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Abstract
May-Happen-in-Parallel (MHP) analysis forms the basis for
many problems of program analysis and program under-
standing. MHP analysis can also be used by IDEs (integrated-
development-environments) to help programmers to refactor
parallel-programs, identify racy programs, understandwhich
parts of the program run in parallel, and so on. Since the code
keeps changing in the IDE, re-computing the MHP informa-
tion after every change can be an expensive affair. In this
manuscript, we propose a novel scheme to perform incre-
mental MHP analysis (on the fly) of programs written in task
parallel languages like X10 to keep the MHP information up
to date, in an IDE environment.

The key insight of our proposed approach to maintain the
MHP information up to date is that we need not rebuild (from
scratch) every data structure related to MHP information,
after each modification (addition or deletion of statements)
in the source code. The idea is to reuse the old MHP infor-
mation as much as possible and incrementally recompute
the MHP information (of a small set of statements) which
depends on the statement added/removed. We introduce two
new algorithms that deal with addition and removal of par-
allel constructs like finish, async, atomic, and sequential
constructs like loop, if, if-else and other sequential state-
ments, on the fly. Our evaluation shows that our algorithms
run much faster than the repeated invocations of the fastest
known MHP analysis for X10 programs [Sankar et al. 2016].

CCS Concepts • Software and its engineering Incre-
mental compilers; Parallel programming languages; •
Theory of computation Program analysis;
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1 Introduction
In parallel languages, May-Happen-in-Parallel (MHP) anal-
ysis identifies what all statements may run in parallel with
a given statement. MHP analysis forms the basis for many
optimizations and program-analysis problems like data race
detection, deadlock detection, debugging, and so on [Flores-
Montoya et al. 2013; Masticola and Ryder 1991; Nandivada
et al. 2013; Naumovich et al. 1999b]. In addition, MHP infor-
mation can be used as a program understanding tool wherein
the programmer (or a semi-automated tool) can learnwhat all
statements may run in parallel with a given statement. Such a
feature is especially useful in the context of IDEs (Integrated
Development Environments) such as Eclipse [2017], X10DT
[2017], IntelliJ [2017] and so on, where besides responding
to the programmers queries on which statements may run
in parallel with a given statement, the IDEs can use the MHP
information to automatically mark statements that may lead
to deadlocks and data-races [Vojdani and Vene 2009; Zhan
and Huang 2016]). A popular MHP related question and its
natural extension, typically asked in the above contexts are
given below:

Key question. Given a statement s in a program P, com-
puteMHP (s ) that returns the statements in P that may run
in parallel with s .

Auxiliary question. Compute the MHP map for each
statement in the program.

Many researchers [Agarwal et al. 2007; Barik 2005; Duester-
wald and Soffa 1991; Lin and Verbrugge 2004; Masticola and
Ryder 1993; Naumovich and Avrunin 1998; Naumovich et al.
1999a,b; Sankar et al. 2016] have studied the problem of
May-Happen-in-Parallel (MHP) analysis in the context of
many different parallel programming languages. Comput-
ing MHP analysis for all pairs of statements in a program
has been shown to be undecidable by Taylor [1983] in his
influential paper. Taylor also showed the problem to be NP-
complete (assuming all the control flow paths are executable)
for programs that admit synchronization primitives such as
the rendezvous construct of Ada. However, the problem is
more tractable, in the absence of such low-level synchroniza-
tion primitives. Most of the research on MHP algorithms
(including our paper) is based on these two conservative
assumptions. Thus, if two statements S1 and S2 are marked
as “may-not-run-in-parallel”, then it is guaranteed that dur-
ing the actual execution, S1 and S2 will never run in parallel.
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S0:finish {
S1:async {S2:. . .}
S3:finish {
S4:async{S5:. . .}
S6:. . ./*Added*/

}
}

Figure 1. Sample code

However, if the analysis answers that S1 and S2 “may-run-
in-parallel”, then during the actual execution, S1 and S2 may
or may not run in parallel.

Naumovich et al. [1999a,b] answer the key question in the
context of Java. Many prior works [Agarwal et al. 2007; Chen
et al. 2012; Lee and Palsberg 2010; Lee et al. 2012] present
techniques to compute the MHP information for pairs of
statements (see the exposition of Sankar et al. [2016], for a
detailed discussion on the two types of analyses).
The best-known solution to answer these questions (in-

cluding the key question and auxiliary question) is given
by Sankar et al. [2016]; their approach takes aworst-case time
complexity of O(N 2) – significantly less than the other exist-
ing techniques (for example, using the technique of Agarwal
et al. [2007]). For scenarios where the program continuously
changes (for example, in IDEs), the naive approach to main-
tain up to date MHP information is to repeatedly invoke a
fast MHP analysis (such as the iMHP algorithm of Sankar et al.
[2016]). However, as the code keeps changing, continuously
re-building the MHP information (from scratch) after every
change can be quite expensive, especially when the code size
is not too small. We explain the same and an intuition for
the scope for improvement using an example.
Figure 1 shows a sample synthetic X10 [Saraswat et al.

2015] code. In X10, an async construct is used to create an
asynchronous task. The finish construct waits for all the
tasks created in its body to terminate (see Section 2 for details
on X10 syntax). TheMHP map before adding statement S6
is as shown below.

Stmt s S0 S1 S2 S3 S4 S5
MHP (s ) {} {} {S3,S4,S5} {S2} {S2} {S2}

After adding S6, to recompute the MHP information, we
could invoke the iMHP algorithm, which will recompute the
MHP information for all the statements from scratch. It can
be seen that doing such a full re-computation for each pos-
sible change in the source code can be expensive and is
avoidable. We observe that a single change in the source
code does not always drastically modify the MHP relation
between every pair of statements. And importantly, we can
reuse the old MHP information and compute MHP informa-
tion of specific statements that depends on the statement
added or removed. For example, after adding the statement

S6, the existing MHP relationship among the existing state-
ments does not change; hence, we can reuse that part of the
MHP information. In addition to that, we have to compute
the MHP information for S6 and add S6 to the MHP infor-
mation of those statements that may run in parallel with
statement S6; these modifications lead to the followingMHP
map:

Stmt s S0 S1 S2 S3
MHP (s ) {} {} {S3,S4,S5,S6} {S2}
Stmt s S4 S5 S6
MHP (s ) {S2} {S2,S6} {S2,S5}

As can be seen, the changes are mostly incremental except
forMHP (S6). Thus, if we can come up with an approach to
update data structures incrementally, after each code change,
it may save a lot of time. The exact changes to the MHP
map will naturally vary depending on the type of the con-
struct/statement being added/removed. In this manuscript,
we present a scheme that only needs to incrementally update
the MHP information for a subset of the program statements
on the fly, without having to fully recompute the MHP in-
formation after each code change, while ensuring that the
worst-case cost of update is not more than the cost of the fast
iMHP algorithm proposed by Sankar et al. [2016]. In practice,
our on-the-fly algorithm runs much faster. Such an on-the-
fly MHP analysis can improve the performance of IDEs that
need to maintain up-to-date MHP information. To the best
of our knowledge, there have been no prior works that com-
pute incremental MHP information on-the-fly, especially in
the context of task parallel languages like X10.

In this manuscript, we present our on-the-fly MHP compu-
tation algorithms in the context of X10 programs, by covering
the complete set of parallel constructs supported by Sankar
et al. [2016], namely async, finish, and atomic. We believe
that the presented results can be extended to other task-
parallel languages like HJ [Habanero 2009], Chapel [Cham-
berlain et al. 2007], and so on. These techniques can also be
used for the subsets of programs written in languages like
Java or Cilk [Leiserson 2009], where the thread/task creation
and termination follow a "tree" structure like X10.

Contributions.
• We propose new algorithms to incrementally compute
MHP information, on the fly, after each change to an X10
program.
•We have implemented these algorithms as a part of X10DT
as a plug-in to perform on the fly MHP analysis.
•We present an evaluation of our on-the-fly MHP computa-
tion algorithms that shows their effectiveness over the state
of the art iMHP algorithm [Sankar et al. 2016].
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2 Background
Now we present a brief discussion on the relevant back-
ground about X10 language and the program-structure-tree
over which the proposed algorithms are defined.

2.1 X10 Language
We describe a subset of X10 language over which we define
our on-the-fly analysis. The interested reader may go over
the X10 language manual [Saraswat et al. 2015] for details.
The statements in this subset can be derived from the follow-
ing grammar covering the three parallel constructs async,
finish, and atomic; and the serial constructs such as as-
signments, declarations, expressions, method invocations,
conditional-statements, loops, and so on.
S ::= async S | atomic S | finish S | seq(S)

Here, seq(X ) is used to denote the programs formed from
X , by closing under the sequential constructs. The statement
async S, creates an asynchronous task that may run in par-
allel with the parent task. The statement finish S, acts as a
join point and waits for all the tasks created in the body S
of the finish statement. At runtime, each X10 instruction
has a unique associated task, and each task has a unique
immediately enclosing finish (in short, IEF). Each X10 pro-
gram contains an implicitmain task and this task is enclosed
inside an implicit outermost finish. The statement atomic S
realizes a global critical section. An atomic block may not
invoke an async or finish statement.

Guo et al. [2009] define an async statement S ′ as an escaping-
async (e-async) of a statement S , if S ′ is contained within S ,
and S ′ is not enclosed in a finish statement within S . Thus,
the immediately-enclosing-finish (IEF) of S ′ is not present
within S .

2.2 Program Structure Tree
We use an extension of the abstraction of Program Struc-
ture Tree (PST) proposed by [Agarwal et al. 2007]. PST is a
compressed representation of Abstract Syntax Tree (AST).
The nodes in our PST correspond to three parallel constructs
async, finish, and atomic; and four serial constructs loop,
if, if-else, and seq-stmt. The seq-stmt nodes represent
all the sequential statements, except loops, and conditionals.
As an example, Fig. 2 shows the extended PST (hereafter,
simply referred to as PST) for the program shown in Fig. 1.

3 On-the-fly MHP Analysis
In this section, we discuss our proposed techniques to com-
pute (andmaintain)MHP information, as the program changes
as part of the program development life cycle, in IDE type
of tools that need to maintain MHP information (after every
significant code change). In contrast to the scheme of Sankar
et al. [2016] that recomputes the MHP information for all the
nodes from scratch (after each change), our scheme reuses

Figure 2. PST for the code shown in Fig. 1

1 Function driver(PST P , Node L)
2 begin
3 switch type of L do
4 case finish-node do addFinish(P , L);
5 case async-node do addAsync(P , L);
6 case atomic-node do addAtomic(P , L);
7 case loop-node do addLoop(P , L);
8 case if-else-node do addIfElse(P , L);
9 case if-node do addIf(P , L);

10 case Otherwise do addSeqStmt(P , L);

Figure 3. On-the-fly MHP-driver; adding PST nodes

the current MHP information to incrementally compute the
MHP information after each change.

For the ease of presentation, we divide our proposed tech-
niques into two parts depending on how the PST nodes (con-
structs, statements) change: addition of nodes (Section 3.1)
and deletion of nodes (Section 3.2). Modification of nodes can
be handled by considering them as a sequence of deletion(s)
followed by addition(s).

3.1 On-the-fly MHP analysis: addition of nodes
We now present our scheme to handle the addition of PST
nodes. Depending on the specific node being added, the
impact on the MHP information of the existing PST nodes
and the added PST nodes varies. For the ease of presentation,
in this Section, we only focus on the program updates that
add new nodes to the PST; in Section 3.2, we handle the
deletion of PST nodes.

Figure 3 presents the driver algorithm that is invoked after
each significant change performed by the programmer; see
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1 Function addFinish(PST P , Node F )
2 begin
3 Node fc = firstChild(F );// has only one child.

4 Set T = MHP(fc);// Initial MHP info of F

5 if !hasLoopAncestorFollowedByAsync(F ) then
// MHP information of the descendants

of F may change

6 Stmt E = F .parent;
7 while E , root do
8 if E is an async node OR a finish node

then break ;
9 E = E.parent();

10 SetM = descendants of E − descendants of
e-async of E after which F may run;

11 Set S = ∅;
12 for l ∈ descendants(F ) do
13 if l is a descendent of an e-async of F then
14 MHP(l ) = MHP(l ) −M ; S = S ∪ {l };

15 form ∈ M do
16 MHP(m) = MHP(m) − S ;
17 if hasLoopAncestor(F ) then
18 for x ∈ async descendants of F do

// MHP info of the async node x

& its children may be corrupt

19 addAsync(P , x ); // Recompute.

20 T =T – S ;
21 computeSelfMHP(fc, F , T );

Figure 4. On-the-fly MHP: add finish-node

Section 4 on how we handle cases involving multiple signifi-
cant changes. The driver algorithm takes two arguments (the
new PST P and the node L in P that being added) and calls
the appropriate routines based on the specifics of L, which
in turn incrementally update the MHP information on the
fly. We now explain each of these routines independently.

3.1.1 On-the-fly MHP analysis: adding finish node
Figure 4 presents the algorithm that is invoked when a
finish node is added. It is based an observation that if the
added finish node (F ) has an async node (say, AA) as an
ancestor, which in turn has a loop ancestor (say, LA), such
that there is no finish node in the path from LA toAA, then
the insertion of the finish node does not alter the MHP
information of the nodes of P , except the ones with which
the finish node F may run in parallel. The negation of this
condition is checked at Line 5, and if it succeeds, we find the
immediately enclosing finish or async (E) (Lines 6-9). If
F does not have any loop ancestor, the descendants of the

1 Function computeSelfMHP(Node fc, Node L, Set T )
2 begin
3 MHP(L) = MHP(L) ∪ T ;
4 for x ∈ T do MHP(x ) = MHP(x ) ∪ {L} ;
5 if fc ∈ MHP(fc) then MHP(L) = MHP(L) ∪ {L} ;

Figure 5. MHP information update of the added node

e-asyncs of F cannot run in parallel with any of the descen-
dants of E that may run after F , except for the children of
e-asyncs of E, after which F may run. We update the MHP
information of all these nodes accordingly (Lines 10-16).
However, when F has one or more loop-ancestors then

MHP information of the statements inside any possible async-
nodes below F may have to be re-computed. For example, say
F has a loop ancestor, and the body of F has two e-asyncs
async1 and async2. Say, async1 has a child S1 and async2 has
a child S2. Now because of the code in Lines 12-16, async2
and S2, which are reachable from E, are removed from the
MHP information of S1; this needs to be corrected. So, we re-
compute the MHP information for the descendants of each
async inside F (Lines 17-19).
Finally, the MHP information of F has to be updated: F

can run in parallel with the statements running in parallel
with the first child of F and vice versa. Further, if the first
child of F is running in parallel with itself, then F can also
run in parallel with itself. These updates are done by calling
the function computeSelfMHP (Figure 5).

3.1.2 On-the-fly MHP analysis: adding async node
Figure 6 presents the algorithm that is invoked when an
async node is added. First, we find the immediately enclos-
ing finish (F , Line 4). We use the logic behind the iMHP-
addAsync routine of Sankar et al. [2016]: after adding A, any
of the descendants of A (in the set DA) may run in parallel
with any of the descendants of F that may execute after A.
We extend the routine further to handle the possible presence
of atomic blocks in the code.

As per the X10 language semantics, no two atomic blocks
executing at the same place [Saraswat et al. 2015], may run
in parallel. We update the MHP information of members of
DF and DA accordingly (Lines 10-15).

3.1.3 On-the-fly MHP analysis: adding atomic node
Given a PST, the iMHP scheme of Sankar et al. [2016] first re-
moves all the concurrency related constructs (finish, async,
and atomic) and computes the complete MHP information
by re-introducing the concurrency related constructs in a
fixed order: finish, async, and finally the atomic nodes.
Since their scheme adds atomics at the end (using the routine
iMHP-addAtomic), we can use the same scheme to compute
on-the-fly MHP analysis, on adding an atomic statement.
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1 Function addAsync(PST P , Node A) begin
2 Node fc = fc(A);
3 Set T = MHP(fc);
4 F = IEF(A);
5 SetM = ∅, P = ∅, Q = ∅, S = ∅;
6 DF = Descendants(F ) reachable from A;

// does not have the descendants of A

7 M = Members of DF not inside any atomic block;
8 DA = Descendants(A);
9 S = Members of DA not inside any atomic block;

10 form ∈ M do MHP(m) = MHP(m) ∪ DA;
11 for p ∈ (DF −M ) do // p is in Atomic
12 MHP(p) = MHP(p) ∪ S

13 for s ∈ S do MHP(s) = MHP(s) ∪ DF ;

14 for q ∈ (DA − S ) do
// q: A’s descendants in Atomic

15 MHP(q) = MHP(q) ∪ M

16 computeSelfMHP(fc, A, T);

Figure 6. On-the-fly MHP algorithm: add async node

3.1.4 On-the-fly MHP analysis: adding a loop node
Figure 7 presents the algorithm that is invoked when a loop
node L is added. When we add L, the descendants of the
e-asyncs of L can run in parallel with all the descendants
of L. Note: (i) If the loop L is inside an atomic block, then it
is enough to invoke computeSelfMHP, (ii) the atomic blocks
present inside L are handled in a manner similar to that done
for addAsync.

3.1.5 On-the-fly MHP analysis: adding if nodes
Figure 8 presents the algorithm that is invoked when an if
node L is added. Since statically we do not know value of the
if-condition, we will assume the addition of the if-node does
not change the reachability of its body. Hence, it is sufficient
to just invoke computeSelfMHP.
Figure 9 presents the algorithm that is invoked when an

if-else node L is added. If the first-child of L (the then-
statement) may run in parallel with itself (indicating that
this statement has a loop-ancestor whose iterations may
run in parallel with each other) then it is enough to just
invoke computeSelfMHP to update the MHP information for
L. Similarly, if the first-child of L is not reachable from itself
(indicating that L is not inside any loop), or if the IEF of
L is a descendant of the immediately-enclosing-loop of L
then none of the descendants of the e-asyncs inside the
then-part of L can run in parallel with any node inside the
else-part of L. A similar argument can be made about the
else-part of L. We update the MHP information of all these
nodes accordingly (Lines 5-11). Note that in the condition at
Line 4, if fc is not reachable from itself⇒ IEL(L) , NULL.

1 Function addLoop(PST P , Node L)
2 begin
3 Node fc = firstChild(L); // loop-body

4 Set T = MHP(fc);
5 if !inAtomic(L) then
6 DL = Descendants (L);
7 Dea = members of DL that are descendants of

e-async nodes;
8 Dnea = DL − Dea ; // non descendants of

e-async nodes in DL

9 Dat = descendants atomic nodes of L;
10 Dnat = DL − Dat ; // non-atomic

descendants of L

11 for a ∈ (Dea − Dat ) do // non-atomic +

escaping descendants
12 MHP(a) = MHP(a) ∪ DL;

13 for a ∈ (Dea − Dnat ) do // atomic +

escaping descendants
14 MHP(a) = MHP(a) ∪ (DL − Dat);

15 for a ∈ (Dnea − Dat ) do //non-atomic +

non-escaping descendants
16 MHP(a) = MHP(a) ∪ Dea;

17 for a ∈ (Dnea − Dnat ) do // atomic +

non-escaping descendants
18 MHP(a) = MHP(a) ∪ (Dea − Dat);

19 computeSelfMHP(fc, L, T );

Figure 7. On-the-fly MHP: add loop node

1 Function addIf(PST P , Node L)
2 begin
3 Node fc = firstChild(L);
4 T = MHP(fc); // then-branch

5 computeSelfMHP(fc, L, T );

Figure 8. On-the-fly MHP analysis: add if node

3.1.6 On-the-fly MHP analysis: adding seq stmt
nodes

Figure 10 presents an algorithm that is invoked when a se-
quential statement node L is added. If L has a successor
(next ), then L may run in parallel with all the statements
that are running in parallel with next . Else, if L has a prede-
cessor (prev), then L may run in parallel with all the nodes
that are running in parallel with prev , along with the descen-
dants of any e-async nodes of prev (Lines 7-9). Note that if
a statement has both successor(s) and predecessor(s) then
both the codes in Lines 3-5 and Lines 7-9 lead to the same
answer.
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1 Function addIfElse(PST p, Node L)
2 begin
3 Node fc = firstChild(L);
4 T = MHP(fc);
5 if (fc < MHP(fc)) AND (fc is not reachable from fc OR

IEF(L) is a descendant of IEL (L)) then
// IEL:immediately-enclosing-loop

6 Node L1 = firstChild(L); // then-branch

7 Node L2 = secondChild(L); // else-branch

8 Set S1 = Descendants of the e-asyncs of L1;
9 Set S2 = Descendants of the e-asyncs of L2;

10 for s ∈ S1 do MHP(s) = MHP(s) − S2 ;
11 for s ∈ S2 do MHP(s) = MHP(s) − S1 ;
12 computeSelfMHP(fc, L, T );

Figure 9. On-the-fly MHP analysis: add if-else node

1 Function addSeqStmt(PST P , Node L) begin
2 if (next(L) != null) then
3 Node next = next(L);
4 C = MHP(next );
5 computeSelfMHP(next , L, C);
6 else if (prev(L) != null) then
7 Node prev = prev(L);
8 C = MHP(prev) ∪ descendants of the e-asyncs

of prev ;
9 computeSelfMHP(prev , L, C);

10 else MHP(L) = ∅ ; // First stmt in the proc

Figure 10. On-the-fly MHP analysis: add seq-stmt

3.1.7 Complexity and Efficiency
We now discuss the time complexity of add* procedures
discussed earlier. We use N to denote the total number
of nodes in the PST, α to denote the inverse Ackermann
function [Cormen et al. 2001], A to denote the total num-
ber of async nodes in the PST, C to denote the total num-
ber of concurrency-related nodes (C ≥ A) in the PST. The
add* procedures invoke set operations like union, find an
element in a set, delete an element from a set, and so on.
Each of these set operations can be done in near constant
time O (α (N )) [Alstrup et al. 2014; Cormen et al. 2001; Ka-
plan et al. 2002]. The procedures addAsync, addLoop, addIf,
addIfElse, and addSeqStmt invoke these set operations at
most N times. Thus, the time complexity for each these pro-
cedures is O (N × α (N )) ≈ O (N ). Note that the addFinish
procedure may call addAsync procedure at most A times;
hence the time complexity of addFinish is O (A × N ).

S1: finish{
S2: . . .
S3: atomic{
S4: . . .

}
S5: async{
S6: atomic{
S7: . . .
}
S8: . . .

}
S9: . . .

}

(a) (b)
Stmt MHP Stmt MHP Stmt MHP Stmt MHP
S1 {} S2 {} S3 {} S4 {}

S5 {} S6 {S9} S7 {S9} S8 {S9}
S9 {S6, S7, S8}

(c)

Figure 11.On-the-fly MHP analysis example. (a) initial code,
(b) initial PST, (c) initial MHP.

We can see that in contrast to the scheme of invoking
iMHP routines [Sankar et al. 2016] (complexity O (C × N )),
after every update, there is a linear time improvement for
most of the updates (addition of async, loop, if, if-else,
and sequence nodes). And in case of addition of finish
nodes, in the worst-case addFinish has the same complexity
as iMHP [Sankar et al. 2016], but in practice, it takes much
less time, as A ≪ C , and we avoid recomputing of MHP
information for a large portion of the PST.

3.1.8 Example
To explain the above algorithms we use the code in Fig. 11a
as the initial program. Fig. 11b shows the corresponding
PST, and Fig. 11c shows the initial MHP map. Say, we first
introduce an async construct S10 around statements S2 and
S3. The resulting code is shown in Fig. 12a, and Figure 12b
represents the corresponding PST. The first child of S10 =
S2, and MHP(S2) = {}. Following the steps in Fig. 6, before
Line 10, F = IEF(S10) = {S1},M = {S5, S6, S8, S9},DA(S10)
= {S2, S3, S4}, S = {S2, S3}. After processing loop at line 10,
we update MHP (S5) = {S2, S3, S4}, MHP (S6) = MHP (S8) =
{S2, S3, S4, S9}, andMHP (S9) = {S2, S3, S4, S6, S7, S8}. After
processing the loop at 11, we update MHP (S7) = {S2, S3,
S9}. After processing the loop at 13, we updateMHP (S2) =
MHP (S3) = {S5, S6, S7, S8, S9}. After processing the loop
at 14, we updateMHP (S4) = {S5, S6, S8, S9}.
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S1: finish{
S10: async{
S2: ...
S3: atomic{
S4: ...

} }
S5: async{
S6: atomic{
S7: ...}

S8: ...}
S9: ...}

(a)

(b)
Stmt MHP Stmt MHP
S1 {} S2 {S5, S6, S7, S8, S9}
S3 {S5, S6, S7, S8, S9} S4 {S5, S6, S8, S9}
S5 {S2, S3, S4} S6 {S2, S3, S4, S9}
S7 {S2, S3, S9} S8 {S2, S3, S4, S9}
S10 {} S9 {S2, S3, S4, S6, S7, S8}

(c)

Figure 12. Example after adding S10. (a) modified code, (b)
modified PST, (c) updated MHP.

After that, say we introduce (i) an if-else statement S11,
with S10 in the then-part and S5 in the else-part, (ii) a loop
construct S12 around S11 and S9, and (iii) an if statement
S13 around S12 – in that order. The resulting PSTs are shown
in Fig. 13, and the updated MHP maps after each statement
are shown in Fig. 14. As it can be seen, after each code inser-
tion, the number of updates to the MHP map are few. The
final MHP-map is shown in Figure 14d.

3.2 On-the-fly MHP analysis: on removal of nodes
In Section 3.1, we discussed how the MHP information is
incrementally computed on the fly, after each addition to
the PST. Now, we discuss how to incrementally compute the
MHP information on-the-fly, on the deletion of PST nodes.
When a PST node n is removed, all its children nodes get
attached to the parent of n in the PST.
The driver algorithm (skipped for space) on removing a

statement is similar to that shown in Fig. 3, except that this
driver invokes the routines for handling the statement re-
moval. We now explain each of these routines independently.

3.2.1 On-the-fly MHP analysis on removing a
simple sequential statement or an if-statement

Figure 15 shows the algorithm to be invokedwhen a sequential-
statement node is removed; handling of the removal of if-
nodes is exactly similar.Whenwe remove a simple sequential-
statement (for example, an assignment statement), we just

need to remove the entry of L from theMHPmap and remove
L from the MHP information of the statements that may run
in parallel with L, if L would not have been removed.

3.2.2 On-the-fly MHP analysis on removing finish

Figure 16 presents the algorithm that is invoked when a
finish node (F ) is removed. If E is the IEF (immediately-
enclosing-finish) of F , then after removing F , any descendant
of the e-async nodes of F may run in parallel with any of the
descendants of E that are reachable from F (and vice-versa).
The atomic blocks present inside L are handled in a manner
similar to that done for addAsync. Finally, we remove the
MHP maps related to the finish node.

3.2.3 On-the-fly MHP analysis on removing async

Figure 17 presents the algorithm that is invoked when an
async node (A) is removed from the PST. If the first-child of
Amay run in parallel with itself (indicating that this state-
ment has a loop-ancestor whose iterations may run in paral-
lel) then it is enough to just invoke remSeqStmt to update
the MHP information for A. Otherwise, we first identify R,
the immediately enclosing finish or immediately enclosing
async of A. Note: an async node cannot have an atomic
node as parent. The only other parents of interest are Loop,
finish and async nodes. We handle all the three. Since the
MHP recomputation related to statements inside the finish
parent or async parent is the same (the impact is limited
to the children of that parent, and the MHP nodes thereof)
these two cases are clubbed together.
If A does not have any loop ancestor, none of the non

escaping descendants ofA can run in parallel with any of the
descendants of R that may execute afterA. However, whenA
has one or more loop-ancestors then the MHP information of
the statements inside any async-nodes belowL, whichwould
have been removed because of the updates discussed in this
procedure, has to be reverted back; we do so by invoking
addAsync algorithm on these async-nodes.

3.2.4 On-the-fly MHP analysis on removing atomic

Figure 18 shows the algorithm that is invoked when an
atomic node (L) is removed. In addition to removing the
MHP information related to L, we have to update the MHP
information related to the descendants of L: if A contains
the set of nodes that may run in parallel with L, then the
descendants of L can run in parallel with the nodes in A.

3.2.5 On-the-fly MHP analysis on removing loop

Figure 19 presents the algorithm that is invoked when a
loop node (L) is removed. If the first-child of L may run in
parallel with itself (indicating that this statement has a loop-
ancestor whose iterations may run in parallel) or if L has
an IEL (immediately-enclosing-loop) and IEF(L) is a descen-
dant of IEL(L) then it is enough to just invoke remSeqStmt
to update the MHP information for L. Otherwise, we first
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(a) Adding S11

(b) Adding S12.

(c) Adding S13.

Figure 13. PSTs after adding (a) S11, (b) S12, and (c) S13.

Stmt MHP
S2, S3, S4, S6, S7, S8 {S9}
S5, S11 {}

(a) Updates after adding S11
Stmt MHP
S2, S3, S6, S8 {S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12}
S4, S7 {S2, S3, S5, S6, S8, S9, S10, S11, S12}
S5, S9, S10, S11, S12 {S2, S3, S4, S6, S7, S8}

(b) Updates after adding S12.
Stmt MHP
S13 {}

(c) Updates after adding S13.
Stmt MHP
S1, S13 {}

S2, S3, S6, S8 {S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,
S12}

S4, S7 {S2, S3, S5, S6, S8, S9, S10, S11, S12}
S5,S9,S10,S11,S12 {S2, S3, S4, S6, S7, S8}

(d) Final MHP map after adding S10, S11, S12, and S13.

Figure 14. Updates to MHP after each insertion, shown in
the PSTs in Fig. 13 and the final MHP maps.

aggressively update the MHP information of the descendants
of L, by removing all the descendants of L from the escaping
descendants of L, and all the escaping descendants of L from

1 Function remSeqStmt(PST P , Node L)
2 begin
3 Set A =MHP (L);
4 for a ∈ A doMHP (a)=MHP (a) − {L};;
5 MHP.remove(L);// Removes L from MHP

Figure 15. On-the-fly MHP analysis: remove seq-stmt.

the non-escaping descendants of L. We then iterate over the
async descendants of L and invoke addAsync on each one
of them to take into consideration their impact on the MHP
information of the descendants of L.

3.2.6 On-the-fly MHP analysis on removing if-else

Figure 20 presents the algorithm that is invoked when an
if-else node is removed. Descendants of all escaping async
nodes inside the then part of L can run in parallel with nodes
inside the else part of L; note: the e-asyncs inside the else
block do not have a similar impact on the statements of the
then block. The atomic blocks present inside L are handled
in a manner similar to that done for addAsync.

3.2.7 Time complexity and Efficiency
In this section, we discuss the time complexity of the remove*
routines discussed earlier in this section. We use N to denote
the total number of nodes in the PST, α to denote the in-
verse Ackermann function [Cormen et al. 2001], A to denote
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1 Function remFinish(PST P , Node F)
2 begin
3 E = IEF of F ;
4 M = ∅; // {a | a ∈ Descendants of E AND

reachable from F AND descendants of
e-asyncs in F}

5 B = ∅; // {a | a ∈ Descendants of E AND
reachable from F AND ¬descendant of
e-asyncs in F}

6 for a ∈ Descendants(E) do
7 if a is reachable from F then
8 if a is a descendant of an e-async of F thenM =

M ∪ { a };
9 else B = B ∪ { a };

10 S = ∅; // Descendants of e-asyncs of F inside

atomics

11 C = ∅; // Descendants of e-asyncs of F not

inside atomics

12 for l ∈ descendants(e-asyncs of F ) do
13 if !inAtomic(l) then S = S ∪ { l };
14 else C = C ∪ { l };

15 form ∈ M do MHP(m) = MHP(m) ∪ S ∪ C;
16 for b ∈ B doMHP(b) = MHP(b) ∪ S ;
17 for s ∈ S doMHP(s) = MHP(s) ∪M ∪ B;
18 for c ∈ C doMHP(c) = MHP(c) ∪M ;
19 remSeqStmt (P , F )

Figure 16. On-the-fly MHP analysis: remove finish.

the total number of async nodes in the PST. Procedures
remFinish, remAtomic, remSeqStmt, remIfElse perform
some set operations like union, find an element in a set,
and delete an element from a set. Each of these can be done
in near constant time O (α (N )) [Alstrup et al. 2014], [Cor-
men et al. 2001], [Kaplan et al. 2002]. These set operations
are performed at most N times. So time complexity for these
procedures isO (N ×α (N )) ≈O (N ). The procedures remLoop
and remAsync can call addAsync procedure at mostA (≪ N )
times, and hence the time complexity for these two proce-
dures isO (A×N ). Thus, we can see there is a linear time im-
provement over the iMHP algorithms of [Sankar et al. 2016]
(O (N 2))) for each of remFinish, remAtomic, remSeqStmt,
remIfElse. But remAsync and remLoop, in the worst case,
have the same complexity as iMHP [Sankar et al. 2016]; in
practice, they take significantly less time, as we are reusing
the MHP information and typically A ≪ N .

3.2.8 Example
We start with the PST shown in Figure 13c, and remove S13,
S12, S11, and S10 in that order. The resulting updates to
the MHP are as follows: (i) S13: MHP entry for S13 gets
removed. (ii) S12: The MHP entry for S12 gets removed; the
MHP maps of S2, S3, S4, S6, S7, S8 get trimmed to contain

1 Function remAsync(PST P , Node A)
2 remSeqStmt(P , A)
3 if f irstChild (A) < MHP( f irstChild (A)) then
4 Node R = A.parent();
5 while R , root do
6 if R is an async node OR R is a finish node

then break;
7 R = R.parent();

8 SetM = ∅; S = ∅;
9 for r ∈ descendants(R) do

10 if r is reachable from A then M =M ∪ { r };

11 for l ∈ descendents(A) do
12 if l < descendants of an e-async of A then
13 MHP(l ) = MHP(l ) −M ; S = S ∪ { l };

14 form ∈ M doMHP(m) = MHP(m) – S ;
15 if hasLoopAncestor(A) then
16 for ad ∈ async descendants of A; do
17 addAsync(P , ad);

Figure 17. On-the-fly MHP analysis: remove async.

1 Function remAtomic (P : PST, L: Node)
2 Set A = MHP(L);
3 remSeqStmt(P , L)
4 B = Descendents(L);
5 for b ∈ B doMHP(b) = MHP(b) ∪ A;
6 for a ∈ A doMHP(a) = MHP(a) ∪ B;

Figure 18. On-the-fly MHP analysis: remove atomic.

1 Function remLoop(PST P , Node L)
2 remSeqStmt(P , L)
3 f c=firstChild(L);
4 if fc < MHP(fc) AND ((IEL(L) = null) OR IEF (L) not a

descendant of IEL (L)) then
5 M = escaping descendants of L;
6 S = non-escaping descendants of L;
7 form ∈ M do
8 MHP(m) = MHP(m) − set of descendants of L;

9 for s ∈ S doMHP(s) = MHP(s) −M ;;
10 for x ∈ set of async descendants of L do
11 addAsync(P , x );

Figure 19. On-the-fly MHP analysis: remove loop.

only S9 and the MHP maps of S5, S10, S11 are set to the
empty set (Fig. 14a). (iii) S11: The MHP entry for S11 gets
removed; the MHP maps of S2, S3, S4, S5, S6, S7, S8, S9 get
updated to those shown in Fig. 12c. (iv) S10: The MHP entry
for S10 gets removed; the MHP maps of S6, S7, S8 are set to
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1 Function remIfElse(PST P , Node L)
2 begin
3 remSeqStmt(P , L)
4 Node L1 = firstChild(L); // then-branch

5 Node L2 = secondChild(L); // else-branch

6 SetM = ∅; P = ∅;
7 if L1 is an atomic node then P = P ∪ L1;
8 elseM =M ∪ L1;
9 for l ∈ Descendents (L1) do

10 if l is a descendent of an escaping async of L1 then
11 if inAtomic(l) then P = P ∪ { l };
12 elseM =M ∪ { l };

13 Q = ∅; S = ∅;
14 for l ∈ Descendents(L2) do
15 if inAtomic(l) then Q = Q ∪ { l };
16 else S = S ∪ { l };

17 for i ∈ M do MHP(i) = MHP(i) ∪ S ∪ Q ;
18 for i ∈ P doMHP(i) = MHP(i) ∪ S ;
19 for i ∈ S doMHP(i) = MHP(i) ∪M ∪ P ;
20 for i ∈ Q doMHP(i) = MHP(i) ∪M ;

Figure 20. On-the-fly MHP analysis: remove if-else

S9; the MHP maps of S9 are set to S6, S7, S8 and the MHP
maps of S2, S3, S4, S5 are set to the empty set.

4 Discussion
Correctness and Precision of the on-the-flyMHP anal-
ysis. The correctness of the proposed on-the-fly MHP anal-
ysis is derived from the correctness of each of the individual
add/remove routines. We skip the detailed correctness proof
for lack of space. The precision of the proposed analysis is
same as that of Sankar et al. [2016]. Both of which may lead
to false-positives if the conservative assumption (used to
keep MHP analysis tractable [Taylor 1983]) that all control
paths are executable is violated.

Invoking the on-the-fly MHP analysis. After each ad-
dition/deletion of a statement to/from the X10 program, we
compare the new AST to the old AST and update the PST
incrementally. Based on the node being added or removed,
the corresponding function is invoked to update the MHP
information on the fly.
MHP analysis for the whole program. The analyses pro-
posed by Sankar et al. [2016] and our extension both are
intra-procedural in nature. These can be extended to handle
multiple-procedures. For programs without recursion the
extension is straight-forward: we can use a program struc-
ture graph (PSG [Nandivada et al. 2013]) to represent the
program and invoke the routines discussed in the previous
sections. For programs with recursion, we can construct an
SCC call-graph and computeMHP analysis by conservatively

handling the SCC nodes representing recursive calls. Pre-
cisely computing inter-procedural MHP analysis, especially
for X10 type of OO language with dynamic dispatch, is left
as a future work.
On the flyMHP analysis in an IDEWe have implemented
both our proposed on the fly algorithms and the iMHP algo-
rithm [Sankar et al. 2016] in the X10DT (an extension based
on the Eclipse framework). Such a plugin can be used by
the programmer or the IDE to identify the code that may
run in parallel with a given statement, deadlock detection,
identify racy programs, refactor parallel-programs, argue
about program correctness, and so on.
Further, since our analysis is intra-procedural in nature,

the changes in other parts of the code don’t impact the
code/analysis in the current window of the IDE. However, if
some function is added/modified outside the IDE and loaded,
we need to reanalyze that function completely (likely using
a technique like iMHP [Sankar et al. 2016]) as the IDE cannot
find the list of changes to be supplied to our analysis.

5 Experimental Evaluation
We have implemented the algorithms discussed in Section 3
and the iMHP algorithms of Sankar et al. [2016] as X10DT
plug-ins. We then compared the running times of our on-
the-fly algorithms against that of the iMHP algorithms. To
perform the evaluation, in the absence of large X10 bench-
marks, similar to the approach used by Sankar et al. [2016],
we used two types of benchmarks: (i) synthetic benchmarks,
(ii) existing benchmark kernels. We discuss both the evalua-
tions separately.

5.1 Evaluation Using Synthetic Benchmarks
We modified the PST generator tool as mentioned by Sankar
et al. [2016] to generate a wide-variety of X10 programs. The
PST generator takes the number of nodes, the percentage
of different parallel constructs such as async, finish and
atomic as inputs and synthesizes a PST satisfying the input
constraints. We fix the percentage of async, atomic and
finish node as 5%, 2%, and 5%, respectively – these percent-
ages indicate a more practical mix [Sankar et al. 2016]. We
present the comparison for varying number of PST nodes
(100 to 1000, in steps of 100). For each input, we generate a se-
quence of 100 random updates; this sequence of updates con-
sists of adding and removing of PST nodes corresponding to
finish, async, atomic, loop, if-then, if-then-else and
simple sequential statements (such as assignment statement).
We ran both the algorithms on this sequence of updates for
five times and recorded the average running time. We also
re-enforced the correctness of our proposed algorithms by
comparing our generated MHP information with that of
iMHP; we found that the MHP information matched.
Fig. 21 shows the improvement of running time of our

analysis over the iMHP algorithm [Sankar et al. 2016] – ranges
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Figure 21. Execution time gains due to the on-the-fly algo-
rithms on PSTs with varying number of nodes

#PST Total iMHP analysis on-the-fly analysis
nodes updates naacs exec-time naacs exec-time

100 10 64 261 13 38.8
200 13 109 583 12 96.4
300 24 108 699.2 2 77.6
400 12 270 3320 24 481.6
500 12 273 7949.4 26 1027.2
600 16 502 16956.2 33 1982.2
700 11 414 13519 3 1767
800 13 502 19618.8 59 2284
900 11 498 64362.4 14 8014
1000 10 531 57988.8 62 6050.8

Figure 22. iMHP analysis Vs. on-the-fly analysis, for the
synthetic benchmarks. Metrics: number of addAsync calls
and execution time. Abbreviation used: naacs = number of
addAsync calls; exec-time = execution time in ms.

from 83% to 90%, which is significantly high; for reference,
the actual execution time numbers are shown in Figure 22.
These gains are realized from the improvement (up toO (N ))
in the computational complexity of our proposed algorithm
over the iMHP algorithms of Sankar et al. [2016]. Importantly,
our execution times are small enough tomake our algorithms
a practical option in an IDE type of setting.

As discussed in Sections 3.1.7 and 3.2.7, the proposed rou-
tines addFinish, remAsync, and remLoop call the routine
addAsync many times (up to A times, where A is the total
number of async nodes inside the corresponding finish,
async, and loop node, respectively). And this may lead to a
worst-case complexity, which is comparable to that of the
iMHP routines of Sankar et al. [2016]. To understand this
issue further, we calculated the total number of times the
addAsync procedure is invoked during the iMHP based and
on-the-fly based analysis. Fig. 22 shows a comparison be-
tween these two. We can see that in practice, our on-the-fly
analysis takes less time than iMHP, as A ≪ C , whereC is the
total number of concurrency related nodes in the program.

Figure 23. Execution time gains due to the proposed algo-
rithms on the IMSuite Kernels.

5.2 Evaluation on Real Benchmarks
We also evaluated the proposed on the fly MHP algorithms
and iMHP on the IMSuite kernels [Gupta and Nandivada
2015] that implement twelve classical concurrent algorithms:
BF (perform breadth first search and compute the distance
of every node from the root), DST (perform breadth first
search and compute the BFS tree), BY (realize byzantine con-
sensus), DR (create routing table), DS (compute dominating
set), MIS (compute maximal independent set), KC (create
k-committee), DP (perform leader election for general net-
work), HS (perform leader election for bidirectional ring
network), LCR (perform leader election for unidirectional
ring network), MST (create spanning tree), and VC (perform
vertex coloring). These kernel are of varying sizes: 380-991
lines of code. In each kernel, we removed 20% of the PST
nodes and used them as a sequence of PST updates to be
added one by one. Fig. 23 shows the improvement of running
time of our analysis over the iMHP algorithm: ranges from
80% to 99%, which is quite high; for reference, the actual
execution time numbers are shown in Figure 24. Again, our
execution times are small enough to make our algorithms a
practical option in an IDE type of setting.
Similar to Fig. 22, we also compared (in Figure 24) the

number of times addAsync is called during the updates done
in the context of IMSuite kernels. Similar to our experience
with the synthetic inputs, we find thatA ≪ C , whereA is the
number of asyncs under the nodes being added and C is the
total number of concurrency related nodes in the program,
and hence in practice, on-the-fly analysis takes much less
time than iMHP

6 Conclusion
In this paper, we show the importance of on-the-fly MHP
analysis for task-parallel languages such as X10. We have
implemented our proposed on-the-fly MHP analysis of X10
programs as a part of X10DT as a plug-in. We have presented
a novel approach to update MHP information incrementally
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Bench Total iMHP analysis on-the-fly analysis
marks updates naacs exec-time naacs exec-time

BF 6 18 39.6 3 2.4
DST 8 8 37.2 0 3.4
BY 7 19 142 1 5
DR 37 6 463.6 0 3.6
DS 54 6 671.2 1 2.2
KC 80 140 987 10 5.25
DP 88 1 1003 0 1
HS 5 26 130 7 26

LCR 8 8 135 0 6
MIS 15 30 147 1 4
MST 31 167 241 14 22
VC 38 19 258 2 15

Figure 24. iMHP analysis Vs. on-the-fly analysis, for the
IMSuite kernels. Metrics: number of addAsync calls and exe-
cution time. Abbreviation used: naacs = number of addAsync
calls; exec-time = execution time in ms.

when a statement is added/removed to/from the X10 pro-
gram.We have shown that the cost of our proposed algorithm
is not more than the cost of the iMHP algorithm proposed
by Sankar et al. [2016]. We have implemented our proposed
on-the-fly MHP analysis as part of X10DT (as a plug-in). We
demonstrate the performance of our proposed algorithms
over a large set of synthetic benchmarks (along with a series
of auto-generated updates) and IMSuite benchmark kernels.
The results show that our proposed algorithms lead to mas-
sive improvements over the iMHP algorithms of Sankar et al.
[2016] and are of practical utility in an IDE type of settings.
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A | Artifact Setup and Evaluation
A.1 Abstract
Abstact: This appendix describes how to replicate the experi-
ments to evaluate the performance of the proposed on-the-fly
MHP analysis as compared to the prior work (iMHP analysis).
It details the software requirement, installation instructions,
steps to configure and run the experiment, and the expected
results.

A.2 Description
A.2.1 Overview
• Google drive link: https://drive.google.com/drive/folders/
1Y1b21-oWSKiLKajrgSwgKnLyv_K7rE5A?usp=sharing
A detailed version of this artifact with detailed screen-
shots can be found in a README file there.
• Required software: Java, Eclipse, X10DT.
• Data set: IMSuite Benchmarks (available in the drive)
• Output: Analysis times (along with the % improve-
ment) of all Kernels using (a) on-the-fly MHP analysis,
(b) iMHP, over IMSuite kernels and synthetically gen-
erated Program Structure Tree (PST)s. In addition, we
also output the number of times the addAsync routines
are called,
• Experiment workflow: (i) Setup Java and Eclipse, (ii)
add the developed plugin and see a test program in
action, (iii) Analysis using the IMSuite kernels, (iv)
Analysis using the synthetically generated PSTs.
• Experiment customization: Size of the synthetically
generated PSTs and the different types of nodes etc.
• Publicly available?: Yes
• Note: The evaluation involves randomly adding and
removing nodes in both synthetic and publicly avail-
able benchmark kernels. As a result, while the overall
% improvement should still remain in the same ball-
park figure, the other statistics (the number of calls to
asyncAdd) may not exactly match.

A.2.2 Installation
1. Install Java 1.8
2. Install Eclipse on your system (https://www.eclipse.

org/downloads/packages/installer).
3. Install eclipse PDE.
a. In the menu click on Help –> Install New Software.
b. In the Available Software dialog select the 2019-09

site (http://download.eclipse.org/releases/2019-09)
from the "Work with" drop down.

c. In the search box enter the phrase "Plug-in" this
should filter the list so you can see the Eclipse Plug-
in Development Environment.

d. Click the checkbox and next till finish to install.
4. Install X10DT via Eclipse Update Manager. Refer this

link:

http://x10-lang.org/documentation/x10dt-installation.
html

5. Copy iMHP_1.0.0.201912010346 from artifact folder
to ‘${ECLIPSE_INSTALLED_FOLDER\}/plugins’ and to
‘${ECLIPSE_INSTALLED_FOLDER\}/dropins/plugins’.

6. Run eclipse from terminal with command ‘eclipse.exe
-clean’ on windows and ‘./eclipse -clean’ on linux.

A.2.3 Testing the setup (for both on-the-fly MHP
and iMHP) using a toy program

1. Create an X10 project. In the menu click on File->New
->Project->X10->X10 Project (Java back-end)
named ‘test’.

2. Copy ‘test.x10’ program from ‘artifact’ folder to ‘test/src’.
Keep this file open in eclipse.

3. Please keep test.x10 program open in eclipse.
a. In the menu click on ‘MHP Analyses’ plugin. In

Drop down you will see four options ‘Evaluation
on Real Benchmarks’, ‘Evaluation using Synthetic
Benchmarks’, ‘iMHP’ and ‘on-the-fly’. Please click
on ‘iMHP’ to run iMHP algorithm on this program.

b. Please enter statement number for which you want
to know MHP information.

4. After running the test, the result pop-up will appear
showing what are the statements may run in parallel
with the given statement.

5. Please add a statement in the program (One update at
a time) and wait for few second to load the program
in eclipse. Please save the program.

6. In the menu click on ‘MHP Analyses’ plugin. Please
click on ‘on-the-fly’.

7. Please enter statement number for which you want to
know MHP information.

8. After running the test, the result pop-up will appear
showing what are the statements may run in parallel
with given statement.

9. Note: The overall execution time you may observer
will include ‘on-the-fly execution time’ + ‘delay in
running the test automatically in Eclipse’. Hence, for
measuring/comparing execution time, only consider
the execution time of on-the-fly algorithm and not
the delay with it. Here delay refers to loading the x10
program in eclipse after each update. Delay time varies
based on the number of statements in an x10 program.

A.2.4 Evaluation using the Synthetic kernels (For
Figure 21 and 22)

To perform this evaluation, we use a PST generator (inter-
nally) to generate PSTs as per the given spec. We present the
comparison for varying number of PST nodes (100 to 1000,
in steps of 100).

1. In the ‘MHP Analysis’ menu click on ‘Evaluation using
Synthetic Benchmarks’.

https://drive.google.com/drive/folders/1Y1b21-oWSKiLKajrgSwgKnLyv_K7rE5A?usp=sharing
https://drive.google.com/drive/folders/1Y1b21-oWSKiLKajrgSwgKnLyv_K7rE5A?usp=sharing
https://www.eclipse.org/downloads/packages/installer
https://www.eclipse.org/downloads/packages/installer
http://download.eclipse.org/releases/2019-09
http://x10-lang.org/documentation/x10dt-installation.html
http://x10-lang.org/documentation/x10dt-installation.html
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2. Please enter number of PST nodes (in the paper, we
use 100, 200, . . . up to 1000 nodes).

3. Please enter number of update sequence (use the num-
bers from Figure 22).

4. Please enter number of times you want to run the
above configuration.

5. Please enter delay. (If number of PST nodes is 100,
delay of 5000ms is recommended. More the number of
nodes more delay should be given.)

6. After running the test, the result will pop-up.

A.3 Evaluation using the IMSuite kernels (For
Figures 23 and 24)

To perform this evaluation, we remove 20% of nodes and
used them as a sequence of PST updates to be added one
by one. To simulate the addition of nodes, we have to add a
delay between each update.

1. Copy ‘X10Project’ from ‘artifact’ folder to your system.
The ‘*.x10’ files in ‘X10Project/src/’ folder are input to
‘Evaluation on Real Benchmarks’.

2. Keep test.x10 program open in eclipse.
3. Click on ‘Evaluation on Real Benchmarks’ and enter

the file location.
4. Enter the delay. (For ‘bfsBellmanFord.x10’ program

delay of 5000ms is recommended.)
5. After running the test, the result will pop-up.
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