
Optimistic Stack Allocation and Dynamic Heapification for
Managed Runtimes

ADITYA ANAND, Indian Institute of Technology Bombay, India

SOLAI ADITHYA, Indian Institute of Technology Mandi, India

SWAPNIL RUSTAGI, Indian Institute of Technology Mandi, India

PRIYAM SETH, Indian Institute of Technology Mandi, India

VIJAY SUNDARESAN, IBM Canada, Canada

DARYL MAIER, IBM Canada, Canada

V. KRISHNA NANDIVADA, Indian Institute of Technology Madras, India

MANAS THAKUR, Indian Institute of Technology Bombay, India

The runtimes of managed object-oriented languages such as Java allocate objects on the heap, and rely on

automatic garbage collection (GC) techniques for freeing up unused objects. Most such runtimes also consist

of just-in-time (JIT) compilers that optimize memory access and GC times by employing escape analysis: an
object that does not escape (outlive) its allocating method can be allocated on (and freed up with) the stack

frame of the corresponding method. However, in order to minimize the time spent in JIT compilation, the

scope of such useful analyses is quite limited, thereby restricting their precision significantly. On the contrary,

even though it is feasible to perform precise program analyses statically, it is not possible to use their results

in a managed runtime without a closed-world assumption. In this paper, we propose a static+dynamic scheme

that allows one to harness the results of a precise static escape analysis for allocating objects on stack, while

taking care of both soundness and efficiency concerns in the runtime.

Our scheme comprises of three key ideas. First, using the results of a statically performed escape analysis, it

performs optimistic stack allocation during JIT compilation. Second, it handles the challenges associated with

features that may invalidate the optimism, using a novel idea of dynamic heapification. Third, it uses another
novel notion of stack ordering, again supported by a static analysis, to reduce the overheads associated with

the checks that determine the need for heapification. The static and the runtime components of our approach

are implemented in the Soot optimization framework and in the tiered infrastructure of the Eclipse OpenJ9

VM, respectively. To evaluate the benefits, we compare our scheme with the existing escape analysis and

find that it succeeds in allocating a much larger number of objects on the stack. Furthermore, the enhanced

stack allocation leads to a significant reduction in the number of GC cycles and brings decent performance

improvements, especially suited for constrained-memory environments.

CCS Concepts: • Theory of computation → Program analysis; • Software and its engineering →
Compilers; Just-in-time compilers; Dynamic analysis; Object oriented languages.

Additional Key Words and Phrases: Static analysis, Managed Runtimes, Escape Analysis

Authors’ addresses: Aditya Anand, Indian Institute of Technology Bombay, India, adityaanand@cse.iitb.ac.in; Solai Adithya,

Indian Institute of Technology Mandi, India, solaiadithya001@gmail.com; Swapnil Rustagi, Indian Institute of Technology

Mandi, India, swapnilrustagi97792@gmail.com; Priyam Seth, Indian Institute of Technology Mandi, India, sethpriyam1@

gmail.com; Vijay Sundaresan, IBM Canada, Canada, vijaysun@ca.ibm.com; Daryl Maier, IBM Canada, Canada, maier@

ca.ibm.com; V. Krishna Nandivada, Indian Institute of Technology Madras, India, nvk@iitm.ac.in; Manas Thakur, Indian

Institute of Technology Bombay, India, manas@cse.iitb.ac.in.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2475-1421/2024/1-ART1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


1:2 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

ACM Reference Format:
Aditya Anand, Solai Adithya, Swapnil Rustagi, Priyam Seth, Vijay Sundaresan, Daryl Maier, V. Krishna

Nandivada, and Manas Thakur. 2024. Optimistic Stack Allocation and Dynamic Heapification for Managed

Runtimes. Proc. ACM Program. Lang. 8, PLDI, Article 1 (January 2024), 24 pages. https://doi.org/10.1145/

nnnnnnn.nnnnnnn

1 INTRODUCTION
The managed runtimes of languages such as Java allocate objects on heap and deallocate them using

automatic garbage collection. This unburdens the programmer from making intricate allocation-

deallocation decisions, and reduces the possibility of harmful memory bugs. On the other hand,

memory allocated on stack gets freed up as soon as the activation record of the allocating method

is popped out, thus eliminating the need for explicit garbage collection. The ability to allocate

objects or their fields on the stack instead of on the heap has long intrigued the community, with

researchers coming up with different applications of escape analysis to enable the same. For example,

the C2 just-in-time (JIT) compiler of the HotSpot VM [17] uses escape analysis to decompose objects

into scalar variables on the stack. Similarly, Graal [16] uses a partial-escape analysis [20] to enable

scalar replacement in parts of a program when it cannot be performed throughout the program.

Nonetheless, there are a large number of scenarios when Java objects cannot be scalarized and

need to exist in entirety. The most common case is when an object is passed out as an argument

to a call that is too big to be inlined. To overcome these limitations, many prior works, instead of

trying to decompose objects, choose to allocate them in their original shape on the stack instead of

on the heap; this optimization is called stack allocation [4, 6, 24]. However, stack allocation in a

managed runtime relies on analyses performed during JIT compilation which, like any JIT analysis,

affects the execution time of the program. Consequently, to target efficiency, prior works involving

JIT compilers resort to performing imprecise escape analyses that usually enable very few objects

to be allocated on the stack. As an example, we found that on average across several benchmark

programs of interest, the JIT compiler of the Eclipse OpenJ9 VM [10] was able to stack allocate

only 0.16% of the total number of objects.

A promising alternative approach could be to perform an aggressive escape analysis statically

– which could potentially identify a much larger number of method-local objects – and use its

results to perform stack allocation during JIT compilation. This way, one could offload the task of

performing a precise analysis to a stage prior to the VM invocation, and obtain a list of objects

to be stack allocated without performing expensive analysis during JIT compilation. However,

in presence of dynamic features supported by the language and the runtime, as well as differing

libraries between the static analysis and the runtime, such a static+dynamic strategy may go wrong

(and lead to erroneous stack allocation). As an instance, it is quite popular in the Java static-analysis

community to resolve reflective calls using run-time logs [5]; if the call graph changes during

execution from what was assumed statically, an object may get passed to a previously unknown

method potentially making it escape. Similarly, many managed runtimes provide features like

dynamic classloading and hot-code replacement that allow new code to show up during program

execution, thereby again leading to a potentially wrong stack allocation if the object escapes therein.

In this paper, we propose a sound and efficient approach of using static-analysis results to perform

stack allocation in a Java VM, which is not marred by any dynamism that the language or the

runtime may impose during program execution.

Our approach is based on three novel ideas: optimistic stack allocation, dynamic heapification, and
stack ordering, supported by corresponding precise static analyses. To begin with, the first idea is for

the VM to optimistically allocate a list of objects, generated by a static escape analysis, on the stack

frames of the methods it JIT-compiles. This lets us harness the results of a precise escape analysis

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:3

Precise Escape
Analysis Results

Stack Ordering
Pass

Modified
interpreter
(HC+DH)

Modified JIT
(HC+DH+SOSA)

OpenJ9

List of
stack-ordered
non-escaping

objects

Soot

Points-to Graphs

Fig. 1. Block diagram representing our static+dynamic approach for optimistic stack allocation. Abbreviations
indicate modifications done in OpenJ9 towards: (i) HC: insertion of heapification checks; (ii) DH: dynamic
heapification; (iii) SOSA: stack-ordered stack allocation.

for performing enhanced stack allocation. The second idea is to timely detect, using a run-time

check and a “stack walk”, if any objects are allocated on the stack incorrectly by the optimistic

scheme; and if so, then to move them onto the heap (along with correction of references). This

dynamic heapification allows us to ensure that the optimism does not lead to unsoundness in terms

of memory allocation and access. Finally, our third idea uses points-to graphs [24] to statically

suggest an “order” for allocating non-escaping objects on the stack during execution. This helps us

make a subtle improvement to our heapification checks, in a way that the VM can skip expensive

stack walks a majority of times and instead be done with a simple condition-check to determine

the requirement of heapification. Note that a scheme like this hinges on two primary requirements:

(i) that any chances of an object being incorrectly on the stack be detected (and the repairs be done)

before making any dereference – ensuring functional correctness; and (ii) that any run-time checks

be as cheap as possible – to ensure efficiency. Our scheme satisfies these requirements across the

tiered infrastructure of a production JVM and ensures that the optimism leads to as many benefits

as possible (in terms of stack allocation) using the static analysis.

Figure 1 illustrates the key implementation components of our approach. Our static analyses

are implemented over the Jimple IR of the Soot analysis framework [23]. In particular, we have

(i) a context-, flow- and field-sensitive escape analysis that uses points-to graphs to generate a

per-method list of non-escaping objects; and (ii) a stack ordering phase that traverses the points-to

graphs to determine efficient stack orders for non-escaping objects. Our run-time components

are implemented across the tiered infrastructure of the Eclipse OpenJ9 Java Virtual Machine. In

particular, our modified OpenJ9 reads static analysis results and uses them to perform optimistic

stack allocation. Our run-time heapification checks (HC) and dynamic heapification (DH) routines

are inserted as part of the codegen phases of the JIT compiler as well as in the interpreter, in

the form of new opcodes whose semantics enable the required operations. In addition, we have

modified the stack allocation routine of the JIT compiler to allocate objects on the activation record

of a method as per the (partial) stack order emitted by the static analyzer (SOSA).

We thoroughly evaluate various aspects of our approach over a series of benchmarks from the

DaCapo [3] and the SPECjvm [19] suites. Firstly, we find that our approach significantly increases

the number of objects allocated on stack (on average, 43%) as well as the number of bytes allocated

on stack (on average, 54%). Second, we find that the overhead of the run-time checks is bypassed

by the performance improvement brought by additional stack allocation. We experiment further by

reducing the heap memory made available to the JVM, and observe that the improvement with our

approach translates into fewer GC cycles (on average, 5.3% less), as well as a decent improvement

in performance in low-memory environments (on average, 8.8%), for benchmarks with high stack

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:4 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

allocation. Overall, we conclude that our evaluation demonstrates the enhanced precision, coupled

with high performance, that our proposed approach could impart to existing JIT pipelines.

Contributions:
• A first-of-its-kind static+dynamic strategy to optimistically perform stack allocation in Java

VMs, harnessing the results of context-, flow- and field-sensitive escape analysis.

• A new run-time algorithm based on stack walks, implemented across the tiered infrastructure

of a real-world JVM, to timely detect and move wrongly stack allocated objects to the heap,

while correcting their references.

• A novel idea of ordering non-escaping objects on the stack to reduce the time spent in stack

walks and consequently the overhead of run-time heapification checks.

• An evaluation that shows the efficacy of combining static analyses with run-time strategies

in improving the amount of stack allocation that a JIT can perform and consequently the

run-time performance, in allocation-intensive programs.

The rest of the paper is organized as follows. Section 2 illustrates the interesting challenges that

our proposed approach handles, with a motivating example. Section 3 describes the key run-time

components of our approach: optimistic stack allocation, run-time checks for heapification, and

recursive dynamic heapification using stack walks. Later, Section 4 shows how we determine and

use stack orders to reduce the number of stack walks towards reducing the overhead of run-time

checks. Section 5 states the correctness criterion of our approach, and discusses few design choices

that we had to make while implementing it for a full language in an industry VM. Section 6

evaluates the improvements imparted by our approach in terms of stack allocation, performance

in constrained memory environments, as well as the contribution of the key ideas in imparting

efficiency. Finally, Section 7 presents important related work and Section 8 concludes the paper.

2 MOTIVATING EXAMPLE
The primary goal of our paper is to propose a robust and efficient scheme that allows static escape

analysis of Java Bytecode to be used “safely” for performing stack allocation in the JVM. In this

scheme, we let the JVM optimistically allocate objects on the stack, using the information given

by the static analysis, in such a way that the JVM is able to detect and handle incorrect stack

allocations during run-time. In this section, we motivate the reader towards the subtle aspects of

developing such a scheme, using a running example.

Consider the Java code snippet shown in Figure 2. The class A has a field g of type B and the

class C has a field f of type A. Denoting the abstract object(s) allocated at line 𝑙 as 𝑂𝑙 , we can see

that the reference variable x in the method doo points to the object 𝑂5, object 𝑂5’s field f points to
the object 𝑂7, and object 𝑂7’s field g points to the object 𝑂9. The reference variable p too points

to the object 𝑂7 (due to the field load at line 8), which is later passed to the method zar of class C
(assuming class D is not known during static analysis). As zar does not make the objects pointed-to

by its parameters escape, we can allocate the objects 𝑂7 and 𝑂9 on doo’s stack frame, as shown in

the left-hand side of Figure 3. Prima facie, note that this information required an interprocedural

analysis (to incorporate the effect of zar into doo).
Now consider a scenario in which during program execution in the JVM, the method doo is called

by passing an object of a dynamically loaded class D (defined at line 20) as the second argument.

Here, as the variable r now points to an object of type D, the call site at line 10 would invoke the

overridden method zar in D. However, this zar stores the object pointed-to by its parameter p
into the field f of its parameter q (at line 22), which in turn points to an object passed to its caller

(via the parameter q in doo). As a consequence of this store statement, the lifetime of 𝑂7 becomes

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:5

1 class A { B g; }

2 class C {

3 A f;

4 void doo(C q, C r) {

5 C x = new C(); // 𝑂5

6 A y = new A(); // 𝑂6

7 x.f = new A(); // 𝑂7

8 A p = x.f;

9 x.f.g = new B(); // 𝑂9

10 r.zar(p, q);

11 bar(x, y);

12 } /* method doo */

13 void zar(A p, C q) {

14 q.f = new A(); // 𝑂14

15 } /* method zar */

16 void bar(C p1, A p2) {

17 p1.f = p2;

18 } /* method bar */

19 } /* class C */

20 class D extends C { /* dynamically loaded */

21 void zar(A p, C q) {

22 q.f = p;

23 } /* method bar */

24 } /* class D */

Fig. 2. Motivating example to explain various aspects of our run-time scheme.

longer than that of its allocating method doo, and thus𝑂7 cannot be kept on the stack frame of doo.
Furthermore, the object 𝑂9 is reachable from an escaping object 𝑂7 and hence that too cannot be

kept on the stack frame of doo. Letting these objects be on the stack is unsound. In order to ensure

correctness, we need to first of all detect the erroneous stack allocation before anybody tries to

access the corresponding object, and then ensure that the run-time memory layout is modified

to avoid future incorrect accesses during the program’s remaining execution. Also, as this needs

to be performed on-the-fly during program execution, its efficiency is crucial. In the next three

subsections, we describe how we perform these operations in context of our motivating example

from Figure 2.

2.1 Detecting incorrect stack allocation
Recall that owing to dynamic classloading in the above discussed example, the object 𝑂7 becomes

non-stack-allocatable (i.e., escapes) at line 22 in D’s zar. Thus, line 22 is the precise program point

at which we could detect, just before storing 𝑂7 into the field of a longer lifetime object (the

one pointed-to by the parameter q), that we are going to make 𝑂7 escape. In order to detect this

occurrence, we insert a check (using a new opcode in the intermediate language of the JIT compiler)

immediately before the write barrier associated with the store operation. This “heapification check”

compares the lifetimes of the object being stored (say rhs) and the base object on the left-hand side

of the assignment (say lhs), and thus decides whether we could have wrongly allocated rhs on the

stack. Note that the lifetime-comparison check needs to be performed for any statement that may

cause an object to escape, along with the more common store statement discussed above.

2.2 Moving objects and correcting references
Once we have detected that an object is wrongly allocated on the stack, we need to move it onto

the heap (we call this operation heapification). Moving the object from the stack to the heap is as

simple as creating a copy of the object (along with copying the values of its fields) and allocating

the new object onto the heap by calling the VM’s memory allocation routine. However, there are

two more subtle issues to consider. First, the fields of the object being copied may be pointing to

other non-primitive objects; for example, the object 𝑂9 pointed-to by the field g of the object 𝑂7.

This means the heapification operation needs to be repeatedly performed until it has copied all the

reachable objects onto the heap. Hence, once we detect an incorrectly stack allocated object, we

invoke a “recursive heapification” routine that allocates all the reachable objects that are currently

on the stack onto the heap. Second, there may be stale references to the object being heapified (on

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:6 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

O7

O9

g

zar

doo

. . .

. . .

p O7

O9

g

Stack

Heap

Heapification

Heapification

Fig. 3. A snapshot of the run-time stack and the heap after dynamic classloading in Figure 2. Dashed edges
represent heapification and green edges represent updated points-to edges post heapification.

stack or in registers); for example, after this heapification is done, there remains a stale reference

from the variable p in the method doo to the 𝑂7 on the stack. Such references need to be corrected

to point to the right object. We perform this “reference correction” by maintaining a map containing

the old and the new addresses of the objects being recursively heapified, traversing the stack frames

to find stale references, and then making them point to the right objects from the map. Figure 3

illustrates these operations for the code snippet under consideration.

2.3 Imparting efficiency through stack ordering
The heapification related steps are required as they affect the functional correctness of the optimistic

stack allocation scheme. However, it is easy to see that the check and the heapification described

above are costly. On the brighter side, it can be expected that the actual heapification operation

would have to be invoked rarely. This leaves us with the cost of the heapification check, which

is likely to be frequent (at each store to a non-primitive field, for example). Though we have not

yet described the check routine completely, it is possible to see that the most expensive operation

therein would be to traverse the stack frames until we find the lhs and the rhs objects, so that

we can compare their addresses to in turn compare their lifetimes. We reduce the cost of these

heapification checks by proposing another novel idea of ordering objects in stack frames, in a

way that their addresses can be compared for the heapification checks, without doing stack walks

frequently.

Essentially, while generating the list of stack allocatable objects in the static analysis (represented

by the bytecode indices of the corresponding new bytecodes in class files), we order the objects

according to a topological sort of the points-to graph constructed for performing the escape analysis.

The VM is modified to allocate objects on stack in this presented order, and the heapification checks

aremodified to take advantage of this order, whenever possible.We leave the details for Section 4, but

would point out to the reader here that these stack orders bring down the overhead of heapification

checks noticeably. Consequently, compared to an implementation of dynamic heapification without

stack orders, we see pronounced performance improvements for various benchmark programs

considered in our evaluation.

Having motivated the reader towards the interesting challenges that our scheme solves, we now

move on to a step-by-step description of the building blocks of our scheme in Sections 3 and 4.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:7

3 OPTIMISTIC STACK ALLOCATION IN ECLIPSE OPENJ9
Eclipse OpenJ9 [10] is a popular open-source JVM implementation, which executes Java Bytecode

using a multi-tier interpretation and compilation mechanism. The JIT compiler, Testarossa, uses

multiple levels of compilation: noOpt, cold, warm, hot, veryHot and scorching, in order of increasing

aggressiveness of the performed optimizations. The hot+ levels of the JIT compiler perform an escape

analysis on the code being compiled, whereby the depth of peeking (inside the called methods)

varies as the compilation level goes higher. OpenJ9 also implements a pass to allocate eligible objects

on stack, based on the results of this escape analysis, as well as a few other constraints. In particular,

the VM requires a fixed stack-frame size and hence precludes the stack allocation of variable-sized

arrays and objects that escape a loop iteration. The VM also requires stack-allocated objects to be

pre-zeroed at method entry and makes the garbage collector aware of these objects by maintaining

their offsets in a metadata field with each method. Similar to other Java runtimes, OpenJ9 is also

conservative in performing stack allocation (as well as other analyses and optimizations) when

dynamic features such as hot-code replacement are allowed by the VM. As we show in Section 6, the

imprecision introduced by time constraints during JIT compilation (escape analysis is only partially

interprocedural, depending on the peek-depth), as well as the possibility of dynamic features, results

in the VM being able to allocate a very small percentage of objects on the stack during program

execution. In this section, we propose an approach that uses the results of a statically performed

escape analysis to aggressively stack allocate method-local objects in OpenJ9, while being robust

to the dynamic features allowed by the runtime.

The next two subsections discuss two major aspects of our scheme. Section 3.1 discusses how

the static-analysis results are used in the runtime to optimistically allocate non-escaping objects on

the stack. Section 3.2 discusses the dynamic heapification routine, which essentially is the repair

that is performed when a stack-allocated object escapes. We discuss stack ordering, which is an

optimization to reduce the overhead of the heapification routine, in Section 4.

3.1 Stack allocation using static analysis results
Our approach starts with a statically performed context-, flow- and field-sensitive escape analysis of

Java programs in the Soot framework [23]. This analysis uses points-to graphs [24] to build method

summaries in terms of the escape status of each abstract object allocated in the program. The

summaries are built bottom-up over the call graph (which is generated using the context-insensitive

SPARK [13] algorithm implemented in Soot).

The result of our static escape analysis is a per-method list of objects that can be allocated on the

stack. As the OpenJ9 JIT converts Java Bytecode to a tree-based intermediate language (Tree IL),

we represent objects in terms of bytecode indices (BCIs) of the corresponding new bytecodes, and

provide the static-analysis results to OpenJ9 in a separate file (with “.res” extension). In OpenJ9,

during the escape analysis phase, we match BCIs corresponding to object nodes in Tree IL with

these BCIs to determine if the corresponding object can be allocated on the stack. That is, any BCI

listed against a method m in the .res file can be allocated on the stack frame of m. We next describe

when and how we read and use the static analysis results present in the .res files in the VM.

In an execution enabled with optimistic stack allocation (determined using a command-line

argument), we read the supplied .res file when the runtime is being initialized and store the results

(say in a map called staticAnalysisNonEscapingMap). This ensures that we incur file-reading

overheads only once, in the beginning.

In the existing VM implementation, whenever the JIT compiler picks a hotmethod for compilation,

it traverses the Tree IL corresponding to that method, performs a simple (imprecise) escape analysis

over the object nodes therein, and generates a list of candidates deemed suitable for stack allocation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:8 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

We top up this list with the objects whose BCIs are present in the list corresponding to the method

being compiled in staticAnalysisNonEscapingMap so that those additional objects also get marked

for stack allocation, without actually performing a complex analysis during JIT compilation. Later,

the stack allocation routine allocates the objects present in this candidates list on the stack (instead

of on the heap) when the stack frame of the corresponding method is created during execution.

Example. Consider the code snippet in Figure 2. The local objects 𝑂5 and 𝑂6 in the method doo
are passed as arguments to the method bar. The existing escape analysis, unless it is able to peek

inside bar, would not be able to stack allocate any of the objects𝑂5 or𝑂6 on the stack frame of doo.
However, our static-analysis guided optimistic scheme would be able to determine that none of the

objects passed to bar escape therein (the store statement inside bar involves objects allocated in

the same method, i.e. doo – identifiable with one level of context sensitivity), and consequently

mark both 𝑂5 and 𝑂6 in doo for stack allocation. Similarly, our scheme would be able to mark the

objects 𝑂7 and 𝑂9 for stack allocation in doo.

3.2 Dynamic heapification
As we shall see in Section 6, our static-analysis based scheme marks a significantly high number of

objects for stack allocation during program execution. However, in a language runtime that allows

interesting dynamic features such as dynamic classloading (DCL) and hot-code replacement (HCR),

which essentially allow arbitrary code changes, an object that was stack allocated may escape

during execution. We cannot simply leave such objects allocated on the stack as is, and need a

mechanism to repair the memory such that the program behaviour is preserved. The most unique

feature of our approach is this timely detection and fallback mechanism for repairing incorrect

stack allocation; we describe this next. Also, as a consequence of the presence of a dynamic repair

mechanism, we call our static-analysis guided stack allocation optimistic.
To handle the possibility of dynamically introduced escapes in the VM, we need a run-time check

that timely (that is, before any incorrect access) determines whether we have allocated an escaping

object on the stack. For such escaping objects, we also need a mechanism to move the object from

the stack to the heap and update all previous references to the object to point to the new heap

location. We refer to the introduced run-time checks as heapification checks and the procedure to

move objects from stack to heap while correcting references as dynamic heapification.
We observe that there are five kinds of bytecodes that may cause an object to escape:

(1) Returns of references (bytecode areturn).

(2) Reference stores to instance fields, static fields and object arrays (bytecodes putfield,

putstatic and aastore, respectively).

(3) Throwing of exceptions (bytecode athrow).

(4) Calls to native methods that may lead to reference stores in sun.misc.Unsafe (putObject,

putObjectOrdered, putObjectVolatile and compareAndSwapObject).

(5) JNI APIs used to perform stores in called C/C++ code that may manipulate Java objects

(setObjectField, setObjectArrayElement and setStaticObjectField).

The last three cases typically require the associated object to be on the heap, and hence we trigger

a heapification if the object is currently found on the stack. However, for the first two cases (that is,

at reference returns and at reference stores), we insert more involved checks to determine the need

for heapification, as discussed below. Also, in the remaining text, we describe our heapification

checks in detail for the JIT compiler; the changes in the interpreter are similar except that they are

introduced directly in the interpretation logic for these bytecodes instead of being emitted in the

corresponding native code by the code-generation phase of the compiler.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:9

3.2.1 Heapification opcodes. In order to insert heapification checks, we have introduced two

opcodes in the JIT compiler: possibleHeapificationAtReturn and possibleHeapificationAtStore. In
the IL generation phase of the JIT compiler, when relevant bytecodes are processed, we insert these

opcodes in the generated code. The evaluation of these opcodes performs the heapification check.

When an object is being returned, we add the possibleHeapificationAtReturn opcode before the

corresponding instruction. When this opcode is evaluated before a return statement, we check if

the return value is allocated on the returning method’s stack; if so, it is heapified. This way, we do

not unnecessarily heapify objects that were passed as a parameter or were allocated on the heap.

A field-store statement involves two objects: the base object on the left-hand side (say lhs) and
the object on the right-hand side (say rhs) being stored into a field of the base object. Now if the lhs

object has a longer lifetime (that is, it is allocated either on the heap or on a higher stack frame),

then the rhs object is escaping. In case this rhs object was allocated on the stack and is found to

be escaping due to this store statement, it would require heapification. We perform this check by

adding the possibleHeapificationAtStore opcode at store statements. The evaluation of this opcode

involves two components: first, a cheap address-comparison check; and second, a more expensive

stack-walk check that is performed only when the address-comparison check fails.

3.2.2 Address comparisons and stack walks. The address-comparison check involves comparing

the virtual addresses of the lhs and the rhs objects. During execution, we have access to the bounds

of the stack region and can determine whether an object is present in the stack or in the heap. If an

object is present in the stack, then we can further perform the address-comparison check. Note

that the stack region in OpenJ9 is modelled to grow towards lower addresses and hence newly

created stack frames have lower addresses than the previous stack frames. Thus, if two objects

have been allocated on the stack, by comparing their addresses we can determine which object was

allocated first. However, the existing stack allocation scheme allocates objects in an arbitrary order,

within a single compiled-method stack frame. As a result, for the scenario when the lhs and the rhs

objects were allocated in the same method, by comparing addresses we cannot always determine

which object was allocated first
1
. In fact, their activation records would be cleared at the same time

as they are in the same stack frame and hence, both objects have the same lifetime. When this

happens, the rhs object does not escape as the lhs object also has the same lifetime. But in case

the lhs object was allocated a lower address than the rhs object (due to the arbitrary nature of the

existing stack-allocation scheme), we might imprecisely conclude that the rhs object escapes (a

false positive). Further, this imprecise conclusion may cause more heapifications than needed.

In order to reduce false positives and make the heapification checks more precise, if we had

access to the stack-frame bounds of the method in which an object was allocated, we could easily

determine if two objects were allocated in the same method. But since maintaining that explicitly

for all the methods during run-time would have a high overhead, we choose to use a stack-walk

based approach instead, as discussed below.

A stack-walk check involves walking over the stack to determine if the rhs object was allocated

in the same frame as the lhs object or in a deeper frame. A stack walk iterates over the stack frames

from the most recently created frame to the deepest one, and compares the stack-frame bounds

with the addresses of the rhs and the lhs objects. It stops iterating once it finds a stack frame that

has either of these objects in its address range. If the lhs object was allocated in a deeper frame

than the rhs object, then we infer that the rhs object will escape and has to be heapified.

Observe that a stack-walk check can precisely determine if an object escapes; however, it involves

a call into the JVM from JITed code as well as iteration over stack frames, and thus has a high

overhead. Hence, we use the stack-walk check only when the address-comparison check fails.

1
We use this insight in Section 4 to provide stack orders and improve the address-comparison checks.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:10 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

1 Procedure HeapificationCheckAtStore(lhsReg, rhsReg)
2 if rhsReg < stackBaseReg OR rhsReg > stackEndReg then
3 No heapification required. /* The rhs object is outside stack bounds */

4 else
/* The rhs object is present on the stack */

5 if lhsReg < stackBaseReg OR lhsReg > stackEndReg then
/* The lhs object is outside stack bounds, hence the rhs object escapes */

6 Heapify starting from the rhs object.

7 else
/* Both lhs and rhs objects are on the stack */

8 if rhsReg >= lhsReg then
/* The rhs object has been allocated before the lhs object and hence does not escape */

9 No heapification required.

10 else
/* The lhs object has been allocated in either the same frame or a deeper frame as

compared to the rhs object */

11 Perform stack-walk and heapify if needed.

Fig. 4. The heapification check performed at store statements (𝑎.𝑓 = 𝑏). lhsReg and rhsReg store the addresses
of the base object (pointed-to by 𝑎) and that of the object being stored (pointed-to by 𝑏), respectively.

3.2.3 The heapification-check algorithm. Figure 4 summarizes the above discussion on heapification

checks for store statements (of the form 𝑎.𝑓 = 𝑏, where both 𝑎 and 𝑏 are reference variables). Say

the object pointed-to by 𝑎 is the “lhs” and the one pointed-to by 𝑏 is the “rhs”. Correspondingly,

say lhsReg and rhsReg contain the addresses of the lhs and the rhs objects, respectively. We also

assume that stackBaseReg and stackEndReg store the starting and the ending addresses of the

stack region of the memory, respectively. The algorithm essentially has three consequences. We do

not need any heapification when the rhs object is either outside stack bounds (i.e., already on the

heap) or when our address comparison finds that the rhs object has a longer lifetime compared to

the lhs object (conditions at lines 1 and 8). We definitely need heapification when we are sure of

an escape, which is the when the lhs object is on the heap (condition at line 5). We may or may

not need a heapification when both the lhs and the rhs objects are inside the stack bounds but the

address comparison fails (line 10), whereby we need to perform a stack walk to determine if the

rhs object escapes.

We have implemented the stack-walking routine as a helper method in the JVM, called heapi-
fyObjectIfRequired (code skipped for brevity). Essentially, from the JIT-compiled code where the

address comparison is performed, we call the heapifyObjectIfRequired method with the lhs and

the rhs objects of the store as parameters. The method performs a stack walk to find out if the lhs

object was allocated on a older stack frame than the rhs object; and if so, then it heapifies starting

from the rhs object.

The heapification routine is responsible for moving the object from the stack to the heap and

updating all references to the object to point to the new heap location. This is done by allocating a

new object on the heap and copying the values of the fields of the escaping object from the stack to

the new object. Further, a different stack walk is performed in the JVM to iterate slot-wise through

all stack frames and update references to the escaping object to point to the new heap location.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:11

class T {

T f;

void m1() {m2(...);}

void m2() {m3(...);}

void m3(T a, T b) {

a.f = b;

}

}

(a)

Oa allocated here

Ob allocated here

a.f = b

m1

m2

m3 a.f = b

m1

m2

m3 a.f = b

m1

m2

m3

Ob allocated here

Oa allocated here Oa and Ob both
allocated here

Case-1 Case-2 Case-3

S
tack

grow
s
d
ow

n
w
ard

Ob escapes Ob doesn’t escape Ob doesn’t escape

(b)

Fig. 5. (a) Example code to explain the scenarios for stack ordering. (b) Possible stack layouts while processing
store statements for the example in (a).

It is worth noting that the escape of one object can cause the escape of other objects reachable via

its fields. This brings up a need for heapifying objects recursively, which we perform by iterating

over all the objects referenced by fields of the object that was heapified. If such references are found

on the stack, they are also (recursively) heapified and the references to these objects are updated to

point to the new heap location. During recursive heapification, we also take care to not heapify

the same object multiple times using a hashmap that consists of book-keeping information about

addresses of the objects that have been heapified in the current heapification invocation.

Example. After dynamic classloading in Figure 2, our heapification check (inserted before the

bytecode corresponding to the new store at line 14) would detect an incorrect stack allocation

for the object 𝑂7, move it to the heap, and recursively heapify the reachable object 𝑂9. Further, it

would update the reference variable p in doo to point to the new 𝑂7 on the heap (see Figure 3).

4 IMPARTING EFFICIENCY THROUGH STACK ORDERING
As discussed in Section 3, when an object is stack-allocated optimistically, there is a possibility

that it escapes at run-time either due to unsoundess in the static analysis or due to other dynamic

features. Hence, as discussed previously, we perform checks at various statements to find whether

such an optimistically stack allocated object is escaping. Recall that the check at a field-store

statement is performed by comparing the lifetimes of the lhs and the rhs objects involved therein.

If the lhs of the store is a heap-allocated object then the rhs object is escaping by default. However,

in the case where both the lhs and the rhs objects are allocated on the stack, three cases arise.

Consider the code snippet shown in Figure 5a. Say there are three methodsm1,m2 andm3. Here,
m1 calls m2, m2 calls m3, and m3 collects two parameters a and b passed by its caller. Let a be

pointing to an object𝑂𝑎 , b be pointing to an object𝑂𝑏 , and the method m3 creates a field reference
from 𝑂𝑎 to 𝑂𝑏 (via the store statement a.f = b). Note that while being in m3, the allocation sites of

the objects pointed-to by its parameters, and consequently their lifetimes, are unknown.

In general, the lifetimes of two stack allocated objects involved in a store statement could vary as

shown in Figure 5b. The lifetime of the rhs object in a field store could be longer, shorter or equal

to that of the lhs object. For the first two scenarios (Case-1 and Case-2), when the lhs and the rhs

objects are allocated in different frames, an address comparison between the lhs and the rhs objects

is sufficient to determine if the rhs is escaping or not. For Case-3, during the creation of the stack

frame, the lhs and the rhs objects could be ordered arbitrarily and an address comparison is not

sufficient to conclude whether the rhs object is escaping. Thus, we may have to perform a stack

walk to find out if the lhs and the rhs objects are indeed on the same stack frame or not. However,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:12 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

doo bar

Op1 Op2x O5

y O6

f

(a)

x O5

doo bar

Op1 Op2

y O6

f

f

(b)

Fig. 6. Points-to graphs for methods doo and bar from Fig. 2 during stack ordering: (a) intraprocedural; (b)
interprocedural. Nodes 𝑂𝑝1 and 𝑂𝑝2 represent the objects pointed-to by parameters p1 and p2, respectively.

even though the previously discussed stack-walk check provides this information precisely, it is

expensive as well.

Now we present an interesting insight. The question under consideration is: Can we do something
such that a simple address-comparison works a majority of times (thus avoiding stack walks)? We

have seen that the address-comparison check works precisely for Cases 1 and 2. For Case-3, if we

order the objects on the stack according to the field-store statements deterministically, we can

make address comparison work precisely, whenever the points-to graph is acyclic.

In order to address Case-3, our static analysis additionally creates a partial order among stack-

allocatable objects, corresponding to the order induced by points-to relationships. For the objects

allocated in the same method, we obtain the stack order by performing a topological sort in the

points-to graphs (which are anyway used for performing escape analysis) corresponding to those

methods. Furthermore, we extend the stack orders interprocedurally while merging points-to graphs

across methods. This gives us an order among the objects allocated in a method even if the points-

to relationships among them are established inside callee methods. Finally, with stack-ordering

enabled, for each method in the .res file, we store the BCIs (corresponding to stack-allocatable

object-allocation sites) in these obtained orders.

Example. Figure 6a shows the intraprocedural points-to graphs for methods doo and bar from
Figure 2. As can be seen, there is no points-to edge currently between 𝑂5 and 𝑂6 and hence no

stack order. However, once we merge the points-to graphs of doo and bar, as shown in Figure 6b,

we can infer the stack order between the two objects in doo: 𝑂5 should be placed before 𝑂6.

In the VM, we use the statically provided stack orders to reorder the candidates list (candidates

are the objects that have been marked for stack allocation by the VM; see Section 3.1). Afterwards,

the stack-creation phase of the JIT compiler carries out allocation according to the reordered

candidates list. In a nutshell, these stack orders allow us to allocate the objects in the stack frame

deterministically, so that the underlying address comparison underneath heapification checks,

which is cheap, is also sufficient whenever possible.

Note that in presence of cycles in the points-to graph, the predetermined stack order may not

provide the desired precision. However, if there is a cycle involving n objects, address comparison

based on the order of store statements among those objects would still be conclusive for n-1
store statements and fail for only one store statement. This failing store would require a stack

walk to determine whether the rhs object needs to be heapified. Observe that this is a significant

improvement over requiring a stack walk for all such store statements towards determining the

need for heapification. In Section 6, we compare the versions of our implementations with and

without stack orders, and observe that they indeed put the nail in the coffin, imparting efficiency to

the complete idea of optimistic stack allocation with dynamic heapification.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:13

5 DISCUSSION
In this section, we state the correctness theorem for our approach (with an intuitive proof sketch),

and bring out a few interesting design decisions and choices that we made while implementing our

approach with support for the complete Java language and in an industry-standard JVM.

5.1 Correctness
The correctness of stack allocation, irrespective of the enabling analysis, depends on ensuring that

any object that outlives its allocating method is found on the heap by any subsequent dereference.

We now state the correctness theorem for our optimistic stack allocation approach.

Theorem 5.1. An object that outlives the scope of its allocating method is guaranteed to be present
on the heap before it could be dereferenced.

Proof. (Sketch) Consider that an object 𝑜 outlives its allocating method𝑚, and is about to be

dereferenced through a reference 𝑥 in a method𝑛. We now present a case analysis of the possibilities.

Case 1: 𝑜 has always been on the heap. 𝑥 points to 𝑜 and dereferences it successfully.

Case 2: 𝑜 was allocated on stack and the reference 𝑥 was created before it escaped. Our approach
inserts a heapification check (possibly followed by recursive heapification) in the interpreter and as

part of the code generated by the JIT compiler, at all the statements that could make an object escape.

Thus, for 𝑜 , the heapification routine performs a complete stack walk and makes all the existing

references point to the copied object, irrespective of whether the activation of 𝑛 corresponds to

interpretation or JIT compilation
2
. Hence, 𝑥 successfully finds the copied object on the heap. Also,

our heapification routine is atomic; that is, it ensures that the state of the object cannot be changed

unless it has been heapified completely.

Case 3: 𝑜 was allocated on stack and the reference 𝑥 was created after it escaped. The recursive
heapification routine would have already heapified 𝑜 and hence any new references (including 𝑥)

point to the object on the heap. □

5.2 Design choices
1. Implementation over existing escape analysis. Recall that we use static-analysis results on top

of the existing escape analysis in the JIT compiler (Section 3), though in principle we could have

replaced the existing escape analysis altogether. However, we found that the existing analysis was

able to handle certain scenarios better than a static analysis; for example, at a call site involving

virtual dispatch, sometimes the JIT can speculatively inline one of the targets whereas a static

analysis would conservatively take a meet among the escape statuses of the objects passed to

possibly multiple methods. Furthermore, the existing analysis is quite fast (due to its imprecise

nature) and does not affect compilation time noticeably.

2. Avoiding repeated heapifications. A tiered JIT-based runtime like the OpenJ9 VM may recompile

a method multiple times due to the availability of better profiles or deoptimization caused by

incorrect speculation. Similarly, if a dynamic property causes repeated heapifications for the objects

allocated in a method, we could decide to skip the usage of static-analysis results for that method

and recompile the method with the baseline escape analysis.

3. Usage of .res files. We have currently used separate text files to store static-analysis results before

reading them in the VM. We can simply place these results as attributes in Java class files as well.

2
We ignore multiple compilation levels and multiple JIT compilers in this discussion for simplicity; our argument can be

extended to them straightforwardly.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:14 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

6 EVALUATION
The purpose of our evaluation is twofold, first to show that a static+dynamic scheme like ours can be

used to improve the amount of stack allocation in an otherwise resource-constrained environment;

and second to demonstrate the impact of our novel approaches in imparting efficiency while

maintaining robustness of the statically computed results.

The enhancement in stack allocation can be measured in multiple ways: (i) by counting the

number of additional allocation sites that our approach allows to be marked for stack allocation –

we compute this by simply incrementing a counter during JIT compilation; (ii) by counting the

actual number of additional objects allocated on the run-time stack – we do this by inserting a

dynamic counter through the codegen phase of the compiler, which gets incremented every time

an object is allocated on the stack during program execution; and (iii) by measuring the actual

amount of additional memory that gets allocated on the stack – we compute this by adding up the

sizes of all the objects allocated on the stack during program execution, again by instrumenting the

codegen phase of the compiler. We also present insights from a fine-grained analysis of the features

that lead to some of the highest stack allocations. These results are discussed in Section 6.2.

The impact of additional stack allocation itself on a program’s execution can also be measured,

albeit in more non-trivial ways. We compute the most direct measure – the run-time performance

– in a steady state environment for all the benchmarks under consideration, and show that we

sometimes improve but never degrade the performance in default settings. However, reckoning that

stack allocation assumes more importance in constrained memory environments, we additionally

demonstrate reduction in GC cycles (and consequently, performance improvements) by lowering

the amount of heap memory supplied to the JVM. These results are discussed in Section 6.3.

Finally, in Section 6.4, in order to establish that even the offline cost of our approach is reasonable,

we report the times taken by the Soot-based static analysis as well as the size overheads of the .res

files that are to be supplied additionally to the VM during program execution.

6.1 Experimental setup
Here we list down the benchmarks used for our evaluation, the machine setup, and the comparison

modes (along with their abbreviations).

Benchmarks and machine.We have used benchmarks from the DaCapo suites 23.10-chopin and

9.12-MRI [3], and SPECjvm 2008 [19]. The benchmarks skipped from these suites are those that

cannot be analyzed with the used version of Soot and TamiFlex (error reports available on GitHub).

We have performed our experiments on a 12th Gen Intel(R) Core(TM) i7-12700 system with 20

cores and 16 GB RAM, running Ubuntu 22.04.1 LTS. Our static analysis has been written using

Soot 3.1 [23], with reflection logs for resolving reflective calls generated using TamiFlex 2.0.3 [5].

Our modifications to the VM (both interpreter and JIT) have been made over the latest version of

Eclipse OpenJ9 [10] built with JDK8 (OpenJ9 commit b4cc246, OMR commit 162e6f7, JCL commit

2a5e268); we chose this JDK version because Soot+TamiFlex do not yet fully support newer Java

bytecodes (such as invokedynamic), requiring our static analysis to handle the call sites involving

them conservatively. However, in order to be able to test our scheme with the newer (and larger)

benchmarks from the latest DaCapo suite (23.11-chopin) that cannot be executed with JDK8, we

have also ported our implementation to the latest OpenJ9 built with JDK21 (OpenJ9 commit 7c701a7,

OMR commit 87019fe, JCL commit 07e5992) and report the results therein.

In all our experiments, we run each benchmark long enough to account for warmup: for DaCapo

9.12-MRI we take the number of required warmup iterations to achieve a steady state from a prior

work that used these benchmarks [15], for DaCapo 23.10-chopin we ran each benchmark for 100

warmup iterations, and for SPECjvm benchmarks we use the existing warmup built into its harness.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:15

Non Optimistic Scheme (BASE) Optimistic scheme (OPT)

Bench Static Dynamic Stack Static Dynamic Stack
mark Counts Counts Bytes Counts Counts Bytes
biojava 0 (0.00%) 0M (0.00%) 0MB 0 (0.00%) 0M (0.00%) 0MB

graphchi 0 (0.0%) 0M (0.00%) 0MB 32 (4.15%) 506.3M (6.9%) 9184.6MB

h2o 1 (0.02%) 2.6M (0.01%) 42.2MB 2 (0.02%) 3.1M (0.01%) 50.7MB

jme 0 (0.00%) 0M (0.00%) 0MB 0 (0.00%) 0M (0.00%) 0MB

kafka 0 (0.00%) 0M (0.00%) 0MB 0 (0.00%) 0M (0.00%) 0MB

zxing 0 (0.00%) 0M (0.00%) 0MB 2 (0.05%) 0.2M (0.01%) 0.47MB

avrora 9 (0.98%) 0.008M (0.01%) 0.1MB 12 (1.12%) 0.03M (0.04%) 0.9MB

eclipse 7 (0.07%) 8.9M (1.06%) 214MB 31 (0.32%) 9M (1.18%) 252MB

fop 10 (0.15%) 0.04M (0.002%) 1MB 50 (0.77%) 9.8M (0.42%) 161.2MB

h2 61 (2.33%) 29M (0.92%) 523MB 94 (3.87%) 452M (13.92%) 10801MB

luindex 35 (1.35%) 3M (2.39%) 98MB 89 (3.49%) 5M (3.49%) 133MB

lusearch 30 (1.09%) 924M (3.23%) 775MB 78 (3.05%) 928M (7.4%) 1686MB

pmd 89 (1.90%) 52M (7.20%) 1310MB 191 (3.97%) 105M (14.2%) 2465MB

sunflow 114 (10.05%) 1258M (20.08%) 30439MB 161 (13.86%) 1260M (20.11%) 30498MB

compiler 93 (1.73%) 94M (5.50%) 1720MB 137 (2.75%) 105M (6.17%) 2329MB

compress 8 (1.30%) 0.01M (3.29%) 0.2MB 13 (2.22%) 0.01M (3.8%) 0.39MB

fft 3 (0.73%) 12 (0.01%) 0.0002MB 3 (0.8%) 187 (0.16%) 0.003MB

lu 6 (0.83%) 85 (0.08%) 0.002MB 11 (3.30%) 379 (0.3%) 0.009MB

montecarlo 9 (1.50%) 2627 (2.02%) 0.09MB 9 (1.63%) 0.006M (4.47%) 0.4MB

aes 8 (1.03%) 0.01M (2.79%) 0.3MB 16 (2.25%) 0.01M (2.8%) 0.3MB

rsa 16 (1.13%) 0.1M (1.1%) 46MB 35 (3.18%) 7M (4.62%) 170MB

signverify 15 (0.84%) 0.24M (0.86%) 6.8MB 51 (3.10%) 2.1M (7.24%) 49.4MB

Overall 514 2372M 35176MB 1017 3393M 57782MB

Table 1. Stack allocation statistics for various benchmarks with BASE and OPT schemes. The first six bench-
marks (biojava–zxing) are from DaCapo 23.10-chopin, the next eight (avrora–sunflow) are from DaCapo
9.12-MRI, and the last eight (compiler–signverify) are from SPECjvm 2008.

Also, we disabled shared-class cache (a feature in OpenJ9 that allows loading of previously compiled

code in subsequent runs) so that our experiments are independent of previous executions.

Comparison modes. For our experiments involving OpenJ9, we have two primary modes: one is

the baseline VM (called BASE) and another is the VM with our changes enabled (called OPT). The
mode OPT supports optimistic stack allocation using the partial stack order in .res files, with code

generated to perform heapification checks and dynamic heapification for objects determined to be

escaping at run-time. For measuring the impact of stack ordering, we also have a version MOPT that

has everything from OPT minus the support for ordering objects on stack frames.

6.2 Enhancement in stack allocation
In this section, we compare the stack allocation performed by BASE and OPT, and present insights

on the static-analysis features that lead to improvements.

6.2.1 Static and dynamic number of allocations. For both the schemes BASE and OPT, the first and
the second columns in Table 1 show the number of allocation sites marked for stack allocation

during JIT compilation (“Static Counts”) and the actual number of objects allocated on stack during

program execution (“Dynamic Counts”), respectively. The parentheses in each of the columns

contain the percentages of objects identified under each category, relative to the total number of

static and dynamic objects, respectively. As can be seen, BASE by default is able to identify and

stack allocate very few objects for most benchmarks, sunflow being the only exception where the

dynamic counts go up to 20.08%. This is because the existing JIT analysis is imprecise and can work

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:16 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

Non Optimistic Scheme (BASE) Optimistic scheme (OPT)

Bench Static Dynamic Stack Static Dynamic Stack
mark Count Count Bytes Count Count Bytes
biojava 128 (1.39%) 0.0002M (0.00001%) 0.04MB 208 (2.25%) 0.007M (0.03%) 0.2MB

graphchi 70 (0.95%) 385M (5.33%) 6160MB 245 (3.33%) 656M (9.11%) 11580.3MB

h2o 173 (1.14%) 0.002M (0.24%) 0.05MB 560 (4.35%) 0.02M (1.63%) 0.4MB

jme 82 (0.88%) 0.01M (0.01%) 0.09MB 272 (2.92%) 171.1M (35.6%) 4104MB

kafka 155 (0.62%) 3.6M (0.07%) 58.6MB 653 (2.61%) 219.6M (4.37%) 3668.2MB

zxing 86 (0.88%) 0.7M (0.08%) 37.1MB 152 (1.55%) 1.35M (0.15%) 50.3MB

fop 170 (1.22%) 24.9M (1.10%) 455MB 495 (3.64%) 45.8M (2.10%) 915MB

h2 144 (1.35%) 115M (3.60%) 1878MB 388 (4.27%) 716M (22.0%) 16352MB

Table 2. Stack allocation statistics with forced compilation of all the methods, for the benchmarks where a
longer run leads to noticeable improvements.

well only in scenarios where most of the allocated objects are either local to the method being

compiled or passed to methods that easily get inlined.

On the other hand, our scheme OPT is able to improve the stack allocation significantly. The

static number of object allocation sites identified for stack allocation, over all the benchmarks,

increases by about 98% (from 514 to 1017), and the dynamic number of object allocations on the

stack increases by about 43% (from 2372M to 3393M). Note that the improvement in dynamic

percentage of stack allocations could be much higher than that in the percentage of allocation sites

identified statically; for example, for h2, OPT is able to stack allocate 13.92% of objects on stack even

with the static allocation sites being 3.87%. This is because of objects created inside loops, which

are identified as stack allocatable by our scheme even if they are passed to other methods, due to

the precise interprocedural nature of the results used by OPT. Few notable benchmarks where the

improvement is high are the h2, pmd and signverify, wherein OPT increases the dynamic percentage

of stack allocation from 0.92%, 7.20% and 0.86%, respectively, to 13.92%, 14.20% and 7.24% of the

total number of objects.

In order to estimate the actual amount of heap memory savings with our scheme, we measured

the amount of stack memory allocated by both BASE and OPT during execution and report them in

the third columns for each scheme (“Stack Bytes”). We observe that the number of bytes allocated

on stack by OPT increases by about 54% compared to BASE (57782MB over 35176MB, over all the

benchmarks under consideration). Though for several SPECjvm benchmarks the absolute numbers

are less than 1 MB, the order of increase is significant for all the benchmarks. Few examples worth

pointing out are graphchi, h2 and pmd, where the bytes allocated on stack increase by orders of

magnitude (9184.6 MB, 10801 MB and 2465 MB, respectively with OPT, over 0 MB, 523 MB and

1310 MB with BASE). These programs are indeed allocation-intensive, and OPT shifts the memory

allocated from the heap to the stack by a good margin in all these benchmarks.

6.2.2 Simulating longer runs of benchmarks with forced JIT compilation. Noting the near-zero

numbers for both BASE and OPT for many of the DaCapo 23.11-chopin benchmarks, we investigated

their profiles and found that during their execution with 100 iterations very few methods got

JIT-compiled at levels that perform escape analysis and stack allocation in OpenJ9. Observe that

some of these benchmarks (such as kafka, which is a real-time streaming system) are indeed

supposed to be run for a really long duration of time, which might lead to warmer JIT compilations

subsequently; we verified this by running some of these benchmarks for thousands of iterations and

noticing that stack allocations started to increase. In order to approximate such runs, and to estimate

the maximum improvements our scheme could bring therein, we lowered the JIT compilation

threshold of OpenJ9 to one invocation and recomputed the number of stack allocations; Table 2

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:17

shows the benchmarks for which either BASE or OPT scheme showed a significant improvement

compared to the “default-mode” runs reported in Table 1. As we can see, under this configuration,

even BASE performs a few stack allocations for all the benchmarks. Importantly, we see much

better improvements with OPT for the benchmarks jme and kafka (where the number of objects

allocated on stack increase to 35.6% and 4.37%, respectively). Similarly, we found noticeably higher

improvements for the benchmarks fop and h2 in this configuration. With these observations, we

believe that our scheme could be used to make case for a stack-allocation pass even at lower levels

of compilation, or devices with even lower JIT budget, as it has the potential to improve the number

of stack allocations without performing any escape analysis during JIT compilation.

6.2.3 Analyzing allocation sites that lead to high number of allocations. We conducted another

experiment to understand which kinds of allocation sites get stack-allocated with our scheme but

not with the existing JIT analysis. For this, we inserted a counter in the generated code to measure

the number of dynamic objects created by each allocation site marked for stack allocation, sorted

the results in decreasing order, and mapped them back manually to the corresponding source code.

We found two important features of our static analysis that lead to an improved precision.

First of all, as OPT’s escape analysis is performed statically, it analyzes all the methods inter-

procedurally; whereas BASE performs escape analysis only for methods that are compiled at hot+

levels of compilation. Furthermore, as the peek depth of BASE is quite limited (usually just zero or

one, unless all the callees are compiled at high levels of compilation), it marks objects passed as

arguments beyond the peek depth as escaping. Even when BASE peeks a callee, it is limited in terms

of the analysis information (e.g., use-def information) that it builds for peeked methods as it does

not have the necessary compile-time budget to perform these kinds of analyses in the quest for

precision, whereas the OPT does not have these kinds of constraints. For example, in the benchmark

h2, we found a class RowList whose instances (>2 million in number) are used to store rows from a

database. The benchmark code uses rows as the receiver for a call rows.add, which further calls a

chain of methods starting with the same receiver. BASE fails to perform interprocedural analysis of

the nested calls and marks the object pointed-to by rows as escaping (not the case with OPT). Note
that it is possible to make BASE more intricate and capture such objects, which gets evident upon

noticing the improvements with forced compilation in Table 2 for h2 (as well as others), but this

increases the time spent in JIT compilation (successfully avoided by OPT).
Secondly, in order to achieve more precision than peeking, BASE requires the target of a call to be

inlined into the caller (which is not always possible during JIT compilation). Whereas OPT achieves

the resultant precision without the requirement of inlining such calls, due to context sensitivity in

the static analysis. For example, consider the following code snippet in which a method m is called

from two different callers c1 and c2, such that c1 passes an escaping object as argument and c2 a
non-escaping one. The method m stores a new object 𝑂𝑥 into the field f of its parameter p, and
later the method c2 stores another new object 𝑂𝑦 into the field of 𝑂𝑥 after the call to m.

1 void c1() {

2 // o1 points to an escaping object

3 m(o1); }

4 void c2() {

5 // o2 points to a non-escaping object

6 m(o2);

7 o2.f.g = new Y(); /* 𝑂𝑦 */ }

8 void m(X p) {

9 p.f = new X(); /* 𝑂𝑥 */

10 }

Now, BASE would be able to identify the object 𝑂𝑦 as non-escaping only when it is able to inline m
into c2, whereas OPT analyzes the calls to m context sensitively and marks 𝑂𝑦 for stack allocation,

without requiring m to be inlined during JIT compilation. We found several instances of this

scenario in the benchmark pmd and believe it would be prevalent even in others.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:18 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

0.315

0.320

compiler

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

97.5

100.0

102.5

105.0

107.5

fop

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

10700

10800

10900

graphchi

P
er

fo
rm

an
ce Legend

BASE

MOPT

OPT

1500

1520

1540

1560

h2

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

270

275

280

285

luindex

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

1040

1050

1060

lusearch

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

500

550

600

pmd

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

0.46

0.48

0.50

0.52

rsa

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

0.80

0.81

0.82

signverify

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

Fig. 7. Performance comparison (default heap size); lower the better. For DaCapo benchmarks the y-axis is
time (in msec) and for SPECjvm benchmarks it is the normalized reciprocal of ops/sec.

Overall, we assert that our static+dynamic scheme shows a marked improvement in stack alloca-

tion compared to the baseline, and we further measure its impact on performance in Section 6.3.

6.3 Impact of additional stack allocation
In this section, note that the performance metric reported by the DaCapo harness is time (in msec)

and that by SPECjvm is ops/sec; we have normalized the latter to enforce a lower-the-better trend.

6.3.1 Impact on performance (default memory). Figure 7 shows the performance box plots over ten

iterations in steady state for the three modes outlined in Section 6.1: BASE, MOPT and OPT. We have

skipped showing flat results for benchmarks that show a negligible difference across the various

modes. For the nine benchmarks in Figure 7, we can sometimes see a small increase in the time

taken from BASE to MOPT. This is due to the overhead of heapification checks performed as part of

evaluating the potential escape-causing statements as discussed in Section 3.2. On the plus side,

with our stack-ordering enabled implementation OPT, we see that the time taken either matches

that of BASE (compiler, luindex, pmd) or even improves noticeably (fop, graphchi, h2, lusearch, rsa).

Further, though we occasionally see a (very) slight increase in time with OPT, we later show (in

Section 6.3.3) that improvements with OPT are much more pronounced once we reduce the currently

very high amounts of heap memory supplied to the JVM, for the benchmarks with good stack

allocation. Thus, it can be asserted that our proposed scheme is capable of allowing much higher

stack allocation without causing performance overheads, and that the performance improves too

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:19

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

X 2X 3X Def

BASE OPT

(a) compiler

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

X 2X 3X DEF

BASE OPT

(b) fop

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

X 2X 3X DEF

BASE OPT

(c) graphchi

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

1000

2000

3000

4000

X 2X 3X DEF

BASE OPT

(d) h2

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

10000

20000

30000

40000

50000

X 2X 3X DEF

BASE OPT

(e) lusearch

Max Heap (MB)

N
o.

 o
f G

C
 c

yc
le

s

0

2000

4000

6000

X 2X 3X DEF

BASE OPT

(f) pmd

Fig. 8. Number of GC cycles with varied heap sizes (X, 2X, 3X and default heap memory); lower the better.

when the additional stack allocation starts showing benefits (possibly in terms of faster variable

accesses and reduced GC cycles; we measure the latter next).

6.3.2 Impact on garbage collection. One of the relevant ways of measuring the impact of stack

allocation of objects is to compare the number of garbage collection (GC) cycles between BASE and

OPT. To perform this experiment, we vary the amount of maximum heap memory made available

to the JVM process (using the -Xmx argument) and compute the number of GC cycles (using

the -verbose:gc argument of OpenJ9) for both BASE and OPT. More the allocation on stack (and

conversely, less the allocation on heap), we expect to see fewer GC cycles. Further, lesser the heap

memory supplied to the VM, more pronounced should be the impact of allocating bytes on stack

rather than on the heap. Now consider the results shown for six benchmarks (chosen based on the

object-allocation profile and improvements observed in Section 6.2) in Figure 8. Here, we calculated

the minimum heap size (rounded to multiples of 5) required to execute each benchmark (say X) and
then computed the number of GC cycles by setting the available heap memory to X, 2X (moderate

heap) and 3X (generous heap), as well as the default heap size (DEF), which is 4 GB for our machine.

We can observe that lower heap sizes lead to more number of GC cycles, in general (due to the

increased memory pressure). Importantly, we can observe fewer GC cycles with our scheme OPT
(particularly for compiler, graphchi and h2). This is because once we allocate more objects on stack,

we are directly reducing the memory pressure in terms of heap, which subsequently translates to

reduction in GC cycles.

6.3.3 Impact on performance (reduced memory). Motivated by observing the reduction in GC cycles

in Section 6.3.2, specially when the memory made available to the JVM was limited to the minimum

heap required to execute a given benchmark, we conducted an experiment to compare performance

with our scheme under this configuration. Figure 9 shows the obtained box plots for the three

modes under consideration for the benchmarks from Section 6.3.2.

As can be seen, we obtain clear performance improvements for five out of six benchmarks with

higher stack allocation (compiler, fop, graphchi, h2 and lusearch), both with MOPT and OPT. With

90% confidence, the average performance improvement with MOPT is 4.5% and with OPT it is 8.8%.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:20 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

0.275

0.300

0.325

0.350

0.375

compiler

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

300

400

500

600

700

800

fop

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

29500

30000

30500

graphchi

P
er

fo
rm

an
ce Legend

BASE

MOPT

OPT

5000

6000

7000

8000

h2

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

950

975

1000

1025

lusearch

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

500

510

520

530

pmd

N
or

m
al

iz
ed

 ti
m

e 
(in

 s
ec

on
ds

)

Legend

BASE

MOPT

OPT

Fig. 9. Performance comparison (minimum heap size for each benchmark); lower the better. For DaCapo
benchmarks the y-axis is time (in msec) and for SPECjvm it is the normalized reciprocal of ops/sec.

The highest seen improvement is for h2 (about 18.9% with MOPT and 37% with OPT); this is due to
the significantly high increase in stack allocation with our scheme (about 20× more number of

stack bytes; see Table 1), as well as the reduction in GC cycles at this configuration (from 3900 to

3661 cycles; see Figure 8) for this benchmark.

The MOPT scheme too shows improvement in this configuration as the impact of additional stack

allocation overcomes the overhead caused by heapification checks. Also, for three of the benchmarks

(fop, h2 and lusearch), OPT improves the performance further (lower differences between MOPT
and OPT are expected as the heapification checks are not a major hindrance to performance any

more). Interestingly, for compiler and pmd, we see a minor degradation with OPT compared to MOPT
(though both are better than BASE); we attribute this to the slight overhead of creating orders in

the stack compared to a strategy that has already overcome the effects of heapification checks.

Overall, with the above two measurements (reduction in GC cycles and performance improve-

ments on lower memory systems), we can assert that our scheme is successful in reducing the

amount of garbage collection a Java runtime has to perform during program execution, and that it

can allow one to run memory-intensive applications even on lower-memory systems.

6.3.4 Cost of heapification. In order to closely observe the behaviour of our modified VM when

optimistic stack allocation needs to be undone, we tried to insert escaping BCIs in our .res files for

various small-sized synthetic Java programs. In such a scenario, the VM allocates the corresponding

escaping object on the stack frame of the enclosing method, which is then detected by our heapifica-

tion checks at run-time. We tried to measure the cost of heapification by causing this phenomenon

to happen in a loop, and the detection to happen three frames down the run-time stack by inserting

an escape-causing store statement therein. Our observations for this small-program experiment

were interesting: We found that a million heapifications caused our program to slowdown by one

second (original run time 7 seconds); 10 million heapifications caused a slowdown of 10 seconds

(original run time 30 seconds), and so on. There was no noticeable slowdown until a few tens of

thousands heapifications. We can infer from this result that the cost of heapification for larger

programs, where it may not happen as frequently as our artificial program, may be quite tolerable

compared to the benefits it may present. Hence we believe our scheme, coupled with efficient

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:21

Bench Static .class .res
mark time (s) size (MB) size (MB)
biojava 49.5 5.6 0.14

graphchi 53.6 9.0 0.20

h2o 204.0 7.3 0.56

jme 142.3 15 0.32

kafka 367.0 15 0.78

zxing 70.4 11 0.13

avrora 32.1 2.6 0.14

eclipse 170.7 10 0.46

fop 81.9 5.8 0.23

h2 44.2 2.2 0.15

lusearch 40.8 1.2 0.15

Bench Static .class .res
mark time (s) size (MB) size (MB)
luindex 33.1 1.3 0.15

pmd 39.9 3.7 0.20

sunflow 44.6 2.7 0.20

compiler 114.3 2.1 0.39

compress 99.5 2.1 0.36

fft 96.6 2.1 0.34

lu 102.6 2.1 0.38

montecarlo 101.6 2.1 0.36

aes 98.5 2.1 0.37

rsa 117.5 2.1 0.39

signverify 97.7 2.1 0.37

Fig. 10. Time taken by our static analysis along with the .res file overhead.

heapification checks, is indeed effective in scenarios where a dynamic feature may cause optimistic

stack allocation to fail occasionally, and is thus practical to be employed in standard runtimes.

6.4 Offline cost
Finally, observe that the advantages of our scheme – both in terms of additional stack allocation

and efficient heapification checks – stem from a precise (flow-, field- and 1-level context-sensitive)

static escape analysis; in fact, one could apply any of the recent advances in static analysis, for

example object and type sensitivity [14, 18], and keep getting better. The advantage of performing

analysis of Java Bytecodes statically is that the amount of time spent in gaining additional precision

does not affect the execution time of the program. For completion, we now report the times taken,

and the sizes of the .res files generated, by our static analysis implementation; see Figure 10.

The second column shows the time taken by our static analysis (including stack ordering), for

each benchmark. As can be seen, the static-analysis times are tolerable (on average, 100.1 seconds)

and generally increase with the increase in the size of the benchmark (see the .class size column).

Further, the .res files containing the static analysis results are small – on average 0.3 MB and ≈6.0%
of the size of the class files – and do not cause any significant storage and reading overhead.

To conclude this section, we note that our scheme is capable of bringing out the benefits of a

precise escape analysis to a production Java Virtual Machine, which, previously, could allocate a

much lower number of objects on stack even with a sophisticated escape analysis infrastructure

in the JIT compiler. We believe this paper is just an example of the power of a static+dynamic

approach (coupled with a fallback mechanism) for optimizing programs in constrained managed

runtimes, and that a strategy like ours could be applied to even more analyses and optimizations.

Finally, our implementation for optimistic stack allocation and dynamic heapification is open source

and ready to be integrated into the Eclipse OpenJ9 VM.

7 RELATEDWORK
To the best of our knowledge, ours is the first work that uses static analysis to perform stack

allocation in a VM while supporting a dynamic repair mechanism involving heapification and stack

ordering. Existing works involving JVMs do perform escape analysis and resultant optimizations of

various kinds though, and we discuss them in this section.

One of the first extensive proposals to perform escape analysis for Java was implemented in the

Jalapeño VM [1, 24], which introduced the points-to escape graph notation for denoting points-to

relationships as well as performing reachability-based escape analysis. Another popular abstraction

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



1:22 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

for performing escape analysis, proposed by Choi et al. [7], is that of connection graphs, which do

not maintain points-to relationships directly but allow one to perform check reachability faster.

A partially interprocedural version of this approach is used by the C2 compiler of the HotSpot

JVM [17] to perform synchronization elision and scalar replacement. The approach proposed by us

in this paper for improving the partially interprocedural escape analysis of Eclipse OpenJ9 [10], on

the other hand, is context as well as flow sensitive, and uses points-to graphs as they additionally

allow us to determine stack orders (which will not be possible with connection graphs).

Kotzmann and Mössenböck [11, 12] proposed an escape analysis that works in presence of

dynamic classloading for the C1 compiler of the HotSpot JVM. Essentially, they reallocate objects

replaced by scalars if the VM deoptimizes to the interpreter. The more recent GraalVM builds up on

this idea and performs scalarization of objects while rematerializing them in branches where they

escape [20]. As some of the stack-allocated objects can also be replaced with scalars, it would be

interesting to complement our implementation with scalar replacement. Interestingly, the current

VM-only versions of these works require additional bookkeeping in order to materialize objects,

which can possibly be reduced if (part of) the analysis was performed statically like our approach.

We mark this as an interesting future extension.

The closest related works we found are those by Corry [9] and Cleereman et al. [8]. The first one

proposes an address check at write barriers to detect objects that live longer than the stack frame

being destroyed, but performs stack allocation primarily around loops and bymaintaining a separate

region for object allocation on stack. The second one proposes to address dynamic classloading that

may cause previously non-escaping objects to escape, by modifying the classloader and maintaining

special dirty bits on the stack frame, but has no evaluation. Our approach, on the other hand,

covers dynamic features including dynamic classloading, and does not require modifications to the

classloader, stack management, or to any other traditional routines of the JVM; further, our work is

supported by an extensive evaluation over a production JVM.

A recent work proposed a framework [21] for performing expensive analysis statically and using

its results during JIT compilation, in context of libraries that may differ between static and dynamic

compilation, and another work formalized the idea of staging program analyses across static and

JIT compilation [2]. Similar to them, we use bytecode indices to represent static-analysis results

that are usable in a JVM. However, adapting their approaches for stack allocation would pose the

exact problem that we solve in this paper: timely invalidating the results in presence of dynamic

features such as hot-code replacement, dynamic classloading, and even the possibility of different

libraries. Nevertheless, we are encouraged by this trend and believe static+dynamic analysis has

many further applications that are yet to be explored.

An alternative approach of optimizing memory, popular particularly in the functional program-

ming community [22], is to divide the run-time memory into inferred regions that can lead to

faster access and cleanup of objects in the current region (a region may include multiple stack

frames). Region inference is more expensive than escape analysis and is not employed by current

object-oriented runtimes. However, we feel approaches like ours can be used to improve the efficacy

of region-based memory allocation and open up the possibility of experimenting with interesting

stack and heap allocation strategies, for popular OO runtimes as well.

8 CONCLUSION
Static and dynamic program analyses have historically been at two ends of a spectrum: researchers

keep coming up with advancements to enhance the precision of static-analysis abstractions, and

practitioners keep designing novel engineering techniques to keep language runtimes efficient.

However, seldom do the ends meet, which is evident by the choice of imprecise analyses employed

by JIT compilers to balance the tradeoff with efficiency.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.



Optimistic Stack Allocation and Dynamic Heapification for Managed Runtimes 1:23

Our work picked up an important OO optimization – that of allocating method-local objects on

the stack frames of their allocating methods – and showed that using a static escape analysis to

optimistically allocate identified objects on stack could improve the precision without thwarting

the efficiency. Further, in order to ensure functional correctness in case the static-analysis results

do not correspond to the run-time environment, it proposed the ideas of (i) dynamically checking

incorrect stack allocations before they could cause an issue; (ii) repairing the memory layout by

heapifying escaping objects and correcting their references; and (iii) doing so efficiently by ordering

the objects on stack in a statically identified manner.

Our evaluation on a production JVM, across its interpreter and compiler infrastructure, showed

that the proposed scheme is capable of bringing the benefits of a precise escape analysis for im-

proving performance in low-memory systems, by reducing memory pressure and correspondingly,

the garbage-collection overheads. Further, it was a significant innovation challenge not just to

design a scheme that involved multiple levels of abstractions and coding environments, but also to

implement it and reach a stage where it is ready to be integrated into an industry virtual machine.

Overall, we feel that sound and efficient static+dynamic approaches like ours open up possibilities

to speed up and improve the precision of various analyses and optimizations, not only for Java

Virtual Machines but also for similar languages and runtimes such as C# and the .NET framework,

as well as for more dynamic languages such as JavaScript, R and Python.

REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.

Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,

V. C. Sreedhar, H. Srinivasan, and J. Whaley. 2000. The Jalapeño virtual machine. IBM Systems Journal 39, 1 (2000),
211–238. https://doi.org/10.1147/sj.391.0211

[2] Aditya Anand and Manas Thakur. 2022. Principles of Staged Static+Dynamic Partial Analysis. In Static Analysis,
Gagandeep Singh and Caterina Urban (Eds.). Springer Nature Switzerland, Cham, 44–73. https://doi.org/10.1007/978-

3-031-22308-2_4

[3] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer

Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han

Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben

Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. In Proceedings of the
21st Annual ACM SIGPLAN Conference on Object-oriented Programming Systems, Languages, and Applications (Portland,
Oregon, USA) (OOPSLA ’06). ACM, New York, NY, USA, 169–190.

[4] Bruno Blanchet. 2003. Escape Analysis for JavaTM: Theory and Practice. ACM Trans. Program. Lang. Syst. 25, 6 (Nov.
2003), 713–775. https://doi.org/10.1145/945885.945886

[5] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming Reflection: Aiding Static Anal-

ysis in the Presence of Reflection and Custom Class Loaders. https://github.com/secure-software-engineering/tamiflex.

In Proceedings of the 33rd International Conference on Software Engineering (Waikiki, Honolulu, HI, USA) (ICSE ’11).
ACM, New York, NY, USA, 241–250. https://doi.org/10.1145/1985793.1985827

[6] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff. 1999. Escape Analysis for

Java. In Proceedings of the 14th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and
Applications (Denver, Colorado, USA) (OOPSLA ’99). ACM, New York, NY, USA, 1–19. https://doi.org/10.1145/320384.

320386

[7] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and Manu Sridharan. 2002. Efficient

and Precise Datarace Detection for Multithreaded Object-oriented Programs. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation (Berlin, Germany) (PLDI ’02). ACM, New York, NY,

USA, 258–269. https://doi.org/10.1145/512529.512560

[8] Kevin Cleereman, Michelle Cheatham, and Krishnaprasad Thirunarayan. 2007. Runtime Support of Speculative

Optimization for Offline Escape Analysis. In Proceedings of the International Conference on Software Engineering
Research and Practice. 484–489. https://corescholar.libraries.wright.edu/knoesis/884

[9] Erik Corry. 2006. Optimistic Stack Allocation for Java-like Languages. In Proceedings of the 5th International Symposium
on Memory Management (Ottawa, Ontario, Canada) (ISMM ’06). Association for Computing Machinery, New York, NY,

USA, 162–173. https://doi.org/10.1145/1133956.1133978

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.

https://doi.org/10.1147/sj.391.0211
https://doi.org/10.1007/978-3-031-22308-2_4
https://doi.org/10.1007/978-3-031-22308-2_4
https://doi.org/10.1145/945885.945886
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/320384.320386
https://doi.org/10.1145/512529.512560
https://corescholar.libraries.wright.edu/knoesis/884
https://doi.org/10.1145/1133956.1133978


1:24 A. Anand, S. Adithya, S. Rustagi, P. Seth, V. Sundaresan, D. Maier, V. K. Nandivada, and M. Thakur

[10] Eclipse Foundation. 2023. Eclipse OpenJ9. https://www.eclipse.org/openj9/

[11] Thomas Kotzmann and Hanspeter Mössenböck. 2005. Escape Analysis in the Context of Dynamic Compilation and

Deoptimization. In Proceedings of the 1st ACM/USENIX International Conference on Virtual Execution Environments
(Chicago, IL, USA) (VEE ’05). Association for Computing Machinery, New York, NY, USA, 111–120. https://doi.org/10.

1145/1064979.1064996

[12] Thomas Kotzmann and Hanspeter Mössenböck. 2007. Run-Time Support for Optimizations Based on Escape Analysis.

In International Symposium on Code Generation and Optimization (CGO’07). 49–60. https://doi.org/10.1109/CGO.2007.34
[13] Ondrej Lhoták and Laurie Hendren. 2003. Scaling Java points-to analysis using SPARK. International Conference on

Compiler Construction 2622, 153–169. https://doi.org/10.1007/3-540-36579-6_12

[14] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized Object Sensitivity for Points-to Analysis

for Java. ACM Trans. Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1–41. https://doi.org/10.1145/1044834.1044835

[15] Erick Ochoa, Cijie Xia, Karim Ali, Andrew Craik, and José Nelson Amaral. 2021. U Can’t Inline This!. In Proceedings of
the 31st Annual International Conference on Computer Science and Software Engineering (Toronto, Canada) (CASCON
’21). IBM Corp., USA, 173–182.

[16] OpenJDK Graal. 2023. GraalVM. https://www.graalvm.org.

[17] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java HotspotTM Server Compiler. In Proceedings of the
2001 Symposium on JavaTM Virtual Machine Research and Technology Symposium - Volume 1 (Monterey, California)

(JVM’01). USENIX Association, USA, 1.

[18] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick Your Contexts Well: Understanding Object-

sensitivity. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(Austin, Texas, USA) (POPL ’11). ACM, New York, NY, USA, 17–30. https://doi.org/10.1145/1926385.1926390

[19] SPEC. 2008. SPECjvm 2008. https://www.spec.org/jvm2008/

[20] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2018. Partial Escape Analysis and Scalar Replacement

for Java. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization (Orlando,

FL, USA) (CGO ’14). Association for Computing Machinery, New York, NY, USA, 165–174. https://doi.org/10.1145/

2544137.2544157

[21] Manas Thakur and V. Krishna Nandivada. 2019. PYE: A Framework for Precise-Yet-Efficient Just-In-Time Analyses for

Java Programs. ACM Trans. Program. Lang. Syst. 41, 3, Article 16 (July 2019), 37 pages. https://doi.org/10.1145/3337794

[22] Mads Tofte and Lars Birkedal. 1998. A Region Inference Algorithm. ACM Trans. Program. Lang. Syst. 20, 4 (jul 1998),
724–767. https://doi.org/10.1145/291891.291894

[23] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 1999. Soot - a

Java Bytecode Optimization Framework. In Proceedings of the 1999 Conference of the Centre for Advanced Studies on
Collaborative Research (Mississauga, Ontario, Canada) (CASCON ’99). IBM Press, 13–23. http://dl.acm.org/citation.

cfm?id=781995.782008

[24] John Whaley and Martin Rinard. 1999. Compositional Pointer and Escape Analysis for Java Programs. In Proceedings
of the 14th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (Denver,
Colorado, USA) (OOPSLA ’99). ACM, New York, NY, USA, 187–206.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 1. Publication date: January 2024.

https://www.eclipse.org/openj9/
https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1109/CGO.2007.34
https://doi.org/10.1007/3-540-36579-6_12
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1145/1926385.1926390
https://www.spec.org/jvm2008/
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/3337794
https://doi.org/10.1145/291891.291894
http://dl.acm.org/citation.cfm?id=781995.782008
http://dl.acm.org/citation.cfm?id=781995.782008

	Abstract
	1 Introduction
	2 Motivating Example
	2.1 Detecting incorrect stack allocation
	2.2 Moving objects and correcting references
	2.3 Imparting efficiency through stack ordering

	3 Optimistic Stack Allocation in Eclipse OpenJ9
	3.1 Stack allocation using static analysis results
	3.2 Dynamic heapification

	4 Imparting Efficiency through Stack Ordering
	5 Discussion
	5.1 Correctness
	5.2 Design choices

	6 Evaluation
	6.1 Experimental setup
	6.2 Enhancement in stack allocation
	6.3 Impact of additional stack allocation
	6.4 Offline cost

	7 Related Work
	8 Conclusion
	References

