2 (128) 6.7 (64) 4.8 (64)
wdc12 29.8 (128) 21.0 (128) - -

kcore

gsh15 9.8 (128) 6.9 (128) 3.0 (64) 2.3 (64)
clueweb12 64.3 (128) 36.2 (128) 7.8 (64) 3.7 (64)
uk14 11.8 (128) 6.4 (128) 2.2 (64) 1.7 (64)
wdc14 18.4 (128) 9.4 (128) - -
wdc12 62.4 (128) 29.9 (128) - -

pr

gsh15 47.3 (128) 46.2 (64) 14.0 (64) 10.5 (64)
clueweb12 130.5 (16) 91.6 (128) 32.3 (64) 24.9 (32)
uk14 11.7 (128) 10.1 (128) 6.3 (64) 5.6 (64)
wdc14 24.7 (128) 25.3 (128) 13.4 (64) 11.9 (64)
wdc12 120.2 (128) 102.2 (128) - -

sssp

gsh15 2.9 (128) 1.9 (128) 2.8 (64) 2.1 (64)
clueweb12 8.1 (128) 4.6 (128) 5.1 (32) 4.0 (32)
uk14 16.3 (128) 13.0 (128) 12.4 (64) 9.0 (64)
wdc14 10.9 (128) 7.7 (128) 10.1 (64) 5.9 (64)
wdc12 168.3 (128) 78.9 (128) - -

None of them can be extended for vertex-cuts without signif-
icantly increasing the communication cost; i.e., some of the
communication optimizations [5] would need to be dropped
for such an extension (to elaborate, GRAPE+ is the only one
that can support vertex-cuts without using distributed locks,
but they send an updated value from a proxy directly to all the
other proxies instead of reducing updated values to a master
proxy and broadcasting the result to mirror proxies, resulting
in more communication volume and messages). Consequently,
prior asynchronous systems do not perform as well as the state-
of-the-art BSP-style distributed systems [4], [5]. Moreover,
none of the prior asynchronous systems can be extended
trivially to support execution on multi-host multi-GPUs.

In contrast, we propose a Bulk-Asynchronous Parallel
(BASP) model for both distributed CPUs and GPUs in which
the threads potentially never wait and instead continue to
do local work if available without explicitly waiting for the
communication from other hosts. Our redesign of reduce and
broadcast communication phases enables removing synchro-
nization while exploiting bulk-communication.
Bulk-Synchronous Distributed Graph Analytics Systems.
There have been many works that support graph analytics on
distributed CPUs [2], [3], [4], [5], [42] or GPUs [5], [6] in
the Bulk-Synchronous Parallel (BSP) model. Our proposed
approach targets wait-time reduction in graph applications by
exploiting the underlying asynchrony in codes written in BSP
models, and it targets distributed CPU and GPU systems.



VI. CONCLUSION

This paper presented a novel programming model called
BASP that takes bulk-communication from BSP models and
continuous compute from asynchronous models to improve
overall runtime of programs. We showed that it is easy to adapt
BSP programs for BASP execution by modifying programs
in D-Galois and D-IrGL, the state-of-the-art distributed graph
analytics systems for CPUs and GPUs, respectively. Both
these systems use the Gluon substrate for communication.
We modified Gluon to support BASP and build the first
asynchronous distributed and heterogeneous graph analytical
system, Gluon-Async (source code is publicly available [?]).
Gluon-Async retains the benefits of Gluon, so it can handle
arbitrary partitioning policies and can be used to extend
existing CPU or GPU graph analytical systems for distributed
and heterogeneous execution. Our evaluation shows that on
real-world large-diameter graphs at scale, BASP programs
are on average ∼ 1.5× faster than D-Galois and D-IrGL,
respectively. Gluon-Async also scales better than them.
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