
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 0000; 00:1–16
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

Lexical State Analyzer for JavaCC grammars

Kartik Gupta1 and V. Krishna Nandivada1

1Dept of CSE, IIT Madras

SUMMARY

Lexical states in JavaCC provide a powerful mechanism to scan regular expressions in a context
sensitive manner. But lexical states also make it hard to reason about the correctness of the grammar.
We first categorize the related correctness issues into two classes: errors and warnings. We then extend
the traditional context sensitive and a context insensitive analysis to identify errors and warnings in
context-free-grammars (CFGs). We have implemented these analyses as a standalone tool (LSA), the
first of its kind, to identify errors and warnings in JavaCC grammars. The LSA tool outputs a graph
that depicts the grammar and the error transitions. Importantly, it can also generate counter example
strings that can be used to establish the errors. We have used LSA to analyze a host of open-source
JavaCC grammar files to good effect.
Copyright c© 0000 John Wiley & Sons, Ltd.

Received . . .

1. INTRODUCTION

JavaCC lexical states provide a convenient mechanism to conditionally activate lexical tokens.
For the same input substring, use of lexical states can allow different lexical tokens to be
recognized based on prior parsed tokens. For example, when parsing a C program, the parser
may put the scanner in a special state (say COMMENT) when it encounters “/*”; when the
scanner is in this state the input substring “int” is not recognized as a keyword token (INT)
but is treated as part of the comment string. In other words the token INT is not active in
the lexical state COMMENT. The popularity of lexical states can be seen by the number of open-
source grammars, submitted on the JavaCC website [4], that use lexical states. The advantage
of lexical states is that they make the specification of the lexical rules simpler. This simplicity
comes with its own cost—lexical states make it extremely challenging to manually reason about
the correctness of the grammar. We illustrate the same using an example.

Figure 1 shows a snippet of JavaCC grammar to parse a subset of BibTex files.
Note that JavaCC expects the rules for lexical analysis (regular expressions) and parsing
(context free grammar) to be present in a single file. In JavaCC, the specification
<I1,I2,...,In>TOKEN:<X:RegEx>:Os indicates that the scanner can return a token X when it
matches the regular expression RegEx, only if the current lexical state is I1, or I2, or .. In

and after scanning the token the state changes to Os. Specifying the in-state (such as I1, I2)
and out-state (such as Os) are optional; the default in-state is the special state DEFAULT and
the default out-state is the in-state in which the token is scanned. The regular expression
specification declares a set of tokens (e.g., AT_SYM, ANYTHING_BUT_AT, ARTICLE, INPROC and
so on). If a token is used to define another token (e.g., OTHERS), then it has to be declared in
a special manner – by prefixing the token with #. Finally, the regex ~[] is used to match any
single character (including a newline character).

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using speauth.cls [Version: 2010/05/13 v3.00]

2

// regular expression specification

<DEFAULT>TOKEN:{
<AT_SYM:"@">:ENTRY

|<ANYTHING_BUT_AT:~["@"]>:DEFAULT}
<ENTRY>TOKEN:{
<ARTICLE:"article">:FIELDS

|<INPROC:"inproceedings">:FIELDS}
<FIELDS>TOKEN:{
<AUTHOR:"author">|<TITLE:"title">}
<FIELDS>TOKEN:{
<LB:"{"> |<RB:"}">

|<QT:"\"">:QT_DATA

|<EQ:"=">|<HASH:"#">|<COMMA:",">

|<IDENTIFIER:(<OTHERS>)+>

|<#OTHERS:~["@","","","(",")",

"\"","=","#",","," ","\t","\n"]>}
<QT_DATA>TOKEN:{
<QT_IN_QT_DATA:"\"">

|<ETC_IN_QT_DATA:~[]> }
<BR_DATA>TOKEN:{

<RB_IN_BR_DATA:"}">
|<ETC_IN_BR_DATA:~[]> }

// set of productions

void InputFile():{}{
(<AT_SYM> Block()

|<ANYTHING_BUT_AT>)* <EOF> }
void Block():{}{
(<ARTICLE>|<INPROC>)

<LB>Entry()<RB> }
void Entry():{}{
Key()(<COMMA>Field())* }
void Key():{}{
<IDENTIFIER> }
void Field():{}{
(<AUTHOR>|<TITLE>)<EQ>Data()}
void Data():{}{
<QT>QtString()|<LB>BrString()}
void QtString():{}{
(<ETC_IN_QT_DATA>)*<QT_IN_QT_DATA>

}
void BrString():{}{
(<ETC_IN_BR_DATA>)*<RB_IN_BR_DATA>

}

Figure 1. Snippet of JavaCC file for parsing BibTex files.

Each JavaCC production rule looks like a function definition and the body of the function
includes production rules. If a non-terminal appears on the RHS of any production, it is
written as a function call. For example, the production Entry indicates that it starts with a
non-terminal Key and after that it may contain zero or more occurrences of COMMA (a terminal)
and Field (a non-terminal) pairs.

An input BibTex file (to be parsed by the grammar in Figure 1) is expected to consist of
zero or more citation blocks. Suppose we have the following input:

@inproceedings{Tarjan71,
author = "Robert Endre Tarjan",

title = "Depth-first search and linear graph algorithms" }

A glance at the production rules will let the developer naively believe that the grammar
will parse the above input, using the following derivation steps: InputFile → AT SYM

Block →∗ AT SYM IN PROC LB IDENTIFIER COMMA AUTHOR EQ Data COMMA Field RB →∗
AT SYM IN PROC LB IDENTIFIER COMMA AUTHOR EQ QT ETC IN QT DATA QT IN QT DATA

COMMA Field RB and so on. We now see the impact of lexical states.
By default, the scanner starts in the DEFAULT state∗. Upon reading the “@” symbol the

scanner switches its state to ENTRY. In this state, the scanner identifies the INPROC token and
it switches the state to FIELDS. In this state, the scanner identifies a series of tokens such
as LB, IDENTIFIER (to be parsed as Key), COMMA, AUTHOR and EQ. The parser now expects
to match the production Data. The scanner first identifies a quote (QT) and switches state
to QT DATA. In this state, the scanner matches ETC IN QT DATA multiple times and then it
identifies QT IN QT DATA. At this point, the parser is expecting the token COMMA or RB, but the

∗The scanner state can be changed by using the SwitchTo() construct provided by JavaCC, which changes the
lexical state of the scanner to the value passed as argument.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

3

scanner reads these tokens only in the lexical state FIELDS, which does not match the current
lexical state QT DATA. Thus, the parser will mark the input string as syntactically incorrect.

Thus, contrary to the naive conclusion drawn by the grammar designer, the presence of
lexical states has rendered the production rules incorrect. In other words, Block has a dead
production rule that will never be matched: we cannot match RB after Entry has been matched.
Consequently, parts of the grammar rules for InputFile (such as, AT SYM Block() EOF)
and Entry (such as, Key() COMMA Field() COMMA Field()) will never be matched. Such
errors can be much more complicated in bigger grammars and manual tracking can be hard.
Unfortunately, there does not exist any tool that analyzes grammars with respect to lexical
states. In this paper, we present a tool to fill this gap. We begin by formulating a classification
of bugs in grammars that use lexical states.

Definite errors (abbreviated as errors): We call it an error in the grammar to have a
(sub) production that will never be matched. For example, the bug discussed in the previous
section corresponds to an error. The grammar shown in Figure 1 contains another error that
manifests itself when the scanner is in the lexical state FIELDS and the parser needs to use
the non-terminal Data to derive <LB> BrString(), to parse something like {Robert Endre

Tarjan}. Here the parser needs the lexical token ETC_IN_BR_DATA (or RB_IN_BR_DATA), which
can only be identified in the lexical state BR_DATA.

We extend the notion of in- and out-states to non-terminals: Given a non-terminal N1, the
in-state of N1 is the union of all the in-states of the terminals present in the FIRST set [6]
of N1. The FIRST set of a non-terminal is the set of all terminals that can occur as the
first symbol in some sentential form that can be derived from this non-terminal. Similarly,
we can also define the LAST set of a non-terminal N1: the last terminal contained in any
sentence derived from N1 is a member of the LAST(N1). The out-state of N1 is the union of
the out-states of the terminals present in LAST(N1).

Possible errors (abbreviated as warnings): Consider a grammar rule A→ αβ, where α and
β each represent a sequence of one or more terminal and non-terminal symbols. Say β can be
derived from some of the out-states of α, but there exist out-states of α from which β cannot
be derived. In such a case, depending on the specific input, after matching α we may reach
a state s that is not a valid in-state of β. We term these as warnings in the grammar. The
grammar snippet shown in Figure 1 has a few warnings as well. For example, we may be able
to match Entry (as part of Block), if the input is something like @inproceedings{Tarjan71}.
But if the input contains some fields that have to be matched to one or more instance of
<COMMA>Field() in Entry then we cannot match it.

It can be easily seen that manually finding errors and warnings is non-trivial and real-
world grammars (consisting of numerous terminals and non-terminals) that use lexical states
can become a formidable challenge. Similarly, while it is fairly trivial to identify errors in
grammars with no lexical states, it may be noted that naive translation of a JavaCC grammar
with lexical states to a version that does not use lexical states can lead to an exponential blow
up, in terms of the number of non-terminals. This explosion renders the approach impractical
(see the discussion in Section 2.7). We present a set of automated techniques to efficiently
reason about errors and warnings in context-free-grammars.
Our contributions:
• We formulate the problem of identifying errors and warnings in grammars that use lexical
states.
•We extend traditional program analysis techniques to present two analyses to identify errors
and warnings. Our first analysis (context insensitive lexical state analysis) computes summary
in- and out-states for each non-terminal and it does not take into consideration the position
(context) in which the non-terminal appears in any production rule. This summary of in-
and out-states is used to conservatively identify the errors and warnings. Our second analysis
(context sensitive lexical state analysis) computes the out-states for each non-terminal N1

specific to the context (position and in-state) in which N1 may be parsed. Based on the
precise out-states we compute all the errors that may occur in a production, for each possible

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

4

lexical in-state for that production (Section 2).
• We have implemented these analyses as a standalone tool (LSA) that can identify errors and
warnings in JavaCC grammars. The LSA tool outputs a graph that depicts the grammar and
the error transitions. It can generate example strings (counterexamples) that can be used to
establish the errors (Section 3). To the best of our knowledge, this is the first tool that finds
bugs in grammars that use lexical states.
•We have evaluated our LSA tool on a host of open-source JavaCC grammar files to good effect.
We find that our techniques help catch errors and warnings that are otherwise not caught by the
naive unreachable production detection algorithm that marks all the transitively unreachable
non-terminals from the start non-terminal without considering the lexical states (Section 4).

2. LEXICAL STATE VERIFIER

In this section, we first discuss the grammar subset over which we illustrate our analysis. Then
we present three algorithms to analyze these grammars: the naive useless productions removal
algorithm (adapted from Hopcroft et al [15]), our context insensitive lexical state analysis, and
our context sensitive lexical state analysis. We follow it up with a discussion on the algorithms
and our counter example derivation process. Through out this paper, we assume that the input
grammar is syntactically valid and is accepted by the current JavaCC tool (that is, has no left
recursion, and so on).

2.1. Grammar subset

We first discuss a representative scheme for token and grammar specification. We will assume
that our input grammar follows this specification. Our specification can be used to generate
grammars in JavaCC format trivially. Details of the JavaCC syntax can be found in the
manual [2].

A typical definition of lexical tokens is of the form:
<I1, I2 ... In> TOKEN: {<Token1:RegEx1> : Os <Token2:RegEx2> }

It defines two tokens Token1 and Token2 corresponding to two regular expressions RegEx1 and
RegEx2. Given a string matching RegEx1 (or RegEx2), the scanner returns the token Token1 (or
Token2) if its current state s ∈ {I1, I2, ... In}. If the scanner returns the token Token2, the
scanner will remain in state s. If the scanner returns the token Token1, the scanner will switch
to state Os. Thus, every lexical token has a non-empty set of in-states and a corresponding set
of out-states.

We assume that the input grammar contains rules with only the following forms:

N0 → N1|N2 // Alternate N0 → N1N2 // Sequence
N0 → T // Terminal Ne → ε // Epsilon

We use T to denote terminals and Ni to denote non-terminals in the grammar. We expect
that Ne is the only non-terminal whose production string is ε. We will also assume that every
non-terminal must have a unique production associated with it. It should be noted that any LL
grammar can be transformed to use only the forms of rules specified above without losing its LL
property. All JavaCC grammars have the LL property and are handled by our implementation.

A context-free grammar can be specified using the four tuple (N,T, P, S), where N is a
set of non-terminals, T is a set of terminals, P is a set of productions in the above described
form and S ∈ N is the start non-terminal symbol. We use the ‘.’ notation to dereference the
elements of the tuple; for example, G.N denotes the set N of grammar G.

2.2. Useless Production Elimination by detecting the Useful ones

For the sake of completeness and ease of presentation, we next present a naive procedure
(derived from the well understood algorithm of Hopcroft et al [15]) to eliminate useless

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

5

Find-Useful-Productions(G)
begin

Visit(G.S);
Set D = {};
foreach n ∈ G.N do

if isVisited[n] == true then
D.add(n);

return D;
end

Visit(N1)

begin
if the production corresponding to N1 is
of the form N1 → N2N3 or N1 → N2|N3

then
if !isVisited[N2] then

isVisited[N2] = true; Visit(N2);

if !isVisited[N3] then
isVisited[N3] = true; Visit(N3);

end

Figure 2. Naive algorithm to find useful productions.

NT: Set of non-terminals LS: Set of lexical states TS: Set of terminals ∪{ε}
O : TS → LS | I: TS→ LS inStates: NT → P(LS) outStates: NT → P(LS)

Figure 3. Sets and maps used in lexical state analysis

productions (UPs) in the grammar. We call a production as useless, if it cannot be reached
from the start non-terminal. Figure 2 presents a sketch of the algorithm that works as the basis
of this procedure. Starting with the start non-terminal S, we “visit” all the non-terminals and
mark the non-terminals used in the corresponding productions. We make a post-pass to collect
and return all the marked non-terminals (in variable D). The set of useless productions is given
by N −D. As it can be seen, this algorithm does not take into consideration the lexical states
of the terminals in use. Thus, the effectiveness of this algorithm is limited.

2.3. Context Insensitive Lexical State Analysis

We now present our context insensitive lexical state analysis. The analysis populates two
different maps inStates and outStates (Figure 3) for its internal use. For each non-terminal,
the inStates and outStates maps store the in-states and out-states, respectively. For all the
non-terminals, these two maps are initialized to contain empty sets. We use P(X) to denote
the power set of X. We assume that for the set of terminals and ε, the out-state map (O) and
in-state map (I) are trivially precomputed (code not shown). The identity map represents the
out-state and in-state maps for ε.

Figure 4 presents a sketch of our context insensitive analysis. The main function
Main-CInsensitive takes the grammar (G = (N,T, P, S)) as input and first calls
Find-Useful-Productions to identify all the useful productions. It follows a worklist-based
approach to compute the out- and in-states for all the non-terminals. We say that a non-
terminal N2 uses a non-terminal N1, if N1 appears on the right side of the production
corresponding to N2.
CI-BuildOutStates: The out-state of a non-terminal depends on the exact production

corresponding to the non-terminal. If the production is of the form N0 → N1|N2, then out-
states of N0 includes the out-states of N1 and N2. If the production is of the form N0 → N1N2,
then out-states of N0 includes the out-states of N2 and optionally that of N1, if N2 derives
the empty string ε.
CI-BuildInStates: Similar to the construction of outStates, we update the inStates map

for each production depending on its form. One main difference between the two is that when
the production is of the form N0 → N1N2: the in-states set for N0 contains the in-states set
for N1 and optionally that of N2, if N1 derives the empty string ε.
CI-Analyze: After the in-states set and out-states set have been computed for each non-

terminal, we check if the start non-terminal (G.S) can be parsed in the default lexical state

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

6

Func Main-CInsensitive(G)
begin

Worklist wlist = Find-Useful-Productions(G);
while wlist is not empty do

N1 = wlist.removeOne(); CI-BuildOutStates (N1);
if outStates[N1] has changed then

add to wlist all the non-terminals that use N1.

wlist = Find-Useful-Productions(G);
while wlist is not empty do

N1 = wlist.removeOne(); CI-BuildInStates (N1);
if inStates[N1] has changed then

add to wlist all the non-terminals that use N1.

if DEFAULT 6∈ inStates(G.S) then // issue an error

foreach Ni ∈ G.N do CI-Analyze(Ni);
end

Func CI-BuildOutStates(NonTerminal N0)

begin
switch structure of N0 do

case N0 → N1|N2: outStates[N0] = outStates[N1] ∪ outStates[N2];
case N0 → N1N2:

outStates[N0] = outStates[N2];

if N2
∗→ ε then outStates[N0] = outStates[N0] ∪ outStates[N1];

case N0 → T : outStates[N0] = O(T);
case N0 → ε: outStates[N0] = O(ε);

end
Func CI-BuildInStates(NonTerminal N0)

begin
switch structure of N0 do

case N0 → N1|N2: inStates[N0] = inStates[N1] ∪ inStates[N2];
case N0 → N1N2:

inStates[N0] = inStates[N1];

if N1
∗→ ε then inStates[N0] =inStates[N0] ∪ inStates[N2];

case N0 → T : inStates[N0] = I(T);
case N0 → ε: inStates[N0] = I(ε);

end
Func CI-Analyze(NonTerminal N)

begin
if production corresponding to N0 is of the form N0 → N1N2: then

Os = outStates[N1]; Is = Os − inStates[N2];
if Is == Os then // error -- N0

else if Is 6= {} then // warning -- N0

end

Figure 4. Context insensitive lexical state analysis

(DEFAULT). We then invoke the CI-Analyze method to check if the lexical states (S) in which
a non-terminal N0 can be accessed matches that of its in-states (inStates[N0]). If there are no
common elements between S and inStates[N0], then it is flagged as an error. If S includes
lexical states that are not part of inStates[N0], then it is a possible error and hence marked
as a warning. A context insensitive error/warning consists of just the non-terminal for which
the error/warning is identified.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

7

<DEFAULT>TOKEN:{ <AT:"a">:DEFAULT }
<LX1>TOKEN:{ <CT:"c">:DEFAULT }
<DEFAULT, LX1>TOKEN:{ <BT:"b"> }
void S():{}{ F()|G() }
void G():{}{ D()E() }

void A():{}{ <AT> }
void B():{}{ <BT> }
void C():{}{ <CT> }
void D():{}{ E()E() }
void E():{}{ B()C() }
void F():{}{ D()C() }

Figure 5. Example grammar with two lexical states

NonTerminal context insensitive analysis context sensitive analysis
InStates OutStates Error/ OutStates Error

Warning DEF LX1
S DEF, LX1 DEF - E E DEF, LX1
G DEF, LX1 DEF - E E DEF, LX1
A DEF DEF - DEF E LX1
B DEF, LX1 DEF, LX1 - DEF LX1 -
C LX1 DEF - E DEF DEF
D DEF, LX1 DEF - E E DEF, LX1
E DEF, LX1 DEF Warning E DEF DEF
F DEF, LX1 DEF Error E E DEF, LX1

Figure 6. Effect of applying our context insensitive (CI) and context sensitive (CS) analysis on the
example shown in Figure 5. The DEFAULT state is abbreviated to DEF.

Example: Figure 5 shows a sample grammar with two lexical states (DEFAULT and LX1).
The grammar is chosen so as to demonstrate three important features of the tool : i) the errors
and warnings issued by our proposed context insensitive analysis, ii) the errors issued by our
context sensitive analysis, and iii) an interesting facet of our context sensitive analysis that
it may report errors that are not reflected by the context insensitive anlaysis (neither as an
error, nor warning). The in-, out-states computed using the context insensitive analysis along
with identified errors and warnings are shown in columns 2-4 of Figure 6. For example, it says
that non-terminal F will always lead to an error state.

Complexity: We will use L to denote the number of lexical states, N to denote the
grammar size; in the worst case L = O(N). The complexity of CI-BuildOutStates and
CI-BuildInStates functions is O(1). Each of the while loops in Main-CInsensitive is at
most invoked O(N × L) times – in each iteration, size of the outStates map of at least one
non-terminal increases by one – giving rise to an overall complexity of O(N × L).

2.4. Context Sensitive Analysis

We now describe our context sensitive analysis. Here the set of lexical states LS, contains an
additional error state E . If a terminal or non-terminal cannot be parsed in a specific lexical state
(including the error state E), then we consider the resulting lexical state to be E . Compared
to the context insensitive analysis, the outStates map contains more detailed information.
It stores the out-states for each non-terminal for each possible lexical in-state – outStates:
NT × LS → P (LS). For all the non-terminals, for each lexical token, this map is initialized to
contain empty sets. For the outStates map, we use a specialized union operator (t) to do an
element-wise union of all the elements of the operands.

S = outStates[N1] t outStates[N2]
≡

∀i ∈ LT : S[i] = outStates[N1][i] ∪ outStates[N2][i]

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

8

Func Main-CSensitive(G)
begin

Worklist wlist = Find-Useful-Productions(G);
while wlist is not empty do

N1 = wlist.removeOne(); CS-BuildOutStates (N1, φ);
if outStates[N1] has changed then

add to wlist all the non-terminals that use N1.

CS-Analyze(G.S, {DEFAULT})
end

Func CS-BuildOutStates(NonTerminal N0, States S)
begin

switch structure of N0 do
case N0 → N1|N2: outStates[N0] = outStates[N1] t outStates[N2];
case N0 → N1N2:

foreach l1 ∈ LS do
foreach l2 ∈ outStates[N1][l1] do

outStates[N0][l1]∪ = outStates[N2][l2];

if N2
∗→ ε then outStates[N0] = outStates[N0] t outStates[N1];

case N0 → T : foreach l ∈ LS do outStates[N0][l] = O(T, l);
case N0 → ε: foreach l ∈ LS do outStates[N0][l] = O(ε, l);

end

Func CS-Analyze(NonTerminal N0, States S)
begin

sRet = {};
foreach l ∈ S do

if isAnalyzed[N0][l] then S = S − {l};
else isAnalyzed[N0][l] = true;
sRet = sRet ∪ outStates[N0][l];

if S is empty then // no more analysis to be done, return.
return sRet− {E};

foreach l ∈ S do
if outStates[N0][l] = {E} then

// error -- (N0, l)

switch structure of N0 do // Now analyze the components of N0

case N0 → N1|N2: CS-Analyze(N1, S); CS-Analyze(N2, S);
case N0 → N1N2: S1 = CS-Analyze(N1, S); CS-Analyze(N2, S1);

return sRet− {E};
end

Figure 7. Context sensitive lexical state analysis

Figure 7 presents a sketch of our context sensitive analysis. The main function
Main-CSensitive takes the grammar (G = (N,T, P, S)) as input and first calls
Find-Useful-Productions to identify all the useful productions. It follows a worklist-based
approach to compute the out-states for all the non-terminals. The CS-BuildOutStates

function is similar to that described in the context insensitive analysis (Figure 4). One main
variation being the current version maintains separate set of out-states for each lexical state.
Once the out-states are computed it calls the CS-Analyze to analyze the grammar, starting
with the start non-terminal (G.S) and default lexical state as the in-states set ({DEFAULT}).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

9

CS-Analyze: We first check if the current non-terminal (N) has already been analyzed for the
in-states S. If it has been already analyzed for all the member states in S, then we return the
non-error out-states of N over all the in-states. A two dimensional boolean array (isAnalyzed)
is used to remember if a production has been analyzed for a particular state; all of its elements
are initialized to false. For a given lexical state, if the out-states of N contains only the error
state E , then it is marked as an error. A context sensitive error consists of the non-terminal
and the lexical state in which the error is identified. If N has not been analyzed for a subset of
input states we recursively analyze the non-terminals used by N . Note that, we avoid issuing
warnings for any non-terminal N and lexical state l (when E ∈ outStates[N][l]), because the
source of the warning would anyway be reported as an error; thereby, we avoid too many
messages. Importantly, our proposed approach catches and reports the complete set of definite
errors present in the grammar.

Example: For the example grammar shown in Figure 5, which is expected to accept the set
of strings {bcbcc, bcbcbc} the out-states of each non-terminal for each lexical state computed
using the context sensitive analysis, along with the identified errors (note, the error is specific
to a non-terminal and a lexical token) are shown in columns 5-7 of Figure 6. For example, it
says that non-terminal D leads to an error state when it is matched in lexical state DEF or LX1.
As it can be seen, the context sensitive analysis reports all the errors including those that are
otherwise not reported by the context insensitive analysis.

Complexity: The complexity of the t operator is O(N). The complexity of
CS-BuildOutStates function is O(L2). The while loop in Main-CSensitive is at most invoked
O(N × L2) times – in each iteration, the size of the outStates map for at least one non-
terminal for at least one in-state increases by one. The CS-Analyze function can be called at
most O(N × L) times and in each invocation the work done is bound by O(L). This leads to
an overall complexity of Main-CSensitive as O(N × L4). In practice, the size of L is a small
number and that makes it almost linear.

2.5. Generating Examples

We now discuss how we can generate counter-example strings that can be used to establish
errors in a grammar. We represent the grammar as a graph, and reduce the problem of
generating counter-examples, as that of computing an annotated path from the start node
to the error node.

Given a context free grammar that uses tokens with lexical states, we represent it as a forest
(called lexical-transition-graph), where each connected component corresponds to a different
production (labeled by that non-terminal). To avoid the problem of too many edges we keep the
forest sparse and omit the edges between the use of a non-terminal and the graph corresponding
to its production, in our figures shown in this manuscript; such edges depict parent-child (use
of a non-terminal - its corresponding production) relationship. Each connected component can
be seen as a graph G = (N,E), where N is the set of nodes consisting of all the non-terminals,
terminals and a set of special operators Π present in the production. For the subset of grammar
presented in Section 2.1, Π = {•, |}, representing the sequencing and choice operators†. Such a
graph admits a natural parent-child relationship – each terminal and non-terminal on the right
side of a production for a non-terminal is marked as its child. Similarly, each special operator
works as a parent for each non-terminal and other special operators contained with in. Each
node has an attached set of in-states and out-states. Each member of the set of in-states of
an operator node is connected to corresponding member(s) of each set of in- states for an
operator nodes children. Similarly the set of out-states of an operator node is connected to the
corresponding member(s) of each set of out-states of its children. The members in the set of
in- and out-states of a token are connected as per the state transitions defined in the grammar.
They represent the lexical state transitions that are taking place in the grammar.

†The complete JavaCC grammar syntax allows strings of the form X∗, X+ and [X]; thus Π consists of additional
operators “∗”, “+” and “[]”.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

10

Given a particular context sensitive error (N1, l), we find a path from N1 to the root (start
non-terminal) such that we reach N1 with l as the in-state; this path in reverse, added with the
FIRST token of N1, can give the counter-example that leads to the error. Figure 8 presents the
algorithm. The entry point Gen-Err-String is called with the context sensitive error details
(N1, l) as arguments, which in turn calls the Gen-Err-Path function to return a queue of
strings that correspond to the nodes in the error path. We recursively visit the parents of the
current node until we reach the graph for the start node (root). During the unwinding of the
recursion, we store the strings corresponding to each non-terminal seen in the path (by calling
Gen-Accept-String); these strings are stored in a Queue (strQ). Finally, the queue of strings
are output, ending with FIRST(N1).

Example: For the grammar shown in Figure 5, Figure 9 shows the generated lexical
transition graph for two production rules E and F. The red dotted box shows that there are no
“out” edges from D thus indicating an error in F. And in the graph for node H, the edge from
the DEFAULT state as instate is marked as red because it leads to an error, as C is not defined
in lexical state DEFAULT. Our counter-example generation routine would generate the string
bcbcc as an example that cannot be parsed. Note that, we have deliberately skipped the box
corresponding to the“•” in the graph to avoid clutter of rectangles. Also note that the red box
has been dotted here to improve the visibility, the tool actually outputs an undotted red color
box.

2.6. Comparing context sensitive and insensitive analysis

We now state the precision of the context sensitive and insensitive analysis.

Theorem 2.1
The context sensitive analysis identifies all the errors identified by the context insensitive
analysis and may be more.

We present a sketch of the proof in Appendix A. This theorem ensures that the context
sensitive analysis is more precise than the context insensitive analysis.

2.7. Finding errors after eliminating the lexical states

It can be argued that the useless production removal procedure (Figure 2) can be used to
identify all the error productions identified by the context sensitive analysis, if the grammar
with lexical states can be converted to an equivalent grammar with no lexical states. Such a
conversion can be done by duplicating terminals and non-terminals such that each one has a
unique in- and out-state; however, such a translation (from grammar with lexical states to one
without) can lead to an exponential blow up. One such example is given below:

S → AAA . . . A // n number of them
A→ A1|A2|A3 . . . |An, A1 → a1, A2 → a2, · · · , An → an

Say, we have n number of lexical states (L1, L2, . . . Ln), and each terminal ai is declared
as: < L1, L2, . . . Ln > TOKEN : <ai: Regexi> : Li. Thus, each token ai has n in-states and
a unique out-state Li. A translation as suggested above would lead to O(nn) productions,
rendering the overall analysis impractical.

2.8. Reporting errors based on just lexical state specifications of the tokens

It can argued that one need not look at the grammar production rules and conclude on the
erroneous nature of the grammar by only looking at the lexical state specification of the tokens.
Such a naive approach may lead to too many false positives. For example, in Figure 5, just
looking at the lexical state specifications, one will conclude that the string “ac” will lead to an
error. But such a string is not even accepted by the grammar. Similarly, in Figure 5, say while
keeping the lexical token specification and the specification of the non-terminals A and C intact,
if we replace the rest of the grammar rules with a simple grammar rule void S():{}{A()|C()},
then the grammar has no errors. But a naive lexical state based analysis would conclude that

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

11

Func Gen-Err-String(N1, l) begin
Queue strQ = Gen-Err-Path(N1, l, new Queue());
while ¬strQ.isEmpty() do output strQ.dequeue();
output FIRST(N1);

end
Func Gen-Err-Path(N1, l, strQ)
begin

if N1 = root then return strQ;
if visited[N1][l] = true then

return null; // Do not pursue this path further

visited[N1][l] = true;
foreach parent p of N1 do

switch type of p do
case “•” // can have exactly two children

if the N1 is the right child then
Say N0 is the left child;
S = set of in-states of N0 for which l can be be one of the out-states;
foreach l1 ∈ S do

Queue nstrQ = Gen-Err-Path (p, l1, new Queue(strQ));
if nstrQ 6= null then

nstrQ.enqueue(Gen-Accept-String (N0, l1, l));
return nstrQ;

else // unique parent guaranteed.
return Gen-Err-Path(p, l, strQ);

case “|” // unique parent guaranteed.
return Gen-Err-Path(p, l, strQ);

case T // terminal
return Gen-Err-Path(p, l, strQ);

return null;
end
Func Gen-Accept-String(N1, l1, l2) begin

switch type of N1 do
case “•”

Let the production be N1 → N2N3;
S = φ;
foreach l ∈ LS do

if l2 ∈ outStates[N3][l] then S = S ∪ {l};
Choose an l′ such that l′ ∈ outStates[N2][l1] ∩ S;
return Gen-Accept-String (N2, l1, l

′).concatenate(Gen-Accept-String (N3, l
′, l2));

case “|”
Let the production be N1 → N2|N3;
if l2 ∈ outStates[N2][l1] then return Gen-Accept-String (N2, l1, l2);
return Gen-Accept-String (N3, l1, l2);

case T // terminal
return T;

end

Figure 8. Generate Error String.

the grammar is erroneous. Our proposed analysis ensures that for every error flagged by our
context sensitive analysis, we will find a corresponding error string.

3. IMPLEMENTATION

We have implemented our LSA tool using JavaCC and Java. LSA uses the JavaCC grammar from
Sun Microsystems [3]. We extend the code generated by JTB [21] to generate an annotated

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

12

Figure 9. Part of the lexical transition graph for the counter-example shown in Figure 5.

Figure 10. Part of the lexical transition graph for the example shown in Figure 1.

tree, where each node contains information required for the analyses. Further, we recreate the
parse tree for efficient traversal; we call this tree the operator tree. The intermediate nodes
of this tree are the operators →, •, |,+, ∗, ?, and []; the terminals and non-terminals can only
appear in the leaf nodes. The → node is used to represent grammar productions, and its left
child is a non-terminal and right side is a production. The operators along with terminals
and non-terminals are used to denote different productions. We later use this tree to generate
the graph discussed in Section 2.5, where we drop the → operators and use non-terminals as
intermediate nodes. Unlike our discussed grammar subset (Section 2.1), all these operators
can admit any number of operands. Thus, our implementation is not limited by the grammar
restrictions described in this paper. LSA can take as input any valid LL(k) grammar in the
JavaCC format. We now discuss some implementation details of LSA.

3.1. Graph Generation

Given an input grammar, LSA performs our analyses to produce warnings and errors. Next, as
described in Section 2.5, it creates a lexical transition graph for the input grammar (in DOT [12]
format), along with the lexical states. This graph represents the lexical state transitions that
are taking place in the grammar. We then highlight the edges (in red) that can lead to error
states. Figure 10 shows a part of the graph generated for the motivating example shown in
Figure 1. It shows that there are no edges from the out-states of Field (BR_DATA and QT_DATA)
to the in-states of the “*” sub-production (FIELDS). Thus, we cannot use this production to
parse more than one Field.

Limitations of LSA: JavaCC admits inlined Java code as part of the productions that
can change the lexical state at runtime, by invoking a special function (called SwitchTo),
which takes an integer argument (computed from arbitrary Java expressions) representing the
target lexical state. Statically identifying the precise target lexical state in such a scenario

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

13

Name #lines # lex Analysis time (sec) #UP #CI #CS
states UP CI CS errs warnings errs sources

Ldif 418 7 0.20 0.20 0.23 0 16 32 102 16
HTML 406 8 0.25 0.26 0.27 0 1 5 6 6
RTF 237 3 0.18 0.19 0.19 0 3 0 3 3
PHP 645 8 0.33 0.39 0.47 0 42 222 270 206
FM 3089 7 0.53 0.57 0.63 43 33 6 49 19
Java 1061 1 0.32 0.36 0.36 2 0 0 0 0
DefaultQuery 799 4 0.31 0.31 0.31 0 1 0 1 1
Parser 2616 9 0.45 0.47 0.55 1 6 124 155 84
ICalSyntax 528 7 0.25 0.25 0.27 0 1 16 21 16
XVCalSyntax 319 5 0.19 0.20 0.20 0 0 9 9 9

Figure 11. Evaluation. UP: useless production removal algorithm, CI: Context insensitive lexical state
analysis, CS: Context sensitive lexical state analysis, #UP: Number of useless productions detected.

is undecidable in general (the problem reduces to the halting problem). We are working
on techniques to model the behavior of the SwitchTo function conservatively by the use
of standard compiler techniques (such as, global value numbering and conditional constant
propagation [18]).

4. EVALUATION

We present the evaluation of our tool on a set of ten open-source JavaCC grammar files
downloaded from different websites. These files can be downloaded from our website [1].
Figure 11 presents the summary of our evaluation. The size of these grammar files varied
from approximately 200 lines of code to 3000 lines of code. The number of lexical states
varied from one to nine. Following the suggestions of the insightful paper of George et al [13],
we report the analysis time as an average over 30 runs (on a personal laptop with Intel i3
processor). The reported time includes the time it took to read the grammar files and doing
the specific analysis. It can be easily seen from the figure that the running time overhead for
our proposed analysis is minimal; all the analyses finish running in less than a second. The
context insensitive and sensitive analyses for grammars like PHP, FM and Parser take more
time compared to the UP Analysis; this is because of the comparatively increased use of the
lexical states in them.

Note that the number of context insensitive errors is less than or equal to the number of
context sensitive errors, which agrees with our claim in Section 2.6. To understand the nature
of the error better, we also mark the source of each error. For example, say we have two
productions of the form A→ B C and B → D E. If we cannot parse E after parsing of D,
then we will report an error in the production for B, and also in the production for A, as that
will also be never parsed. The B production here is called the “error source”. The last column
indicates the number of “error sources” found; each of these errors points to an independent
error, which in turn may lead to reporting of one or more errors (in column 10). For the
example grammar files, we have also generated the graphs depicting the errors therein; these
graphs can be accessed from the above-mentioned website [1].

It is encouraging to see LSA find relevant errors in real world grammars. The reason why
these grammars may be working in practical situations could be that most of the users take
these grammars as a base to start with and hack it according to their needs (similar to what
we ourselves did in some other projects). A tool like LSA can be really helpful in such a scenario
as it will make validation of the correctness of the grammar easier.

Note that, currently there are no other tools that analyze grammars for errors arising due
to the use of lexical states and hence we didn’t have any other tools/approaches to compare
against, except with the naive approach of eliminating unreachable productions. Nevertheless,
the utility of LSA is evident from the analysis presented above.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

14

5. RELATED WORK

Researchers have designed grammar analyzers with many different purposes. Identifying
ambiguity of context free grammars has received a fair amount of attention [14, 23, 10, 9, 24].
The ANTLR v4 plugin for IntelliJ [22] helps identify syntactic and simple semantic errors
in ANTLR grammars. Similarly, there have been prior works on verifying [8] and validating
parsers [16]; these focus on ensuring that the semantics of the parser matches that of the
grammar. None of these papers deal with lexical states and erroneous situation arising in such
a context. We believe that our formulation of the problem of identifying errors and warnings
in grammars that use lexical states and our idea of generation of counter examples for the
identified errors are novel.

The use of context to improve the precision of program analysis is a well-known technique
and is used in many places (points-to analysis [7], escape analysis [11], alias analysis [17], data
flow analysis [19], and so on). The trade-offs between context-sensitive (improved precision) and
context-insensitive (faster) are well studied [18, 20]. In this paper, we extend the traditional
context-sensitive and context-insensitive analysis to present two analyses that help identify
errors and warnings in context free grammars (CFGs) that use tokens with lexical states. To
the best of our knowledge, such an extension is novel and we believe that it opens up a new
opportunity for the use of context-sensitive analysis.

6. CONCLUSION

Lexical states are useful in expressing complex control flow between the lexer and the parser in
a convenient way (for example, comments in programs can be easily skipped by using lexical
states). Our experience shows that even a few lexical states can make it difficult to reason
about the correctness of the grammar. We discuss three techniques to automatically identify
errors and warnings in JavaCC grammars that use tokens with lexical states: a naive technique
to eliminate useless productions, a novel context insensitive lexical state analysis, and a novel
context sensitive lexical state analysis. We have implemented these techniques as a standalone
tool (named LSA). Besides the specific information about the errors and warning, LSA outputs
a graph that helps reasons about the errors in a convenient manner. We have used LSA to
analyze a few open-source JavaCC grammars to good effect. The tool can be downloaded from
[5].

As a future work, we plan to extend our results to YACC grammars that use start
conditions. The main complexity one has to handle in this scenario is that of the BEGIN

construct, which is similar to the SwitchTo construct of JavaCC.

Acknowledgements: We thank Supratik Chakraborty at IIT Bombay for his insightful
comments regarding the possible translation of grammar with lexical states to one without
and the resulting exponential blow up (Section 2.7). This research is partially supported
by the New Faculty Seed Grant, funded by IIT Madras CSE/11-12/567/NFSC/NANV,
DAE research grant CSE/13-14/139/BRNS/NANV and DST Fasttrack grant CSE/13-
14/140/DSTX/NANV.

REFERENCES

1. Benchmarks used for evaluating LSA. http://www.cse.iitm.ac.in/∼krishna/lsa/benchmarks/.
2. JavaCC documentation. http://javacc.java.net/doc/docindex.html.
3. JavaCC grammar repository. http://java.net/projects/javacc/downloads/directory/contrib/grammars.
4. JavaCC website. http://javacc.java.net.
5. Link to download LSA. http://www.cse.iitm.ac.in/∼krishna/lsa.
6. A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, Techniques, and Tools. Addison-Wesley, 1986.
7. L. Andersen. Program Analysis and Specialization for the C Programming Language. PhD thesis, DIKU,

University of Copenhagen, 1994.

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

15

set/map Domain Definition
L1 L ∪ {E}
R ⊆ (N ∪ T)× P → P(L1) returns the set of lexical states in which a non-terminal Ni

or Ti can be reached in a given production
O′ ⊆ N ∪ T × P(L)→ P(L) ∀x ∈ N ∪ T, S ⊆ L1,O′(x, S) = i

¯
gcupl∈SO(x, l)

Es ⊆ P {p | p ∈ P , p is of the form N0 → N1N2, O′(N1, R(N1, p)) ∩
I(N2) = φ}

Ei ⊆ P {p | p ∈ P , p is of the form N0 → N1N2, O′(N1, L) ∩
I(N2) = φ}

Figure 12. Sets and Maps used in the theorem

8. A. Barthwal and M. Norrish. Verified, executable parsing. In ESOP, pages 160–174, 2009.
9. B Basten and T v d Storm. AMBIDEXTER: Practical ambiguity detection. In SCAM, pages 101–102,

2010.
10. C. Brabrand, R. Giegerich, and A. Møller. Analyzing ambiguity of context-free grammars. Science of

Computer Programming, 75(3):176–191, Mar 2010.
11. Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam Midkiff. Escape

analysis for java. In Proceedings of the 14th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications, pages 1–19, 1999.

12. E. R. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot, 2010.
http://www.graphviz.org/Documentation/dotguide.pdf.

13. A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous Java performance evaluation. In
OOPSLA, pages 57–76, New York, NY, USA, 2007. ACM.

14. Saul Gorn. Detection of generative ambiguities in context-free mechanical languages. J. ACM, 10(2):196–
208, April 1963.

15. John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory, languages,
and computation - international edition (2. ed). Addison-Wesley, 2003.

16. Jacques-Henri J., F. Pottier, and X. Leroy. Validating LR(1) parsers. In ESOP, pages 397–416, 2012.
17. Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and loving it: Must-

alias analysis for higher-order languages. In Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’98, pages 329–341, New York, NY, USA, 1998. ACM.

18. Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann, 1997.
19. V. Krishna Nandivada and Suresh Jagannathan. Dynamic state restoration using versioning exceptions.

Higher Order Symbol. Comput., 19(1):101–124, March 2006.
20. Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program Analysis. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 1999.
21. Jens Palsberg. JTB: Java tree builder. http://www.cs.ucla.edu/∼palsberg/jtb/.
22. Terrance Parr. Antlr v4 grammar plugin for intellij, 2014. https://github.com/antlr/intellij-plugin-v4.
23. Friedrich Wilhelm Schröer. AMBER, an ambiguity checker for context-free grammars. Technical report,

2001. http://accent.compilertools.net/Amber.html.
24. Naveneetha Vasudevan and Laurence Tratt. Search-based ambiguity detection in context-free grammars.

In ICCSW, pages 142–148, 2012.

A. COMPARISON OF CONTEXT SENSITIVE AND INSENSITIVE ANALYSIS

Given a grammar (N,T, L, P), we define three sets and two maps in Figure 12. Ei and Es are
the sets of errors identified by context insensitive and context sensitive analysis, respectively.
Note that, the map O′ corresponds to the map outStates in the algorithm discussed in
Figure 7. We will be using these sets and maps, in addition to the ones defined in Figure 3 to
state and prove the following theorem:

Theorem A1
The context sensitive analysis identifies all the errors identified by the context insensitive
analysis and possibly more. Or in other words, Es ⊇ Ei.

Proof

Notation: Considering the grammar subset described in this paper (Section 2.1), the only
production in which a context insensitive error can be encountered is of the form N0 → N1N2.
Say p = N0 → N1N2 is one such production. We will be using R as a short form for R(N1, p).

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

16

We will define the following two sets.

S1 = O′(N1,R) ∩ I(N2)

S2 = O′(N1,L) ∩ I(N2)

Sets S1 and S2 contain the states in which N2 can be parsed after N1, in production p, while
doing context sensitive and insensitive analysis, respectively.
We have,

S1 = φ↔ p ∈ Es (1)

S2 = φ↔ p ∈ Ei (2)

S1 ⊆ S2 (3)

From (3), we have

S2 = φ → S1 = φ

→ p ∈ Ei → p ∈ Es // From (1), and (2)

↔ Es ⊇ Ei

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Pract. Exper. (0000)
Prepared using speauth.cls DOI: 10.1002/spe

