
UWOmp𝑝𝑟𝑜 : UWOmp++ with Point-to-Point Synchronization,
Reduction and Schedules

Aditya Agrawal
adityaag@alumni.iitm.ac.in

Department of CSE, IIT Madras
Chennai, TN, India

V. Krishna Nandivada
nvk@iitm.ac.in

Department of CSE, IIT Madras
Chennai, TN, India

Abstract
OpenMP is one of the most popular APIs widely used to realize par-
allelism in C/C++ and FORTRAN programs. For efficient execution,
an OpenMP program internally creates a team of threads, which
share a given set of activities (for example, iterations of a parallel-for-
loop). While OpenMP allows synchronization among these threads,
many classes of computations can be conveniently expressed by
specifying synchronization among the parallel activities. However,
OpenMP currently restricts arbitrary synchronization among the
parallel activities; otherwise, the behavior of the program can be un-
predictable. While extensions like UWOmp++ (and UW-OpenMP)
support all-to-all barriers among the activities, currently there is
very limited support for performing point-to-point synchronization
among them. In this paper, we present UWOmp𝑝𝑟𝑜 as an exten-
sion to UWOmp++ (and OpenMP) to address these challenges and
realize more expressive and efficient codes.

UWOmp𝑝𝑟𝑜 allows point-to-point synchronization among the
activities of a parallel-for-loop and supports reduction operations
(during synchronization). We present a translation scheme to com-
pile UWOmp𝑝𝑟𝑜 code to efficient OpenMP code, such that the trans-
lated code does not invoke any synchronization operation(s) within
parallel-for-loops. Our translation takes advantage of continuation-
passing-style (CPS) to efficiently realize wait and continue opera-
tions. We also present a runtime, based on a novel communication
subsystem to support efficient signal, wait, and reduction opera-
tions. We have implemented our scheme in the IMOP compiler
framework and performed a thorough evaluation. We show that
our approach leads to highly performant codes.

1 Introduction
The emergence of multi-core systems has brought forth many
different parallel languages like X10 [11], Chapel [18], HJ [9],
OpenMP [25], and so on to the mainstream. These languages pro-
vide means to express parallel logic conveniently. Besides support-
ing different ways of expressing parallelism, these languages sup-
port varied forms of synchronizations.

For example, OpenMP uses the efficient ‘team of workers’ model,
where each worker (also interchangeably referred to as thread) is
given a chunk of activities (for example, iterations of a parallel-for
loop) to execute. An important facet of this model is that workers
(and not activities) synchronize among themselves using barriers.
However, certain computations (for example, stencil computations,
graph analytics, and so on) are specified, arguably more conve-
niently, by expressing the synchronization among all the dependent
activities. Languages like X10, HJ, and so on, support such notions
of asynchronous activities and synchronization among the activi-
ties. Further, in contrast to global barriers (that perform all-to-all

synchronization) among the parallel activities of a program, it may
be more expressive and efficient (fewer number of communications)
to synchronize only the inter-dependent activities. We refer to the
latter as the point-to-point mode of synchronization.

We first use a motivating example to illustrate the expressiveness
due to point-to-point synchronization and the scope of improved
performance therein. Figure 1 shows five different versions of the
classical 1D Jacobian kernel (source [3]). Figure 1a shows the kernel
in OpenMP (source [4, 26]). OpenMP prohibits the use of barrier
statements inside the parallel-for-loop as the behaviour of the pro-
gram can be unpredictable (may lead to incorrect output, correct
output, or deadlock) [2]). In light of such a restriction, at the end of
the parallel-for-loop, an implicit barrier is present, which allows
all threads to synchronize after computing the respective average
values (B[i]). The ‘single’ block performs the pointer swapping and
incrementing the time-step variable t. The code snippet in Fig-
ure 1b, shows the HJ version using all-to-all barriers among all
the asynchronous activities. The next statement synchronizes all
the activities before proceeding to the next phase. To support such
all-to-all barriers in OpenMP, Aloor and Nandivada [2] proposed
UW-OpenMP that introduces the Unique Worker (UW) model in
OpenMP, in which the programmer gets an impression that each
iteration (a.k.a. activity) of the parallel-for-loop is run by a unique
worker and thus the model allows all-to-all barriers to be speci-
fied among the activities. Aloor and Nandivada [4] extended this
idea to derive UWOmp++, and show that UWOmp++ codes are
efficient and arguably more expressive compared to the OpenMP
codes. Figure 1c shows UWOmp++ version of the 1D Jacobian Ker-
nel. However, such codes still suffer from multiple drawbacks, as
discussed below.

In the code shown in Figure 1c (and in Figure 1b), each activity𝑋i
(corresponding to iteration i) is waiting for all remaining activities
instead of only the activity 𝑋1 waiting for all the other activities
(to complete their computation), before swapping the pointers.
Similarly, each activity waits for every other activity at the second
barrier, even though each activity 𝑋i (i ≠ 1) needs to wait only for
𝑋1. This leads to significant communication overheads.

To address such issues of communication overheads and im-
prove the expressiveness, there have been many prior efforts to
support point-to-point synchronization in task parallel languages
like X10 [11], HJ [9], and so on. These languages use explicit syn-
chronization objects (like Clocks [11] and Phasers [9]) to realize
the synchronization. Figure 1d shows the HJ version of the 1D Jaco-
bian kernel. The code snippet first allocates two phaser objects and
registers the phaser objects with each activity. These phasers are
used to perform only the required communication (signal or wait)
among the activities. A similar computation can also be encoded
using an array of phasers (one unique phaser per activity).

Aditya Agrawal and V. Krishna Nandivada

t = 0;
#pragma omp parallel
{
while(t <= T) {
#pragma omp for
for(i=1;i<N-1;i++)
B[i]=0.3*(A[i-1]+

A[i]+A[i+1]);
// implicit barrier
#pragma omp single
{x=A; A=B; B=x; t++;}
// implicit barrier

} }

(a) OpenMP Version

t = 0;
finish {
for(i=1..N){
async phased {
while (t <= T) {
B[i]=0.3*(A[i-1]+A[i]+A[i+1]);
next;
if(i==1) {x=A;A=B;B=x;t++;}
next; } } } }

(b) HJ version: all-to-all barriers.

t = 0;
#pragma omp parallel
{
#pragma omp for
for(i=1;i<N-1;i++){
while(t <= T){
B[i]=0.3*(A[i-1]+A[i]+A[i+1]);
#pragma omp barrier
if (i==1) {x=A;A=B;B=x;t++;}
#pragma omp barrier

} } }

(c) UWOmp++ version

t = 0;
finish {
phaser p1=new phaser(SIG_WAIT);
phaser p2=new phaser(SIG_WAIT);
for(i=1..N){
async phased (p1, p2) {
while (t <= T) {
B[i]=0.3*(A[i-1]+A[i]+A[i+1]);
if(i==1){
// wait for signal from
// activities [2-n]
for(j=2..n) p1.wait();
}else{// signal task [1]
p1.signal();
}
if(i==1) {x=A;A=B;B=x;t++;}
if(i==1) // signal activities [2-n]
for(j=2..n) p2.signal();
else{//wait for signal from activity [1]
p2.wait();
} } } } }

(d) HJ version: point-to-point barriers

t = 0;
#pragma omp parallel
{
#pragma omp for
for(i=1;i<N-1;i++){
while(t <= T) {
B[i]=0.3*(A[i-1]+

A[i]+A[i+1]);
signal(i!=1,1);
waitAll(i==1);
if (i==1)
{x=A;A=B;B=x;t++;}
signalAll(i==1);
wait(i!=1,1);

} } }

(e) UWOmp𝑝𝑟𝑜 Version

Figure 1: 1D Jacobian computation. Here A and B are shared arrays of N elements and T indicates the number of timesteps.

In the context of OpenMP, Shirako et al. [29] present a promis-
ing approach to adapt HJ phasers to OpenMP. They allow activi-
ties to explicitly register/deregister themselves with phaser objects
and these phaser objects are used to perform the synchronization
among the registered activities. However, their design has multiple
restrictions: (i) the phaser objects have to be explicitly allocated
– leads to cumbersome code, (ii) the synchronization can only be
in one direction, that is, from iteration with lower index to itera-
tion with higher index – can be limit expressiveness; (iii) threads
(not activities) block on wait operations – can limit parallelism
and impact performance negatively; (iv) their scheme cannot work
with dynamic/guided scheduling of OpenMP; and (v) the activi-
ties cannot perform reduction operations at the synchronization
points. OpenMP 5.2 [25] provides support for expressing dependen-
cies between the iterations of parallel-for-loops with the doacross
clause [30, 31]. Although this feature allows expressing some form
of point to point synchronization, it also suffers from two of the
restrictions ((ii) and (v)) discussed above.

In this paper, we address all these issues and propose a generic
scheme to allow synchronization among the activities of each
parallel-for-loop of OpenMP. We call our extension UWOmp𝑝𝑟𝑜 .
Figure 1e shows a UWOmp𝑝𝑟𝑜 version of the kernel shown in
Figure 1c. Here, the first all-to-all barrier of Figure 1c has been
replaced with two commands, where all activities (except the first
activity) signal 𝑋1, and 𝑋1 in turn waits for the signals from them.
A convenient feature of UWOmp𝑝𝑟𝑜 is that it supports conditional
signal/wait commands. The first argument passed to the correspond-
ing commands, evaluates to 1 (true) or 0 (false) and determines if the
command should be executed by that activity or not. Further, the
signal (wait) commands can signal to (wait for) multiple activities
that are specified by a comma-separated list of iterations. Example:
signal(1,i-1,i+1) sends a signal to 𝑋i−1 and 𝑋i+1.

The second barrier of Figure 1c is replaced by signalAll, fol-
lowed by wait. The given condition in the signalAll command

ensures that signalling is done only by 𝑋1 to all the remaining
activities. These activities (𝑋i, i ≠ 1) in turn wait for that signal.

In contrast to X10 and HJ, in UWOmp𝑝𝑟𝑜 , activities of a parallel-
for-loop can synchronize among themselves without any need
for the programmer to explicitly create (or pay the overheads of)
clock/phaser objects. Further, the UWOmp𝑝𝑟𝑜 code performing
communication is arguably more readable than that of the HJ code
involving multiple phaser objects performing point-to-point com-
munication (for example, Figure 1e vs. Figure 1d). An important
aspect of our design is that we continue to take advantage of the
efficient ‘team of workers’ model of OpenMP to derive high perfor-
mance.

In addition, UWOmp𝑝𝑟𝑜 optionally supports efficient reduction
operations at the synchronization (wait) points, a feature not sup-
ported by languages like X10, HJ, or even OpenMP. Note: though
OpenMP supports reduction operations in parallel-for-loops, the
final reduced value is only available at the end of the parallel-region
(and not immediately after the reduction operation).

UWOmp𝑝𝑟𝑜 can help effectively and efficiently code wide classes
of problems involving point-to-point synchronizations and reduc-
tions. Note: We do not claim that using point-to-point synchro-
nization among the activities of parallel-for-loops is the only/best
way to encode such computations. Instead, our proposed extension
(common in modern languages like X10, HJ, and so on) provides
additional ways to encode task parallelism, which is otherwise
missing in OpenMP (and UWOmp++), while not missing out on
the advantage of the efficient ‘team of workers’ model of OpenMP.
Our Contributions
•We propose UWOmp𝑝𝑟𝑜 to allow point-to-point synchronization
and reduction operations, among the activities of a parallel-for-loop.
In contrast to UWOmp++, UWOmp𝑝𝑟𝑜 supports all the scheduling
policies defined in OpenMP.
• We present a scheme to compile UWOmp𝑝𝑟𝑜 code to efficient
OpenMP code by taking advantage of continuation-passing-style

UWOmp𝑝𝑟𝑜 : UWOmp++ with Point-to-Point Synchronization, Reduction and Schedules

(CPS) to efficiently realize wait and continue operations.
•We present a runtime based on a novel communication subsystem
to support efficient signal, wait, and reduction operations.
• To support fast reduction operations, we propose two reduction
algorithms termed eager and lazy, to support efficient reduction op-
erations among a subset of activities and all activities, respectively.
•We have implemented our scheme in the IMOP compiler frame-
work and performed a thorough evaluation. We show that our
generated code scales well and is highly performant.

2 Background
We now present some brief background needed for this paper.
OpenMP. We summarize three popular constructs of OpenMP.

Parallel Region: #pragma omp parallel S creates a team of
threads where each thread executes the statement S in parallel.

Parallel-For-Loop: A sequential for-loop can be annotated us-
ing #pragma omp for [nowait] [schedOpt] to share the iter-
ations among the team of threads. The scheduling policy (static,
dynamic, guided, or runtime) is mentioned using schedOpt. If the
nowait clause is omitted, OpenMP provides an implicit barrier.

Barrier: #pragma omp barrier construct is used to synchronize
the workers in the team.
Unique Worker Model for OpenMP.We now restate two rele-
vant definitions given by Aloor and Nandivada [4], for OpenMP.

Definition 2.1. A parallel-for-loop is said to be executing in UW
model if a unique worker executes each iteration therein.

Definition 2.2. A parallel-for-loop is said to be executing in (One-
to-Many model) or OM-OpenMP model if a worker may execute
one or more iterations of a parallel-for-loop. OM-OpenMP model
is the default execution model in OpenMP. A program executing
in OM-OpenMP model cannot invoke barriers (or wait commands)
inside work-sharing constructs.

3 UWOmp𝑝𝑟𝑜 : Extending UWOmp++
We now describe three new extensions to UWOmp++ that can
improve the expressiveness and lead to efficient code. Two of these
extensions (support for point-to-point synchronization among the
activities, and performing reduction at the point of synchronization)
are novel to OpenMP as well. The third extension admits powerful
scheduling policies (dynamic, guided, and runtime) of OpenMP,
apart from the static scheduling policy that was already supported
by UWOmp++. We call this extended language UWOmp𝑝𝑟𝑜 .
Point-to-Point Synchronization. UWOmp𝑝𝑟𝑜 proposes an ex-
tension to UW-OpenMP, where a programmer can specify point-to-
point synchronization among the activities of a parallel for-loop. Fig-
ure 2 summarizes the list of commands supported by UWOmp𝑝𝑟𝑜
(along with brief syntax), for easy reference. All these commands
are conditional in nature and support (i) signal and wait operations
to a subset of activities or all of them, and (ii) (optionally) reduction
operations. Note: a signal/wait commands to/on a non-existing
iteration are treated as nops.
Reduction. Consider the example code snippet shown in Fig. 3a
(Source [3, 10]) to perform iterated averaging on an N element ar-
ray, written in UWOmp++. Here, each activity 𝑋𝑖 first computes
a new value for the i𝑡ℎ element using A[i-1] and A[i+1] and
then computes the absolute difference compared to the older value.
Towards the end of each iteration of the while-loop, each activity

commands syntax
signal + signal(int 𝑒 , int 𝑎𝑐𝑡 , ...);
wait + wait(int 𝑒 , int 𝑎𝑐𝑡 , ...);
signalAll ∗ signalAll(int 𝑒);
waitAll ∗ waitAll(int 𝑒);
signalSend +,𝑟 signalSend(int 𝑒 , void *𝑚, int 𝑎𝑐𝑡 , ...);
waitRed +,𝑟 waitRed(int 𝑒 , FptrT rOp, void *rVar , int 𝑎𝑐𝑡 , ...);
signalAllSend ∗,𝑟 signalAllSend(int 𝑒 , void *𝑚);
waitAllRed ∗,𝑟 waitAllRed(int 𝑒 , FptrT rOp, void *rVar);

Figure 2: List of commands supported by UWOmp𝑝𝑟𝑜 . The first argu-
ment 𝑒 is a predicate expression; the signal/wait operation is invoked
only if 𝑒 evaluates to true. FptrT specifies a function pointer type,
used to pass the reduction operator function. Varargs are used when
we have to specify more than one activity. Brief description of the
remaining arguments: 𝑎𝑐𝑡 : target activity,𝑚: message, rOp: reduc-
tion function, rVar: reduction variable. A superscript of ‘∗’ indicates
the command interacts with all the activities, ‘+’ indicates that the
command interacts with one or more activities, and ‘𝑟 ’ indicates that
the command supports reduction operation.

#pragma omp parallel
{
#pragma omp for
for(i=1;i<N;i++) {
while(diffSum <= epsilon) {
B[i]=(A[i-1]+A[i+1])*0.5;
diff[i] = abs(A[i]-B[i]);
#pragma omp barrier
if(i==1){
diffSum=computeSum(diff,N);
x=A; A=B; B=x; }
#pragma omp barrier
} /*while*/ } /*for*/ }

(a) UW-OpenMP Version

#pragma omp parallel
{
#pragma omp for
for(i=1;i<N;i++){
while(diffSum <= epsilon) {

B[i]=(A[i-1]+A[i+1])*0.5;
diff[i] = abs(A[i]-B[i]);
signalAllSend(1,diff[i]);
waitAllRed(1,diffSum,ADD);
if(i==1){x=A; A=B; B=x;}
signalAll(i==1);
wait(i!=1,1);

} /*while*/ } /*for*/ }

(b) UWOmp𝑝𝑟𝑜 Version

Figure 3: Iterated Averaging. Here A and B are shared arrays of N
elements and epsilon specifies the tolerance limit.

waits for 𝑋1 to sequentially reduce the array diff to the shared
variable diffSum, which is used to check the convergence condi-
tion specified in the while-loop predicate. The sequential reduction
operation can pose serious performance overheads. Note that, we
cannot use the OpenMP reduction operation to perform the reduc-
tion here, as the reduced value would only be available after the
end of the parallel for-loop. To address these issues, UWOmp𝑝𝑟𝑜
supports a blocking reduction operation within the activities of a
parallel for-loop. For example, in Fig. 3b, after computing diff[i],
each activity 𝑋𝑖 sends a signal to all the other activities with the
value of diff[i]. Then, the code invokes a blocking reduction op-
eration, specifying the variable (diffSum) to hold the reduced value,
and the reduction operation (ADD). In contrast to the UW-OpenMP
version, in UWOmp𝑝𝑟𝑜 , all threads together perform the reduction
operation in parallel. Further, to reduce the number of message
exchanges, Section 5.4 presents an optimization such that messages,
linear (not quadratic) in the number of activities are exchanged to
perform the reduction. Note: (1) For readability, we use verbose
reduction operator names (e.g., ADD in place of ‘+’). (2) Like the reg-
ular reduction operations in OpenMP, UWOmp𝑝𝑟𝑜 also supports
user-defined reduction operations; details skipped for brevity.
Schedules. Due to its design decisions, UW-OpenMP supports only
static scheduling. Considering the importance of other scheduling

Aditya Agrawal and V. Krishna Nandivada

policies of OpenMP, UWOmp𝑝𝑟𝑜 supports all of them by using a
runtime extension. Details in Section 5.5.

4 UWOmp𝑝𝑟𝑜 to Efficient OM-OpenMP
We now present the translation rules used to convert input
UWOmp𝑝𝑟𝑜 code to efficient OM-OpenMP code. The main idea
behind our translation is that in the generated OM-OpenMP code,
the activities of the parallel-for-loop are stored as closure (in one or
more work-queues) to be executed by different workers. When an
activity encounters await operation, it enqueues the continuation to
the work-queue of the parent activity and continues executing other
activities in the work-queue. Figure 4 shows the block diagram of
our translation. The input UWOmp𝑝𝑟𝑜 code is fed to the Simplifier
module which converts the given input code to a representative sub-
set of UWOmp𝑝𝑟𝑜 code called mUWOmp𝑝𝑟𝑜 . The mUWOmp𝑝𝑟𝑜
code is input to the ‘CPS Translator’ module which converts the
code to CPS form called UWOmpCPS𝑝𝑟𝑜 . The UWOmpCPS𝑝𝑟𝑜 code
is input to the ‘OM-OpenMP Translator’ module which translates
the code to conforming OpenMP code such that it does not invoke
barriers inside work-sharing constructs (parallel-for-loops). Finally,
a post-pass step introduces type-specific reduction operations. We
now describe these important modules of our translation scheme.
4.1 Simplifier
For the ease of explaining the translation scheme, like Aloor
and Nandivada [4], we use a representative subset of the input
UWOmp𝑝𝑟𝑜 language called miniUWOmp𝑝𝑟𝑜 (mUWOmp𝑝𝑟𝑜); Sec-
tion 6 discusses how any general UWOmp𝑝𝑟𝑜 program can be
translated to mUWOmp𝑝𝑟𝑜 code. Figure 5 shows the grammar of
mUWOmp𝑝𝑟𝑜 . A mUWOmp𝑝𝑟𝑜 program consists of a sequence
of function declarations (FuncDecl) followed by the MainFunc.
FuncDecl can have an assignment statement, a function call, return
statement, barrier statement or a statement generated by Seq(X):
the program formed from X closed under sequential constructs.
MainFunc consists of a parallel region which in turn consists of a
sequence of parallel-for-loops or barrier statements. Each parallel-
for-loop is a normalized loop [22] whose body is a function call.
4.2 CPS Translator
Our translation scheme is inspired by that of Aloor and Nandivada
[4], who translate an input program to an IR (called UWOmpCPS),
before lowering it to OM-OpenMP. UWOmpCPS is an extension to
CPS (Continuation Passing Style [19]); its choice was inspired by
the fact that CPS naturally provides support for operations like wait
and continue. A UWOmpCPS program is similar to a program in
CPS form, except that the former may include parallel-for-loops and
barriers. One of the sources of overheads of the scheme of Aloor and
Nandivada was that all the methods were converted to CPS form.
We observe that since only the activities of parallel-for-loops can
synchronize with each other (point-to-point or all-to-all), we need
to CPS transform only those functions that may be invoked by the
iterations of the parallel-for-loop. Further, in the input UWOmp𝑝𝑟𝑜
program, thread-level barriers (invoked via #pragma omp barrier),
may appear outside the work-sharing constructs.

Based on these points, we first present a modified UWOmpCPS
grammar and then discuss the modified translation rules.
4.2.1 UWOmpCPS𝑝𝑟𝑜 : Modified CPS IR.The grammar for the mod-
ified IR (called UWOmpCPS𝑝𝑟𝑜) is shown in Figure 6. Some of the

main differences between UWOmpCPS and UWOmpCPS𝑝𝑟𝑜 are as
follows: (i) A program may consist of both CPS (CPSFuncDecl) and
non-CPS (FuncDecl) functions. (ii) A CPSParRegion may contain
a set of parallel-for-loops in CPS form (CPSParLoop) or barriers
(BarrierStmt). (iii) A CPSParLoop can specify a schedule and re-
lated options (represented as schedOpt). Note that Stmt denotes
any sequential statement, FuncDecl is any regular C function dec-
laration, FunCall is any regular non-CPS function call statement.
As is standard in CPS translation, the continuation object is passed
as an additional argument to each CPS function call (CPSFunCall).
4.2.2 Generation of code in CPS form.Figure 7 shows the trans-
lation rules. Here, a rule of the form ⟦𝑋⟧ ⇒ 𝑌 is used to de-
note that input code 𝑋 is transformed to the output code 𝑌 in
UWOmpCPS𝑝𝑟𝑜 . The RHS (𝑌) may contain further terms with ⟦ ⟧
indicating that those terms need to be further transformed. Here,
we use #ompparallel as a shortcut for #pragma omp parallel,
and #ompfor for #pragma omp for nowait schedOpt. Our CPS
transformation starts by transforming the parallel-region (Rule 9).
Rules 1-8 are the standard CPS translation rules used to convert
a given input program to CPS Form. Note: We only handle code
that is reachable from a parallel-for-loop and if any function is
called from outside the parallel-region then it is left as it is. Rule 10
has two substeps: (i) the function (fun) called in the body of the
parallel-for-loop is translated to CPS form (using the standard CPS
transformation rules, [Rules 1-8, Figure 7], by passing the identity
function 𝑖𝑑 as the continuation. Here,𝑚𝑘𝐶𝑙𝑠𝑟 is a macro that cre-
ates a closure by taking three arguments: a function pointer, the
list of arguments required for the function (obtained by invoking
a compiler-internal routine bEnv), and a continuation to be exe-
cuted after executing the function. (ii) The call to fun is replaced
by its CPS counterpart by passing the continuation as an additional
argument. If a barrier is encountered, it is left as it is (Rule 11).
4.3 OM-OpenMP Translator

We now discuss how we translate code in UWOmpCPS𝑝𝑟𝑜 for-
mat to OM-OpenMP code. We emit code such that each iteration
of the parallel-for-loop creates a closure object and enqueues to a
work-queue. The details of the work-queue depend on the schedul-
ing policy of the parallel-for-loop. For static scheduling policy, the
activities to be executed by each thread is fixed a priori and thus we
maintain a local worklist for each thread. For guided or dynamic
scheduling, all closures are pushed to a global ‘work queue’. Each
thread dequeues closures from the queue and executes the same.
Figure 8a shows the rule to translate the parallel-for-loop.

Line 4 in Figure 8a calls the function getScheduler that takes
the scheduling policy string 𝑠𝑐ℎ𝑒𝑑 and threadID 𝑡𝑖𝑑 as parameter.
This string is obtained using a call to the function getSchedule
using the 𝑠𝑐ℎ𝑒𝑑𝑂𝑝𝑡 string as parameter. Figure 8b shows the pseudo-
code of the getScheduler function that returns a pointer to the
corresponding scheduler function and assigns the worklist to be
used by each thread (WL[𝑡𝑖𝑑]). The function assigns the 𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟
to the corresponding scheduler function, depending on the value of
𝑠𝑐ℎ𝑒𝑑 . We emit a parallel-for-loop that pushes the closure for each
activity to WL[𝑡𝑖𝑑] (Lines 5-9 in Figure 8a). Finally, we invoke the
appropriate scheduler (Line 10 in Figure 8a).

UWOmp𝑝𝑟𝑜 : UWOmp++ with Point-to-Point Synchronization, Reduction and Schedules

Simplifier CPS Translator OM-OpenMP Translator post-pass
UWOmp𝑝𝑟𝑜 mUWOmp𝑝𝑟𝑜 UWOmpCPS𝑝𝑟𝑜 OM-OpenMP OM-OpenMP

Figure 4: Block diagram of our proposed translation scheme.

Program ::= (FuncDecl)* MainFunc
FuncDecl ::= Type ID(Args){ (Stmt)* RetStmt}
MainFunc ::= int main() { ParRegion }
ParRegion ::= #pragma omp parallel

{ (ParLoop | BarrierStmt)* }
BarrierStmt ::= #pragma omp barrier
ParLoop ::= #pragma omp for nowait schedOpt

for(ID=0;ID<ID;ID++){ FunCall }
Stmt ::= SimpleStmt | FunCall | RetStmt | Seq (Stmt)
SimpleStmt ::= AssignStmt | IfStmt
AssignStmt ::= ID = SimpleExpr;
FunCall ::= ID(ActualParamList);
SimpleExpr ::= ID | Op ID | ID Op ID
IfStmt ::= if (SimpleExpr) { (Stmt)* }

Figure 5: Grammar for mUWOmp𝑝𝑟𝑜

Program ::= (CPSFuncDecl)* (FuncDecl)* MainFunc
CPSFuncDecl ::= void ID(Clsr K,Args){(SimpleStmt)* TailCallStmt}
MainFunc ::= int main() { CPSParRegion }
CPSParRegion ::= #pragma omp parallel

{ (CPSParLoop | BarrierStmt)* }
CPSParLoop ::= #pragma omp for nowait schedOpt

for(ID=0;ID<ID;ID++){ (SimpleStmt)* CPSFunCall }
TailCallStmt ::= CPSFunCall | CPSIfStmt | CPSParLoop
CPSFunCall ::= ID(ID,ActualParamList);
CPSIfStmt ::= if (SimpleExpr) { (SimpleStmt)*CPSFunCall }

Figure 6: Grammar for UWOmpCPS𝑝𝑟𝑜

1.
⟦ K 𝑇 fun(args) { S } ⟧
//fun is called from

within parallel -for -loop

⇒ 𝑣𝑜𝑖𝑑 funCPS(Clsr K,args)

{ ⟦ K S ⟧ }

2. ⟦ K fun(a1 ,...,a𝑛) ⟧ ⇒ funCPS(K,a1 ,...,𝑎𝑛)

3.
⟦ K S1; S2 ⟧
//S1 has no call , return

//or pragmas inside.

⇒ S1; ⟦ K S2 ⟧

4. ⟦ K { S } ⟧ ⇒ { ⟦ K S ⟧ }

5. ⟦K S⟧//S: an AssignStmt ⇒ S

6. ⟦ K return x ⟧ ⇒ K x

7.

⟦ K 𝛼 ⟧
//𝛼 is a RetStmt or

// AssignStmt.

//𝛼=X fun(args) Y

//X has no calls

⇒

mkProc(void pCPS(Clsr K,

T1,V1)

{⟦ K X V1 Y ⟧});
C=mkClsr(pCPS ,bEnv(X,Y),K);

funCPS(C,args)

8.
⟦ K if(e) { S1 }

else { S2 } Y⟧
//e and S1 have no calls.

⇒ if(e) { ⟦ K S1 ⟧ }

else { ⟦ K S2 ⟧} ⟦ K Y ⟧

9. ⟦ K #ompparallel { S } ⟧ ⇒ #ompparallel { ⟦ K S ⟧ }

10.
⟦K #ompfor
for(Header){

fun(args);

} S ⟧

⇒

#ompfor
for(Header){

K=𝑚𝑘𝐶𝑙𝑠𝑟 (𝑖𝑑, 𝑛𝑢𝑙𝑙, 𝑛𝑢𝑙𝑙);
funCPS(K, args);

} ⟦K S ⟧
11. ⟦ K S ⟧//S is a BarrierStmt ⇒ S

Figure 7: CPS translation rules for the parallel constructs.

If schedOpt is omitted, then getSchedule sets the schedule to
static. Similarly, if schedOpt=runtime, then getSchedule obtains
the schedule from the language-specified environment variable.
4.4 Post-Pass: Type Specific Reduction Ops
The final step in our translation process introduces type specific
reduction operations for the operations specified in the OpenMP
specification [25]. As mentioned in Section 3, the reduction-related

#ompfor
𝑓 𝑜𝑟 (𝐻𝑒𝑎𝑑𝑒𝑟){
𝐾 =mkClsr(X);

fCPS(𝐾 ,args);

}

⇒

1 𝑡𝑖𝑑=thread -number ();

2 𝑠𝑐ℎ𝑒𝑑=getSchedule(𝑠𝑐ℎ𝑒𝑑𝑂𝑝𝑡);

3 𝑐ℎ𝑆𝑖𝑧𝑒=getChunkSize(𝑠𝑐ℎ𝑒𝑑𝑂𝑝𝑡);

4 𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟 =getScheduler(𝑠𝑐ℎ𝑒𝑑 ,𝑡𝑖𝑑);

5 #ompfor
6 𝑓 𝑜𝑟 (𝐻𝑒𝑎𝑑𝑒𝑟) {

7 𝐾 =mkClsr(X);

8 𝐶=mkClsr(fCPS ,bEnv(args),𝐾);

9 enqueue(WL[𝑡𝑖𝑑],𝐶);}

10 (*𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟)(𝑐ℎ𝑆𝑖𝑧𝑒);

(a) Rules to translate UWOmpCPS𝑝𝑟𝑜 to OM-OpenMP.

1 𝑓 𝑢𝑛𝑐𝑃𝑡𝑟 getScheduler(𝑠𝑐ℎ𝑒𝑑 ,𝑡𝑖𝑑){

2 if(𝑠𝑐ℎ𝑒𝑑 is static){

3 𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟 =&scheduler -static; WL[𝑡𝑖𝑑]=new WL(); /*local Q*/

4 }else if(𝑠𝑐ℎ𝑒𝑑 is dynamic){

5 𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟 =&scheduler -dynamic; WL[𝑡𝑖𝑑]=gWL; /* global Q*/

6 }else{ // guided

7 𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟 =&scheduler -guided; WL[𝑡𝑖𝑑]=gWL;/* global Q*/}

8 return 𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟 ; }

(b) Helper function to set the task worklist and return the scheduler.

Figure 8: UWOmpCPS𝑝𝑟𝑜 to OM-OpenMP Translation.

wait commands (waitRed and waitAllRed, Figure 2) in the input
UWOmp𝑝𝑟𝑜 code take a reduction operation and a reduction vari-
able rVar (which stores the reduced result), as additional arguments
to the wait command. The compiler uses the declared type of rVar
(say, int) to replace the user specified reduction operation (say,
ADD representing the ‘+’) with the actual reduction function (say,
ADDint) in the wait commands. For each of the primitive types 𝑇 ,
our runtime provides functions for performing the reduction (for
example, ADDint, ADDdouble, and so on).

In addition to introducing the type-specific reduction operation,
the reduction procedure needs a method to copy values from one
variable to the other (for example, to copy the final computed value
to the reduction variable). Similar to the type-specific reduction
operations, for each primitive type 𝑇 , our runtime provides func-
tions for performing the copy operation (e.g., ‘COPYint(int *from,
int *to)’), which is passed as an additional argument to the wait
method calls. For example, the command waitAllRedCPS (𝐾 , 𝑖==1,
ADD, 𝑥), where 𝑥 is the reduction variable of type int, gets replaced
by waitAllRedCPS (𝐾 , 𝑖==1, ADDint, 𝑥 , COPYint).
4.5 Example translation
For a better understanding of our translation scheme, Figure 9
describes the steps to transform a sample UWOmp𝑝𝑟𝑜 code to
OM-OpenMP code. Figure 9a shows the input UWOmp𝑝𝑟𝑜 code
and Figure 9b shows the CPS transformed version. The standard set
of CPS transformation rules is applied to the function f to convert
it to fCPS, and generate other CPS functions (pCPS1 and pCPS2).
We avoid showing the second argument to mkClsr as it depends on
the actual statements following the call (for example, S2 and S3).
The parallel-for-loop body creates an identity closure K to denote
the continuation after executing the parallel-for-loop. It calls fCPS
with closure K as an argument.

Aditya Agrawal and V. Krishna Nandivada

void f(args){
S1; signalSend(1,m,i+1);
S2; waitRed(1,ADD,x,i-1);
S3; }
int main(){
#ompparallel
{

#ompfor
for(Header){f(args);} } }

(a) Input UWOmp𝑝𝑟𝑜 code.

void fCPS(K,args){
S1;
C1=mkClsr(pCPS1,...,K);
signalSendCPS(C1,1,m,i+1);}

void pCPS1(K){
S2;
C2=mkClsr(pCPS2,...,K);
waitRedCPS(C2,1,ADD,x,i-1);}

void pCPS2(K){
S3;
Invoke Continuation in K;}
int main(){
#ompparallel
{
#ompfor
for(Header){
K=mkClsr(id,null,null);
fCPS(K,args); } } }

(b) UWOmpCPS𝑝𝑟𝑜 code

int main(){
#ompparallel
{
𝑡𝑖𝑑=thread-number();
𝑠𝑐ℎ𝑒𝑑=getSchedule(𝑠𝑐ℎ𝑒𝑑𝑂𝑝𝑡);
𝑐ℎ𝑆𝑖𝑧𝑒=getChunkSize(𝑠𝑐ℎ𝑒𝑑𝑂𝑝𝑡);
𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟=getScheduler(𝑠𝑐ℎ𝑒𝑑,𝑡𝑖𝑑);
#ompfor
for(Header){
K=mkClsr(id,null,null);
C=mkClsr(fCPS,bEnv(args),K);
enqueue(WL[tid],C); }

(𝑠𝑐ℎ𝑒𝑑𝑃𝑡𝑟)(chSize); } }

(c) Translated OM-OpenMP Code. Only
the changes are shown.
void pCPS1(K){
S2;
C2=mkClsr(pCPS2,bEnv(S3),K);
waitRedCPS(C2,1,ADDint,x,
COPYint,i-1); }

(d) OM-OpenMP Code with postpass.
Only the changes are shown.

Figure 9: Example Transformations.

Figure 9c shows the OM-OpenMP translated code of the
UWOmpCPS𝑝𝑟𝑜 code. This step emits code to identify the appro-
priate scheduler (Lines 2-7 from Figure 8b), and wraps the call to
function fCPS inside the closure C before enqueuing the closure
in the appropriate worklistWL[𝑡𝑖𝑑]. Finally, Figure 9d shows the
OpenMP translated code with the postpass translation rules applied
on the waitRedCPS method.

5 Runtime Support
We now describe the extensions to the OpenMP runtime that we
made to support the key operations supported by the language
extensions defined in UWOmp𝑝𝑟𝑜 : signalling, waiting, perform-
ing reduction and supporting the different scheduling policies of
OpenMP.Wewill start by describing our novel design of the commu-
nication sub-system between the activities of each parallel-for-loop
that forms the basis for these key operations.
5.1 Shared Postbox System for Communication
We present a postbox based system for communication between the
activities of a parallel-for-loop. We discuss the design of three types
of postboxes: signal-only, data-messages-only, or mixed signals and
data-messages (mixed-mode).
5.1.1 Design of the Postbox.Each activity 𝑋𝑖 of a parallel-for-loop,
may receive one or more signals/data-messages from other activi-
ties. To avoid contention among the communicating activities, we
associate a postbox with each activity 𝑋𝑖 . Thus, the postbox 𝑃 is
an array of 𝑁 elements (where 𝑁 is the total number of activities),
such that each element 𝑃𝑖 represents the postbox of 𝑋𝑖 .

We observed that for most of the parallel-for-loops using point-
to-point synchronization, the number of activities that an activity
communicates with, in a phase, is small. Based upon this observa-
tion, for such loops we set each postbox 𝑃𝑖 to be a hashmap (of
initial-size set to a constant 𝑘 , with load factor set to a constant

Sender Activity Signal Counter Data Message Pointer to next node

(a) mixed-mode postbox: structure of the node.

2 3 NULL 2 0 m1 2 0 m2H2

...

...

(b) Postbox example: 𝑃1 is the postbox of activity 𝑋1 and 𝐻2 is the hashed-index
of activity 𝑋2 in 𝑃1. 𝑋2 sends 3 signals and 2 data-messages to 𝑋1.

Figure 10: Mixed-Mode Postbox: Structure and Example.

𝑀%). Note that there are two straightforward alternatives to our
proposed scheme: (i) each post-box entry 𝑃𝑖 , is an array of 𝑁 slots -
no locking required among the activities communicating with any
particular activity 𝑋𝑖 , but leads to high space wastage. (ii) each
post-box entry 𝑃𝑖 is represented as a linked-list - low space over-
head, but may lead to significant performance overheads due to the
locking contention among the activities communicating with any
particular activity 𝑋𝑖 . We use the hash-maps as a middle ground for
supporting communication among the activities. In Section 6 we
discuss an optimization where we can further reduce the overheads
of this hash-map based postbox to a large extent for the common
case of all-to-all communication (with static scheduling policy).

The exact configuration of the slots of each postbox entry de-
pends on the type of communication: signal-only, data-only, or
mixed-mode. We briefly explain the first two modes and then ex-
plain the mixed-mode type of postbox, in more detail.

Signal Only Postbox If the communicating activities are guar-
anteed to never send/receive any data-messages, then we simply
represent each slot in the hashmap as a list of pairs of the form
(sender, counter). When an activity 𝑋𝑖 wants to send a signal to 𝑋 𝑗 ,
we simply increment the counter of 𝑋 𝑗 in 𝑃𝑖 At the receiving activ-
ity, we atomically decrements the counter, if non-zero we return 1.
Else, we return 0 (indicates that the signal is not yet available).

Data Only Postbox If the communicating activities are guaran-
teed to send/receive only data-messages, then we represent each
slot as a list of pairs of the form (sender, data-message). When an
activity wants to send a data-message, we append the message to
the appropriate list, and for the receiving activity we take out and
return the first message of the sender available in the list. If no such
message is available, we return NULL.

Mixed-mode Postbox. We use this type of postbox, when the
communicating activities may send either type of messages. We
implement each slot as a list, where each element of the list is
of the form shown in Figure 10a. Consider an element 𝑒 of the
form (𝑗 , ctr, m, next) in one of the lists of 𝑃𝑖 . If ctr is non-zero
then 𝑒 represents ctr number of contiguous signals sent from
𝑋 𝑗 to 𝑋𝑖 . Else, 𝑒 represents a data-message m sent from 𝑋 𝑗 to 𝑋𝑖 .
For example, Figure 10b shows an example list, on receiving the
following signals/data-messages from𝑋2 to𝑋1: signal, signal, signal,
and data-messages m1 and m2.

The postbox supports two routines: sendMsg and recvMsg. The
sendMsg routine updates the appropriate list, and the recvMsg rou-
tine returns the appropriate signal/data-message, if available. We
skip the details of these routines for brevity. The details can be
found in the extended report [1].

UWOmp𝑝𝑟𝑜 : UWOmp++ with Point-to-Point Synchronization, Reduction and Schedules

signalCPS(ClsrT 𝐾 , int 𝑒 , int 𝑎𝑐𝑡 , ...);
waitCPS(ClsrT 𝐾 , int 𝑒 , int act, ...);
signalAllCPS(ClsrT 𝐾 , int 𝑒);
waitAllCPS(ClsrT 𝐾 , int 𝑒);
signalSendCPS(ClsrT 𝐾 , int 𝑒 , void *𝑚, int 𝑎𝑐𝑡 , ...);
waitRedCPS(ClsrT 𝐾 ,int 𝑒 ,FptrT rOp′ ,void* rVar ,FptrT 𝑐𝑜𝑝𝑦,int 𝑎𝑐𝑡 , ...);
signalAllSendCPS(ClsrT 𝐾 , int 𝑒 , void *𝑚);
waitAllRedCPS(ClsrT 𝐾 , int 𝑒 , FptrT rOp′ , void *rVar , FptrT 𝑐𝑜𝑝𝑦);
Figure 11: Signatures of the signal/wait methods in CPS form; de-
rived from signatures shown in Figure 2. FptrT specifies a function
pointer type, used to pass the reduction operator function. ClsrT
specifies the continuation type. Brief description of the arguments:
𝐾 : continuation, 𝑒: predicate, 𝑎𝑐𝑡 : target activity,𝑚: message, rOp′:
reduction function, rVar: reduction variable, 𝑐𝑜𝑝𝑦: copy function.

Note: (I) The recvMsg routine is non-blocking in nature. The
actual waiting, if at all, is performed by the wait-call invoking the
recvMsg of the postbox. (II) We use a static analysis to decide which
type of postbox is to be used, based on the signal/wait commands
specified in the input program.
5.2 Signal Algorithm
We now describe the wrapper methods emitted by the CPS trans-
formation (Section 4.2) to handle the signal commands: signalCPS,
signalSendCPS, signalAllCPS and signalAllSendCPS. The first
two methods take variable number of arguments, corresponding to
the list of activities to whom the signal/message is to be sent. The
wrapper methods signalCPS and signalAllCPS simply call sig-
nalSendCPS and signalAllSendCPS, respectively, by passing the
message argument𝑚 as NULL. We now describe the signalSend-
CPS and signalAllSendCPS methods (signatures shown in Fig-
ure 11). An interesting point about these wrapper methods is that
they are in CPS form and take the continuation 𝐾 as an argument.

The method signalSendCPS first checks the predicate 𝑒 . If true,
it does the actual signalling by sending the message to each receiv-
ing iteration. Finally, it invokes the continuation. The design of
signalAllSendCPS is similar, except that it stores the message of
each sender 𝑖 at the 𝑖𝑡ℎ element of a shared array. The details of
these algorithms can be found in the extended report [1].
5.3 Wait Algorithm
We now describe the wrapper methods emitted by the CPS trans-
formation (Section 4.2) to handle the wait commands: waitCPS,
waitRedCPS, waitAllCPS and waitAllRedCPS. The first two meth-
ods take as arguments the list of (target) activities from whom the
signal/message is to be received. The wrapper methods waitCPS
and waitAllCPS simply call waitRedCPS and waitAllRedCPS, re-
spectively, by passing the reduction specific arguments as NULL.
Similar to the signal wrapper methods, these methods are also
in CPS form. For brevity, we only describe the waitRedCPS and
waitAllRedCPS methods.

The method waitRedCPS (signature in Figure 11) first checks
if the conditional-expression 𝑒 is true. If so, it first checks if the
signal/message has been received from all of the target activities.
For each received data-message, it performs the reduction opera-
tion. If all the signals/messages have been received, then it invokes
the continuation 𝐾 . Else, it creates a closure remembering the set
of activities whose signals/messages are yet to be processed and

void scheduler-static(𝑐ℎ𝑆𝑖𝑧𝑒) // 𝑐ℎ𝑆𝑖𝑧𝑒 unused here
begin // work already divided during enqueing in Figure 8a.

executeWL(WL[𝑡𝑖𝑑]);
Figure 12: UWOmp𝑝𝑟𝑜 static scheduling algorithm.

void scheduler-dynamic(𝑐ℎ𝑆𝑖𝑧𝑒)
begin

WorkList rdyWL=empty-worklist;
while true do

begin Atomic
if !gWL.isEmpty() then
rdyWL=gWL.dequeue(𝑐ℎ𝑆𝑖𝑧𝑒) else break ;

executeWL(rdyWL);

Figure 13: UWOmp𝑝𝑟𝑜 dynamic scheduler algorithm.

pushes the closure to the appropriate work-queue, before return-
ing from the function. This ensures that the thread executing the
wait-wrapper function does not block (or busy wait). The wait-
AllRedCPSmethod works similarly, by waiting for all the messages
to be available before performing the reduction. The details of these
algorithms can be found in the extended report [1].
5.4 Reduction Operations
We now highlight some salient points about our reduction strategy.
As discussed in Section 5.3, the reduction operation is invoked
eagerly for point-to-point synchronization (waitRedCPS), as and
when the message from any target activity is processed. However,
for the all-to-all synchronization (waitAllRedCPS), we efficiently
perform the reduction after all the messages have been received, in
a lazy manner. We now describe the intuition behind this design.

One main drawback of the eager method of reduction is that
it is inherently serial in nature; hence each activity may take up
to 𝑂 (𝑁𝑎) steps for reduction, where 𝑁𝑎 is the number of activi-
ties participating in reduction. While for small values of 𝑁𝑎 this
cost may be minimal, it can be prohibitively high, for large values
of 𝑁𝑎 ; a common use-case being performing all-to-all reduction
(realized by consecutive calls to signalAllSend and waitAllRed
commands of UWOmp𝑝𝑟𝑜). To address this issue in case of all-to-all
reduction we use the lazy mode of reduction. The algorithm works
on the principle of the popular parallel message-exchange based
protocol [27] that leads to each activity performing 𝑂 (𝑙𝑜𝑔2 (𝑁𝑎))
steps; in this scheme, after every time step 𝑡 , each activity holds
a reduced value over the messages of 2𝑡 activities. However, for
small values of 𝑁𝑎 , we continue to use the eager mode and avoid
the storage overhead of the shared array.
5.5 Supporting Different Scheduling Policies
UWOmp++ [4] could not handle any scheduling policies of
OpenMP except static scheduling. Considering the importance of
scheduling policies beyond static, we also provide support for dy-
namic, guided and runtime scheduling.

In Section 4.3, we discuss how the getSchedule function handles
the runtime schedule option during execution. We now discuss the
details of the remaining three schedulers.

static scheduler. The scheduler function scheduler-static (Fig-
ure 12) simply executes all the closures present in WL[𝑡𝑖𝑑]. We
skip the definition of executeWL for brevity. In this scheduling,
each thread maintains its own local worklist and as a result, in the

Aditya Agrawal and V. Krishna Nandivada

waitRedCPS function (described earlier in Section 5.3), the locking
mechanism before and after the enqueue operation is not required.

dynamic-scheduler and guided-scheduler. As discussed in Sec-
tion 4.3, for dynamic scheduling we use the global worklist. In
scheduler-dynamic (Figure 13), each thread atomically dequeues
(at most) 𝑐ℎ𝑆𝑖𝑧𝑒 number of closures from the worklist and executes
them. The scheduler-guided function works similar, except that
𝑐ℎ𝑆𝑖𝑧𝑒 is updated after each atomic dequeue. We skip the code for
the same, for brevity.

6 Discussion
We now discuss three salient features of our proposal.
• Translating input UWOmp𝑝𝑟𝑜 programs to mUWOmp𝑝𝑟𝑜
code.We use the following simplification steps (similar to that of
Aloor and Nandivada [4]), to convert any general UWOmp𝑝𝑟𝑜 code
to mUWOmp𝑝𝑟𝑜 , before we invoke our CPS translator. We apply
these steps until there is no further change.
Step 1. A sequence of statements as the body a parallel-for-loop. The
full body is moved to a separate function and a call to that function
is replaced with the body of the parallel-for-loop.
Step 2. One or more serial-loops inside the code invoked from a
parallel-for-loop. We transform each such serial-loop to a recursive
function and replace the loop with a call to that function.
Step 3.Set of Statements inside the parallel-region and not a parallel-
for-loop or barrier statement. Similar to Step 1, we first move the
set of statements to a separate function (say foo). The statements
include the set of sequential statements until we hit a barrier state-
ment or parallel-for-loop. Then, since the code has to be executed
by all the workers, we replace the sequence of statements with the
following code:

#ompfor
for (int i=0;i<T;++i) {foo(· · ·);}

Note: The arguments to foo are the list of free variables and T
denotes the number of workers executing this code.
• Optimization for Static Scheduling. We optimize the postbox
for all-to-all based synchronization kernels and static scheduling
policies by using a worklist implemented as a single array of clo-
sures with two indices (left and right) per thread. When a thread
hits a barrier, it resumes executing the continuation only after (i) the
thread has finished executing all the other closures in its worklist
(between left and right), and (ii) the remaining activities have
also reached the barrier. This approach simplifies maintenance and
reduces memory overhead.
•Maintaining the thread-id. The UW model gives a guarantee
that each iteration is executed by a unique worker. Thus, querying
the thread-id at any point in the iteration should return the same
value (consistent thread-id requirement). However, in our proposed
solution, an iteration is divided into one or more closures executed
by different threads. To satisfy the consistent thread-id requirement,
we store the expected thread-id of each iteration in the closure, and
modify the omp_get_thread_num function to access this closure.
• Compiling UWOmp𝑝𝑟𝑜 code with OpenMP disabled. Unlike
regular OpenMP codes, as is usual with codes using point-to-point
synchronization, the semantics of UWOmp𝑝𝑟𝑜 may not match with
their serial counter-parts (obtained by compiling the code by dis-
abling OpenMP).

Sl Bench[Src] Brief description I/P a2a p2p Redn
1 3MM [26] 3 Matrix Multiplication 8K ✓
2 LCS [24] Longest Common Subseq. 32K ✓
3 MCM [12] Matrix Chain Mult. 32K ✓
4 WF [26] Wave Front Simulation 32K ✓
5 LELCR [16] Leader Election 128K ✓
6 GEMVER [26] Vect. Mult. and Mat. Add 64K ✓
7 KPDP [26] 0/1 Knapsack 128K ✓
8 Jacobi1D [26] 1 dim Jacobian 128K ✓
9 Jacobi2D [26] 2 dim Jacobian 128K ✓
10 Stencil4D [32] 4 dim Stencil 128K ✓
11 SOR [8] Successive-Over Relax 128K ✓
12 Seidel2D [26] 2 dim Gauss Seidel 128K ✓
13 IA [13] 1 dim Iterated Avg. 4K ✓ ✓ ✓
14 HP [7] 4 dim Heated Plate 4K ✓ ✓ ✓

Figure 14: Benchmarks used in UWOmp𝑝𝑟𝑜 . Abbreviations: a2a =
all-to-all, p2p = point-to-point, Redn = Reduction.

• Signal/wait outside parallel-for-loops. UWOmp𝑝𝑟𝑜 assumes
that during execution, signal/wait functions are never invoked
from outside parallel-for-loops. To handle invocation of signal/wait
outside parallel-for-loops, we ensure that signal/wait (and their CPS
counterparts) will abort if not invoked inside a parallel-for-loop.
• Possibility of deadlocks. Similar to clocks (X10), and phasers
(HJ), programswritten UWOmp𝑝𝑟𝑜 can also deadlock – for example,
iterations may wait for each other, without sending signals. But if a
UWOmp𝑝𝑟𝑜 program has no such dependencies (using signal/wait
commands) causing circular-wait, then the translated code will not
lead to circular-waits (and hence no deadlocks).
• Multi-file compilation. For ease of presentation, the paper dis-
cussed the concepts assuming that there is a single file. To support
multi-file compilation, we require that all files are compiled with a
suitable option (e.g., -uwpro) or none are compiled with the option.

7 Implementation and Evaluation
We implemented our proposed language extension, translation and
the runtime support for UWOmp𝑝𝑟𝑜 in two parts: (i) the translator
has been written in Java [5] in the IMOP Compiler Framework [23]
- approximately 8000 lines of code (ii) the runtime libraries are
implemented in C [20] - approximately 2000 lines of code. IMOP is
a source-to-source compiler framework for analyzing and compiling
OpenMP programs. To compile the generated OpenMP codes, we
used GCC with -O3 switch (includes tail-call optimization).

We evaluate our proposed translation scheme and the runtime
using 14 benchmark kernels from various sources (details in Fig-
ure 14). These include all the kernels used by Aloor and Nandivada
[4] (except FDTD-2D, which we could not compile/run using the
baseline compiler of Aloor and Nandivada) and a few additional
kernels: WF, Jacobi1D, Stencil4D, and HP. For each kernel, we in-
dicate the type of synchronization needed and if it uses reduction
operations. Note that point-to-point kernels, can also be written
using all-to-all synchronization.

To demonstrate the versatility of our proposed techniques, we
performed our evaluation on two systems: (i) Dell Precision 7920
server, a 2.3 GHz Intel system with 64 hardware threads, and 64 GB
memory, referred to as HW64. (ii) HPE Apollo XL170rGen10 Server,
a 2.5 GHz Intel 40-core system, and 192GB memory, referred to as
HW40. All numbers reported in this section are obtained by taking a
geometric mean over 10 runs. For each benchmark kernel we chose
the largest input such that the 10 runs of the UWOmp𝑝𝑟𝑜 kernel
would complete within one hour on HW64. In this section, for a

UWOmp𝑝𝑟𝑜 : UWOmp++ with Point-to-Point Synchronization, Reduction and Schedules

language 𝐿𝑥 , we use the phrase “performance of an 𝐿𝑥 program” to
mean the performance of the code generated by the compiler for
𝐿𝑥 , for the program written in 𝐿𝑥 .

We show our comparative evaluation across four dimensions:
(i) UWOmp𝑝𝑟𝑜 kernels that perform all-to-all synchronization with
no reduction operations (kernels 1-7); we compare the performance
of these UWOmp𝑝𝑟𝑜 codes against their UWOmp++ counterparts.
(ii) UWOmp𝑝𝑟𝑜 kernels that perform only point-to-point synchro-
nization, with no reduction (kernels 8-12); we compared their perfor-
mance with that of their all-to-all versions written in UWOmp𝑝𝑟𝑜
and standard OpenMP. Note: we could not successfully run the code
generated by the UWOmp++ compiler for the all-to-all UWOmp++
versions of these codes and hence we do not show a comparison
against these codes. (iii) UWOmp𝑝𝑟𝑜 kernels performing reduction
operations (kernels 13-14); we compare the performance of these
kernels with their OpenMP original benchmarks. We first rewrote
these kernels to use our reduction algorithm and compare them
with their standard OpenMP benchmarks. (iv) Impact of the sched-
uling policy; we present a comparative behavior of all the kernels by
varying the scheduling policy. We also found that the UWOmp𝑝𝑟𝑜
codes scale well with the increasing number of threads. Due to lack
of space, the details are made available in the extended report [1].
Evaluation of all-to-all synchronization. For the benchmark
kernels 1-7, Figure 15 shows the percentage improvement of
UWOmp𝑝𝑟𝑜 codes over their UWOmp++ counterparts, for varying
number of threads.

Our evaluation shows that except for KPDP in one particular
configuration (64 cores on HW64 and 40 cores on HW40), the
UWOmp𝑝𝑟𝑜 codes perform better than their UWOmp++ counter-
parts. Even for that particular configuration the performance degra-
dation is minimal (<7%). One common pattern we find is that if a
kernel has a lot of computation (for example, LELCR, LCS and WF)
UWOmp𝑝𝑟𝑜 outperforms UWOmp++ significantly, in contrast to
kernels with very low computation (for example, KPDP and MCM)
where our comparative gains are less. Overall, we find that the
percentage improvements varied between −4.0% to +98.1% on the
HW64 system and between −6.6% to +89.5% on the HW40 system.
We believe that such significant performance gains are mainly due
to efficient handling of worklists (single local worklist vs two sepa-
rate worklists in UWOmp++; see Section 6), and being conservative
in converting only the essential parts of the code to CPS form.

Note: we avoid showing a comparison with the OpenMP coun-
terparts of these benchmarks as Aloor and Nandivada [4] have
already shown that UWOmp++ programs run faster than the plain
OpenMP programs, and we show that UWOmp𝑝𝑟𝑜 programs fare
significantly better than their UWOmp++ counterparts.
Evaluation of point-to-point synchronization. For the bench-
mark kernels 8-12, Figure 16 summarizes the percentage improve-
ment of the point-to-point variants of the codes compared to
OpenMP, for varying number of threads, on both HW64 and HW40
systems. Figure 17 summarizes the percentage improvement of
the point-to-point variants of the codes compared to the all-to-all
UWOmp𝑝𝑟𝑜 versions, for varying #threads. We see a significant
performance improvement obtained when using point-to-point
synchronization routines over that of OpenMP. The percentage
improvement varied between 6.8% to 86.5% on HW64, and between

6.9% to 84.8% on HW40 when compared with OpenMP. The per-
centage improvement varied between 27.3% to 82.4% on HW64, and
between 6.4% to 82.9% on the HW40 system when compared with
the all-to-all versions of UWOmp𝑝𝑟𝑜 .

The main reason of this improvement is due to the lesser amount
of communication (and faster execution) in point-to-point synchro-
nization compared to all-to-all synchronization in OpenMP. For
most of the kernels we see that the performance improvement
reduces gradually with the increasing number of threads. This is
mainly because the main overhead in all-to-all synchronization is
the waiting time incurred by all the activities. As the number of
threads increase, the overall waiting time gets amortized better and
leads to a reduction in the overhead.
Evaluation of reduction kernels. For the benchmark kernels 13-
14, Figure 19 shows the percentage improvement obtained using our
proposed reduction scheme against the standard OpenMP bench-
marks (using the OpenMP reduction clause wherever possible). We
see that the proposed scheme performs significantly better. The
percentage improvement varied between 26.1% to 52.4% on HW64,
and between 31.4% to 82.7% on HW40, compared to OpenMP.

For reference, we also compared our generated codes using the
techniques discussed in this paper (use parallel reduction operation)
against that in which one of the activities𝑋1 performs the reduction
operation in serial. We have found that the parallel reduction
operation clearly outperforms (31% to 78%) the serial one; the graphs
for the same have been moved to the extended report [1].
Evaluation of different schedules. We evaluate all kernels for
different scheduling policies to demonstrate the importance of sup-
porting diverse scheduling policies and the effectiveness of our
dynamic and guided schedulers. Figure 18 shows the percentage
improvement of dynamic and guided scheduling compared to static
scheduling; due to lack of space, we show this evaluation only for
a fixed number of threads (set to the maximum available hardware
cores in the system). We see that for kernels that only have all-to-all
synchronization, the static schedule performed much better; we
believe this is mainly due to our proposed optimization for all-to-all
synchronization in the context of static-scheduling; see Section 6.
In the case of kernels with point-to-point synchronization, since
the set of tasks waiting for each other was not predictable, the
dynamic/guided scheme performed better.

Further, we observe that for IA and HP kernels, the gains due
to dynamic and guided schedules is less. We believe that it is due
to the presence of all-to-all reduction operations in those kernels
that seem to work better with static scheduling. For most kernels
that do not use reduction operations, we find that the dynamic and
guided policies work better.

Overall, for dynamic scheduling, the percentage improvement
varied between −45% to +32% on the HW64 system, and between
−43% to +44% on the HW40 system. Similarly, for guided sched-
uling, the percentage improvement varied between −39% to +31%
on the HW64 system, and between −47% to +30% on the HW40
system. Such significant variance clearly attests to the importance
of supporting different scheduling policies and the efficacy of our
implemented schedulers.

Note: We compared our kernels with the baseline OpenMP ker-
nels with dynamic or guided scheduling. We observed that the

Aditya Agrawal and V. Krishna Nandivada

0

20

40

60

80

100

3MM
MCM

KPD
P

GEMVER
LC

S
LELC

R
WF

%
 I

m
p
ro

ve
m

en
t 2 4 8

16 32 64

1
3
.1

7
.1 1
6
.2

2
5
.6 4

6
.7 5
6
.6

4
5
.2

1
7
.1

9
.6 7
.8 1
9
.0

7
5
.0 9

2
.2

6
4
.5

2
4
.4

8
.4 1
4
.0 3

7
.4

8
5
.2 9
5
.7

6
6
.8

3
5
.3

1
0
.8

3
.2

2
4
.2

9
2
.0

9
6
.7

7
0
.6

2
2
.4

1
5
.2

1
.8

1
9
.0

9
4
.4

9
7
.9

6
4
.1

3
5
.9

1
0
.9

-4.0

3
7
.9

9
5
.6

9
8
.1

5
1
.7

(a) HW64 System

3M
M

MC
M

KP
DP

GE
MV
ER

LC
S

LEL
CR WF

2 4 8
16 32 40

9
.5

7
.0 1
5
.2

4
6
.3

4
1
.3

3
3
.4

3
8
.7

3
6
.3

6
.6

8
.3

6
3
.5

5
2
.3

3
9
.5 6
2
.0

4
2
.0

1
3
.1

5
.9

6
6
.1

6
4
.4

3
7
.1

8
5
.2

3
9
.5

5
.9 1
7
.3

5
8
.9

6
2
.8

4
3
.1

8
9
.5

3
1
.3

1
7
.5

2
.3

4
7
.7 6
0
.7

3
6
.1

7
4
.4

1
4
.7

1
9
.7

-6.6

1
5
.2

5
9
.9

2
6
.8 4
2
.3

(b) HW40 System

Figure 15: Performance of UWOmp𝑝𝑟𝑜 kernels with all-to-all synchronization (Vs. UWOmp++ kernels), for varying #threads.

20

40

60

80

100

Jac
ob

i1D

Jac
ob

i2D

Sten
cil4 SOR

Seid
el2

D

%
 I

m
p
ro

ve
m

en
t

2 4 8
16 32 64

8
6
.5

5
8
.4

6
0
.4 7
5
.2

6
1
.6

8
1
.8

5
8
.5 6
6
.2

5
9
.1 6
7
.87
4
.7

5
7
.9

4
5
.0 5
4
.9

7
8
.5

6
4
.0

5
3
.4

4
6
.1

3
9
.6

7
8
.7

5
3
.4

4
2
.7

4
0
.1

3
4
.5

7
0
.1

4
7
.0

3
3
.0

2
6
.4 4

0
.1

6
7
.4

(a) HW64 System

Jac
ob
i1D

Jac
ob
i2D

Ste
nci
l4

SO
R

Se
ide
l2D

2 4 8
16 32 40

8
2
.0

5
9
.6

5
5
.2

4
2
.9

3
1
.6

8
4
.8

6
6
.3

6
5
.7

6
1
.0

4
0
.3

7
2
.2

5
4
.0

5
2
.7

7
0
.5

5
7
.1

5
5
.4

3
5
.6

3
3
.9

6
8
.4

6
5
.5

4
3
.1

3
7
.6

3
4
.2 4
7
.0

6
7
.7

2
1
.9

4
1
.0

4
4
.0

3
2
.8 4
3
.7

(b) HW40 System

Figure 16: Performance of UWOmp𝑝𝑟𝑜 kernels with point-to-point synchronization (Vs. OpenMP), for varying #threads.

20

40

60

80

100

Jac
ob

i1D

Jac
ob

i2D

Sten
cil4

SOR
Seid

el2
D

%
 I

m
p
ro

ve
m

en
t 2 4 8

16 32 64

8
2
.4

4
6
.4 5
4
.9 6

9
.0

5
6
.4

7
6
.4

5
7
.2

5
9
.6 7
6
.3

6
4
.67
0
.7

5
8
.3

4
1
.1

7
3
.1

7
5
.7

4
7
.9

5
1
.3

3
7
.6 4
8
.8

7
6
.6

6
2
.3

4
1
.3

2
8
.7

4
8
.2

6
6
.6

6
3
.4

2
7
.3

3
2
.4 4

5
.3

4
9
.6

(a) HW64 System
Jac
ob
i1D

Jac
ob
i2D

Ste
nci
l4

SO
R

Se
ide
l2D

2 4 8
16 32 40

7
9
.1

5
2
.8

5
2
.8

3
9
.7

1
8
.1

8
2
.9

6
5
.4

6
4
.5

5
7
.9

3
7
.2

6
9
.4

5
4
.6

5
0
.6 6
7
.5

5
3
.1

5
2
.2

3
1
.9

2
8
.5

6
3
.7

6
0
.8

4
0
.3

3
3
.8

2
7
.0 3
4
.9

6
3
.5

1
1
.3 2
7
.5 4
0
.0

1
5
.7 3
4
.9

(b) HW40 System

Figure 17: Performance of UWOmp𝑝𝑟𝑜 kernels with point-to-point synchronization (Vs. All2All), for varying #threads.

-40
-20

0
20
40

3MM
KPD

P
LC

S
MCM

WF
GEMVER

LELC
R

Jac
ob

i1D

Jac
ob

i2D

Sten
cil4

SOR
Seid

el2
D

IA HP

%
 I

m
p
ro

ve
m

en
t

Guided Dynamic-2
0

-1
7

-2
4

-3
7

-3
9

-2
8

-3
7

2
5

1
7 3
1

2
5 2
8

1
0 1
1

-4
2 -2

4

-3
1

-3
2

-4
2

-3
4

-4
5

1
1 1
3 1
6 2
1 3
2

1
2 1
5

(a) HW64 System. #threads = 64.

3M
M
KP
DP LC

S
MC
M WF

GE
MV
ER
LEL
CR

Jac
ob
i1D

Jac
ob
i2D

Ste
nci
l4
SO
R
Se
ide
l2D IA HP

Guided Dynamic

-3
6

-2
4

-2
7

-3
9

-4
7 -2
4 -1
2

2
6

2
2 2
4

1
5 3
0

2
4

1
9

-1
5

-2
8

-4
3

-4
2

-3
5

-3
8

-8

1
8 2
9 4
2

3
9 4
4

2
8

2
9

(b) HW40 System. #threads = 40.

Figure 18: Comparison of dynamic and guided scheduling over static scheduling; #threads set to maximum #cores.

20
40
60
80

100

IA HP%
 I

m
p
ro

ve
m

en
t

2
4

8
16

32
64

2
6
.5 5

2
.4

2
8
.1 4

9
.5

3
1
.6 5
1
.9

4
4
.8

4
6
.3

2
7
.4 4
3
.3

2
6
.1 4
0
.5

(a) HW64 System
IA HP

2
4

8
16

32
40

3
9
.7 5
4
.1

4
5
.8 6
2
.2

5
0
.9 6
5
.9

5
4
.1 7
4
.1

3
2
.9

8
2
.7

4
1
.7 6
0
.2

(b) HW40 System

Figure 19: Performance of UWOmp𝑝𝑟𝑜 kernels that use reduction (Vs.
OpenMP), for varying #threads.

performance of our dynamic/guided scheduling scheme is compa-
rable to that of the baseline (-2 to 2%); not much overhead. We skip
the details due to lack of space.

8 Related Work
Aloor andNandivada [2] proposed the novel idea of a uniqueworker
model (UWOpenMP), which gives the programmer an impression
that each iteration of a parallel-for-loop is executed by a unique
thread (worker). Such a model allowed barrier statements to be in-
serted inside work-sharing constructs like parallel-for-loops. Aloor
and Nandivada [4] work on UWOmp++ extended the above idea
further and provided support for recursive functions (with barriers)
to be invoked within parallel-for-loops. In contrast, UWOmp𝑝𝑟𝑜
extends this idea further to allow point-to-point synchronization,
reduction operations between the activities (iterations) of a parallel-
for-loop and allow arbitrary scheduling policies of OpenMP.

UWOmp𝑝𝑟𝑜 : UWOmp++ with Point-to-Point Synchronization, Reduction and Schedules

OpenMP [25] supports a taskwait command with depend clause
which can be used synchronize between the tasks; the dependen-
cies are specified in terms of shared variables (for example, depend
(out:x), or depend (in:x)) and not individual tasks. In contrast,
UWOmp𝑝𝑟𝑜 supports point-to-point synchronization among the
iterations (activities) of parallel-for-loops. Further, UWOmp𝑝𝑟𝑜 sup-
ports reduction operations in the middle of the activities, such that
the final reduced value is available immediately after the reduction
operation (do not have to wait for the end of the parallel region).

There have been multiple efforts [15, 21, 28, 33] to utilize contin-
uations to extend and translate parallel programs. [15] use the idea
of continuations to explicitly maintain activation records for all the
activities, and use these activation records at the time of pausing
(store the activation records) and resuming (restore the activation
record) the activities. Maintaining activation records for all the
activities creates unnecessary memory overhead In contrast, our
approach only saves the information that needs to be executed by
each activity in its corresponding closure data structure; further, we
reutilize memory in order to avoid unnecessary malloc calls. Fis-
cher et al. [14] provide a modular approach to do a CPS translation
of event-driven programs in Java. For the Cilk language, Blumofe
et al. [6] propose a C-based runtime with a work-stealing scheduler
useful for multithreaded programming, which uses continuations
to spawn and join tasks. Our approach takes advantage of CPS
to efficiently perform wait and continue operations, and supports
different scheduling policies, along with reduction operations.

White [34] describes an implementation for OpenMP-tasks (cre-
ated using #pragma omp task directive) using continuations.
UWOmp𝑝𝑟𝑜 uses continuations to efficiently handle activities
in parallel-for-loops, which may contain synchronization points
(point-to-point or all-to-all) even within recursive functions.

For HJ, Imam and Sarkar [17] propose the idea of one-shot delim-
ited continuations (OSDeCont) to support cooperative scheduling
and event-driven controls. One main restriction in their approach is
that it works only for help-first and work-first approaches of work-
stealing.We take inspiration from their approach, but generalize the
techniques so that we are not limited to specific scheduling policies
and our scheme works in the context of OpenMP parallel-for-loops.

9 Conclusion
In this paper, we present UWOmp𝑝𝑟𝑜 that allows point-to-point
synchronizations and reduction operations, among the activities
of parallel-for-loops of OpenMP. We present a scheme to com-
pile UWOmp𝑝𝑟𝑜 codes to efficient OpenMP code. We have also
designed a runtime, based on a novel postbox based communica-
tion subsystem to support efficient signal and wait functions, along
with reduction operations and arbitrary schedules of OpenMP. We
have implemented our scheme in the IMOP compiler framework
and performed a thorough evaluation. We argue that programmers
can write expressive and performant codes using UWOmp𝑝𝑟𝑜 .

A Artifact Description: UWOmp𝑝𝑟𝑜 : UWOmp++
with Point-to-Point Synchronization,
Reduction and Schedules

A.1 Abstract
This artifact contains the description to write a UWOmp𝑝𝑟𝑜 pro-
gram and how to invoke the translator to convert it to the final
machine code. It also includes a script to compile and run the sample
benchmarks.
A.2 Description
The UWOmp𝑝𝑟𝑜 compiler takes as input a C program. It prepro-
cesses the C code and inputs the preprocessed code to the IMOP
Translator (written in Java) that converts the given code to CPS
form. Finally, the converted CPS code is compiled using any C
compiler (with OpenMP support) that generates the final machine
code.
A.2.1 Check-list (artifact meta information)

• Program: C
• Compilation: javac (1.7 or higher) for the translator and gcc

(any version) for the compiler
• Hardware: Any hardware
• Output: Code Output
• Publicly available?: Yes

A.2.2 How Software can be Obtained?UWOmp𝑝𝑟𝑜 source
code and supporting script files are hosted on GitHub.
(https://github.com/adityaag24/artifact-pact)
A.2.3 Hardware dependencies.The source code should run on any
general purpose computer that supports GCC, Java and OpenMP.
A.2.4 Software dependencies.To run the artifacts successfully, one
would require the latest Java JDK (version 17 or higher), gcc, ant (for
building the translator). Steps to install the same are given below:

• JDK: sudo apt-get install openjdk-17-jdk openjdk-17-jre
• GCC: sudo apt-get install build-essential
• ANT: sudo apt-get install ant

The following steps work on a Linux Based System(tested on
Ubuntu 22.04). For mac, we can use homebrew to install the same.

• JDK: brew install openjdk@17
• GCC: brew install gcc
• ANT: brew install ant

A.3 Installation
The translator and instructions to use it can be downloaded from
the github repository.
A.4 Experiment workflow
Clone the source code to local machine and compile: This should
clone the repository to the local machine and build the translator.

• Clone the Repository: git clone
https://github.com/adityaag24/artifact-pact.git

• Enter the folder: cd artifact-pact
• Clean any existing build files: ant clean
• Build the Java Translator: ant -v

After this, to translate and compile any <file>.c file,

• Preprocess the file using a C Compiler: gcc -P -E -o <file>.i
<file>.c

Aditya Agrawal and V. Krishna Nandivada

• The following command invokes the IMOP translator to
translate the code: java -da -Xms2048M -Xmx4096M
-cp third-party-tools/ com.microsoft.z3.jar:.
imop.Translator -nru -f <file>.i

• Compile the translated benchmark using any OpenMP
C Compiler: gcc -fopenmp -O3 -o <file> output-
dump/<file>-processed.i

• Run the translated benchmark: ./<file> [Optional Argu-
ments]

A.5 Evaluation and expected result
After running the translator, the translated output will be present
in a output-dump folder created by the IMOP translator. The file-
name will contain a postfix -processed denoting the final processed
output.

References
[1] Aditya Agrawal and V. Krishna Nandivada. 2023. Extended Report on

UWOmp𝑝𝑟𝑜 . https://bit.ly/3DWiNoN
[2] Raghesh Aloor and V. Krishna Nandivada. 2015. Unique Worker Model for

OpenMP. In Proceedings of the 29th ACM on International Conference on Super-
computing (Newport Beach, California, USA) (ICS ’15). Association for Computing
Machinery, New York, NY, USA, 47–56. https://doi.org/10.1145/2751205.2751238

[3] R. Aloor and V. K. Nandivada. 2019. Applicability of UWOmp++ and Reference
Codes. Supplementary Material. http://www.cse.iitm.ac.in/~krishna/uwompp-
master.zip.

[4] Raghesh Aloor and V. Krishna Nandivada. 2019. Efficiency and Expressiveness
in UW-OpenMP. In Proceedings of the 28th International Conference on Compiler
Construction (Washington, DC, USA) (CC 2019). Association for Computing Ma-
chinery, New York, NY, USA, 182–192. https://doi.org/10.1145/3302516.3307360

[5] Ken Arnold, James Gosling, and David Holmes. 2005. The Java programming
language. Addison Wesley Professional.

[6] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leis-
erson, Keith H. Randall, and Yuli Zhou. 1995. Cilk: An Efficient Multithreaded
Runtime System. In Proceedings of the Fifth ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (Santa Barbara, California, USA)
(PPOPP ’95). Association for Computing Machinery, New York, NY, USA, 207–216.
https://doi.org/10.1145/209936.209958

[7] John Burkardt. 2020. Heated Plate. https://people.sc.fsu.edu/~jburkardt/c_src/
heated_plate_openmp/heated_plate_openmp.html

[8] John Burkardt. 2020. SOR. https://people.sc.fsu.edu/~jburkardt/cpp_src/sor/sor.
html

[9] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011. Habanero-
Java: The New Adventures of Old X10. In Proceedings of the 9th International
Conference on Principles and Practice of Programming in Java (Kongens Lyngby,
Denmark) (PPPJ ’11). Association for Computing Machinery, New York, NY, USA,
51–61. https://doi.org/10.1145/2093157.2093165

[10] Bradford L. Chamberlain, Sung eun Choi, Steven J. Deitz, and Lawrence Snyder.
2004. The high-level parallel language ZPL improves productivity and perfor-
mance. In Proceedings of the IEEE International Workshop on Productivity and
Performance in High-End Computing. IEEE, 66–75.

[11] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Al-
lan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005.
X10: An Object-Oriented Approach to Non-Uniform Cluster Computing. In
Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (San Diego, CA, USA) (OOP-
SLA ’05). Association for Computing Machinery, New York, NY, USA, 519–538.
https://doi.org/10.1145/1094811.1094852

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to
Algorithms, Third Edition (3rd ed.). The MIT Press.

[13] S. Deitz. 2010. A Comparison of a 1D Stencil Code in Co-
Array Fortran, Unified Parallel C, X10, and Chapel. In IDRIS.
http://chapel.cray.com/presentations/Stencil1D.pdf.

[14] Jeffrey Fischer, Rupak Majumdar, and Todd Millstein. 2007. Tasks: Language
Support for Event-Driven Programming. In Proceedings of the 2007 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manipulation
(Nice, France) (PEPM ’07). Association for Computing Machinery, New York, NY,
USA, 134–143. https://doi.org/10.1145/1244381.1244403

[15] Dennis Gannon, Vincent A. Guarna, and Jenq Kuen Lee. 1990. Static Analysis
and Runtime Support for Parallel Execution of C. In Selected Papers of the Second
Workshop on Languages and Compilers for Parallel Computing (Urbana, Illinois,
USA). Pitman Publishing, Inc., USA, 254–274.

[16] S Gupta and V K Nandivada. 2015. IMSuite: A benchmark suite for simulating
distributed algorithms. JPDC 75 (2015), 1–19.

[17] Shams Imam and Vivek Sarkar. 2014. Cooperative Scheduling of Parallel Tasks
with General Synchronization Patterns. In ECOOP. 618–643.

[18] Cray Inc. 2013. The Chapel Language Specification. Technical Report.
http://chapel.cray.com.

[19] Andrew Kennedy. 2007. Compiling with Continuations, Continued. SIGPLAN
Not. 42, 9 (oct 2007), 177–190. https://doi.org/10.1145/1291220.1291179

[20] Brian W Kernighan and Dennis M Ritchie. 2006. The C programming language.
[21] Olin Shivers Mit and Olin Shivers. 1997. Continuations and threads: Expressing

machine concurrency directly in advanced languages. In In Proceedings of the
Second ACM SIGPLAN Workshop on Continuations. ACM Press, 2–1.

[22] S. S. Muchnick. 1997. Advanced Compiler Design and Implementation. Morgan
Kaufmann.

[23] Krishna Nandivada and Aman Nougrahiya. 2019. IMOP. http://cse.iitm.ac.in/
~amannoug/imop

[24] Thao Nguyen. 2015. LCS In Parallel. https://github.com/taoito/lcs-parallel
[25] OpenMP Architecture Review Board. 2020. OpenMP Application Programming

Interface Version 5.2. https://www.openmp.org/specifications/.
[26] Louis-Noël Pouchet. 2010. PolyBench/C Suite. https://web.cse.ohio-state.edu/

~pouchet.2/software/polybench/
[27] Rolf Rabenseifner and Jesper Larsson Träff. 2004. More Efficient Reduction

Algorithms for Non-Power-of-Two Number of Processors in Message-Passing
Parallel Systems. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Dieter Kranzlmüller, Péter Kacsuk, and Jack Dongarra (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 36–46.

[28] John H. Reppy. 1999. Concurrent Programming in ML. Cambridge University
Press, USA.

[29] Jun Shirako, Kamal Sharma, and Vivek Sarkar. 2011. Unifying Barrier and Point-
to-Point Synchronization in OpenMP with Phasers. In Proceedings of the 7th
International Conference on OpenMP in the Petascale Era (Chicago, IL) (IWOMP’11).
Springer-Verlag, Berlin, Heidelberg, 122–137.

[30] Jun Shirako, Priya Unnikrishnan, Sanjay Chatterjee, Kelvin Li, and Vivek Sarkar.
2013. Expressing DOACROSS Loop Dependences in OpenMP. In OpenMP in
the Era of Low Power Devices and Accelerators, Alistair P. Rendell, Barbara M.
Chapman, and Matthias S. Müller (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 30–44.

[31] Priya Unnikrishnan, Jun Shirako, Kit Barton, Sanjay Chatterjee, Raul Silvera, and
Vivek Sarkar. 2012. A Practical Approach to DOACROSS Parallelization. In Euro-
Par 2012 Parallel Processing, Christos Kaklamanis, Theodore Papatheodorou, and
Paul G. Spirakis (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 219–231.

[32] Hasitha Waidyasooriya and Masanori Hariyama. 2019. Multi-FPGA Accelerator
Architecture for Stencil Computation Exploiting Spacial and Temporal Scalability.
IEEE Access 7 (04 2019), 53188–53201. https://doi.org/10.1109/ACCESS.2019.
2910824

[33] Mitchell Wand. 1980. Continuation-Based Multiprocessing. In Proceedings of the
1980 ACM Conference on LISP and Functional Programming (Stanford University,
California, USA) (LFP ’80). Association for Computing Machinery, New York, NY,
USA, 19–28. https://doi.org/10.1145/800087.802786

[34] L. White. 2014. Extending old languages for new architectures. Ph. D. Dissertation.
University of Cambridge, UK.

https://bit.ly/3DWiNoN
https://doi.org/10.1145/2751205.2751238
http://www.cse.iitm.ac.in/~krishna/uwompp-master.zip
http://www.cse.iitm.ac.in/~krishna/uwompp-master.zip
https://doi.org/10.1145/3302516.3307360
https://doi.org/10.1145/209936.209958
https://people.sc.fsu.edu/~jburkardt/c_src/heated_plate_openmp/heated_plate_openmp.html
https://people.sc.fsu.edu/~jburkardt/c_src/heated_plate_openmp/heated_plate_openmp.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/sor/sor.html
https://people.sc.fsu.edu/~jburkardt/cpp_src/sor/sor.html
https://doi.org/10.1145/2093157.2093165
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1244381.1244403
https://doi.org/10.1145/1291220.1291179
http://cse.iitm.ac.in/~amannoug/imop
http://cse.iitm.ac.in/~amannoug/imop
https://github.com/taoito/lcs-parallel
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1109/ACCESS.2019.2910824
https://doi.org/10.1109/ACCESS.2019.2910824
https://doi.org/10.1145/800087.802786

	Abstract
	1 Introduction
	2 Background
	3 UWOmppro: Extending UWOmp++
	4 UWOmppro to Efficient OM-OpenMP
	4.1 Simplifier
	4.2 CPS Translator
	4.3 OM-OpenMP Translator
	4.4 Post-Pass: Type Specific Reduction Ops
	4.5 Example translation

	5 Runtime Support
	5.1 Shared Postbox System for Communication
	5.2 Signal Algorithm
	5.3 Wait Algorithm
	5.4 Reduction Operations
	5.5 Supporting Different Scheduling Policies

	6 Discussion
	7 Implementation and Evaluation
	8 Related Work
	9 Conclusion
	A Artifact Description: UWOmppro: UWOmp++ with Point-to-Point Synchronization, Reduction and Schedules
	A.1 Abstract
	A.2 Description
	A.3 Installation
	A.4 Experiment workflow
	A.5 Evaluation and expected result

	References

