
A

Improved Bitwidth-Aware Variable Packing

V. Krishna Nandivada, Dept. of Computer Science and Engineering, IIT Madras, TN, India

Rajkishore Barik, Intel Labs, Santa Clara, CA, USA

Bitwidth-aware register allocation has caught the attention of researchers aiming to effectively reduce the
number of variables spilled into memory. For general-purpose processors, this improves the execution time

performance and reduces runtime memory requirements (which in turn helps in the compilation of programs
targeted to systems with constrained memory). Additionally, bitwidth-aware register allocation has been
effective in reducing power consumption in embedded processors. One of the key components of bitwidth-
aware register allocation is the variable packing algorithm that packs multiple narrow-width variables into

one physical register. Tallam and Gupta have proved that optimal variable packing is an NP-complete
problem for arbitrary width variables and have proposed an approximate solution.

In this paper, we analyze the complexity of the variable packing problem and present three enhancements

that improve the overall packing of variables. In particular, the improvements we describe are: (a) Width
Static Single Assignment (W-SSA) form representation that splits the live range of a variable into several
fixed-width live ranges (W-SSA variables); (b) PoTR Representation - use of powers-of-two-representation
for bitwidth information for W-SSA variables. Our empirical results have shown that the associated bit

wastage resulting from the over-approximation of the widths of variables to the nearest next power of
two is a small fraction compared to the total number of bits in use (≈13%). The main advantage of this
representation is that it leads to optimal variable packing in polynomial time; (c) Combined Packing and
Coalescing - we discuss the importance of coalescing (combining variables whose live-ranges do not interfere)

in the context of variable packing and present an iterative algorithm to perform coalescing and packing of
W-SSA variables represented in PoTR. Our experimental results show up to 76.00% decrease in the number
of variables compared to the number of variables in the input program in Single Static Assignment (SSA)

form. This reduction in the number of variables led to a significant reduction in dynamic spilling, packing
and unpacking instructions.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—Optimization; Com-
pilers

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: Variable packing, Combined Packing and Coalescing

1. INTRODUCTION

Applications from embedded architecture domain (network, multimedia and speech pro-
cessing) extensively use narrow width data via packing and unpacking. A bitwidth-aware
register allocation algorithm can potentially reduce the number of spilled variables by pack-
ing multiple of these narrow width data items into a single physical register. The bitwidth-
aware register allocator proposed by Tallam and Gupta [Tallam and Gupta 2003] consists
of computing bitwidth information for variables at various program points using bit-section
analysis and then packing narrower width variables. This is followed by a traditional graph
coloring register allocation. Tallam and Gupta show that optimal packing of variables is
an NP-complete problem for arbitrary widths of variables (the problem can be seen as a

New Paper, Not an Extension of a Conference Paper.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1544-3566/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

variant of bin-packing problem) and present an approximate solution. In this paper, we
present new schemes to improve the bitwidth-aware variable packing and use the packing
algorithm by Tallam and Gupta as a baseline for comparison.
One important fact in variable packing is that the live range of a variable may refer to

different number of bits (we refer this as useful bits) at different program points. Note that,
even though a variable is defined at only one place, the number useful bits might vary.
Thus at every step of packing of variables, it is required to compute the useful bits for the
newly generated packed variable (variable created after packing is done). The useful bits
of the packed variable can be computed by either walking over the IR instructions again
(time-consuming) or estimating the useful bits using safe approximation. Tallam and Gupta
computed estimated maximum interference width (EMIW) that approximates the actual
maximum interference width (MIW) of the packed variable for efficiency reasons. This step
incurs bit wastage in favour of efficiency. To reduce such bit wastage (without loosing effi-
ciency), we introduce a new program representation called Width Static Single Assignment
(W-SSA), which extends the classical static single assignment (SSA) form [Cytron et al.
1991]. A program in our proposed W-SSA form guarantees that every variable is defined
exactly once (similar to classical SSA), and additionally the set of useful bits of the variable
remain unchanged throughout its life time. For instance, say a variable is defined only once,
and has sixteen useful bits till a program point L1 and two useful bits thereafter then we
will create two W-SSA variables: one of size sixteen bits (live till L1), and another of size
two bits (live after L1). This gives a refined view of the bit usage, and helps reducing the
bit wastage during the variable packing phase. In this paper, we show that besides reduc-
ing the associated bit wastage, W-SSA form also aids in efficient packing and coalescing of
variables.
Efficient representation of bitwidth information is an important requirement for differ-

ent bitwidth-aware analysis including bitwidth-aware register allocation. Tallam and Gupta
have used leading and trailing bit representation (LTR) for bitwidth information, wherein
the width of a variable is represented by the start and end positions of the useful bits. We
extend this further, and use the powers-of-two representation (PoTR) for bitwidth informa-
tion - the sizes of the variables are always restricted to powers of two only. This requires
over-approximation of the sizes to the nearest next power of two (for example, three vari-
ables that require 5, 7 and 8 bits are all assigned 8 bits each). Such a scheme can result
in wastage of bits. Our experimental results show that the resulting wastage from such a
scheme is a small fraction (around 13%) of the total number of bits required. The main
advantage of PoTR is that it trivially leads to polynomial time optimal packing of variables
in bitwidth-aware register allocation [Coffman et al. 1987]. Note that, due to the incurred
bit wastage, the resulting packing may not be truly optimal.
As it can be easily seen, W-SSA form ensures uniform variable sizes, which makes for

a simpler packing algorithm. However, W-SSA comes at a cost of creating more variables;
while our packing algorithm does pack many variables, it still leaves some opportunities
arising out of packing of non-interfering variables. We show that coalescing is an important
aspect of variable packing, and propose a combined phase of variable coalescing and variable
packing. We would like to recap the terms packing and coalescing of variables. Packing refers
to combining two or more interfering variables so that the combined width is less than the
width of a physical register [Tallam and Gupta 2003]. Coalescing refers to combining two
or more non-interfering variables [Chaitin 1982]. Both packing and coalescing can be used
to reduce register pressure1 (and thus, improve the colorability of the interference graph)

1The number of colors needed to color an interference graph of a program is called the register pres-
sure [Muchnick 1997] for the program. Register pressure at any program point p is the number of live
variables at p.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

main() {
...
w1 = C1 & 0xffff;
w2 = C2 & 0xffff;
w3 = C3 & 0xffff;
w4 = C4 & 0xffff;
L1 = ((w1 * K1) >> 16);
L2 = ((w2 * K2) >> 16);
L3 = ((w3 * K3) >> 16);
L4 = ((w4 * K4) >> 16);

print L1 + L2 + L3 + L4;
}

(a)

(16,16)

(16,16)

(16,16)

(16,16)

(1
6,

16
) (16,16)

L1 L4

L3L2

w4

w3w2

w1 (16,16)

(16,16)

(16,16)

(1
6,

16
) (16,16)

(16,16)

(16,16)

(16,16) (16,16)(16,16)

(16,16) (16,16)

(b)

w4L3L4

w1w2L1 w3L2
(32,32)

(32,32)(3
2,

32
)

(c)

Fig. 1. (a) An example bitwidth sensitive program (taken from the bilint benchmark of the BITWISE
benchmark suite (b) its interference graph. C1, C2 ..., and K1, K2 ... are constants and do not contribute
to the nodes of the interference graph, and (c) the resulting interference graph after applying the packing
algorithm of Tallam and Gupta

in a program. To illustrate the significance of coalescing on the packing process, we present
a motivating example from the BITWISE benchmark suite.

Figure 1(a) shows a snippet from bilint benchmark (slightly modified to reduce complex-
ity) from the BITWISE benchmark suite [Ste] and the interference graph annotated with
the edge-weights [Tallam and Gupta 2003] is shown in Figure 1(b). An edge (n1, n2) has
an associated edge-weight of (x1, x2), if the variable n1 has at most x1 number of useful
bits while interfering with n2, and n2 has at most x2 number of useful bits while interfering
with n1. In this particular interference graph, every variable has 16 useful bits each.

In this interference graph shown in Figure 1(b), the variable packing algorithm of Tallam
and Gupta would pack at most two pairs of variables: Their technique packs two variables
(merges two connected nodes in the graph and then updates the edge-weights of the affected
edges), only if the resulting edge-weights are valid. An edge-weight (x1, x2) is considered
valid if none of x1 and x2 are larger than the word size; for the sake of illustration, in
this paper we take the word size to be 32. Say we start by packing w1 and w2, L3 and L4,
and w3 and L2. We can further follow up by packing w1w2 and L1, w4 and L3L4. The final
interference graph is shown in Figure 1(c). Further packing of variables is not possible, as
the resulting edge-weights would not remain valid (brief details about the Tallam Gupta
algorithm can be found in Section 2). This interference graph would require three registers.
Let us now compare this result with the combined phase of variable coalescing and packing
presented in this paper: Our approach would first coalesce w1 and L1 into w1L1, w2 and L2
into w2L2, w3 and L3 into w3L3, and w4 and L4 into w4L4. Next, we pack w1L1 and w2L2 into
a 32 bit variable, and w3L3 and w4L4 into another. We then invoke a traditional register
allocator algorithm which would use only two registers during the register allocation phase.
This example demonstrates the importance of coalescing on variable packing.
The main contributions of this paper include:

— an algorithm to transform a program in SSA form to W-SSA form.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

—the use of the powers-of-two representation for bitwidth information of W-SSA variables,
and using the optimal algorithm of Coffman et al [Coffman et al. 1987] for efficient packing,
while incurring a modest bit wastage.

— the problem of combined variable packing and coalescing. We identify it to be an NP-
complete problem (reduces trivially to variable coalescing) and present a heuristic for
combined variable packing and coalescing that further enhances the packing of variables.

— performance results to study the impact of variable packing and coalescing using BITWISE
benchmark [Ste] suite. Our experimental results show decreases in the number of variables
of up to 76.00% when compared to the original number of variables in the SSA form. This
reduction in the number of variables led to a significant reduction in dynamic spilling,
packing and unpacking instructions (upto 100% reduction compared to that arising from
the approach of Tallam and Gupta [Tallam and Gupta 2003]).

The paper is organized as follows. In Section 2, we first present an overview of the Tallam
and Gupta bitwidth aware register allocator. In Section 3, we describe program represen-
tation using W-SSA form, PoTR representation, and an optimal variable packing algorithm
that takes advantage of our representations. Section 4 presents our heuristic based algorithm
for the combined phase of variable packing and coalescing. We present our experimental re-
sults in Section 5. We discuss the related work in Section 6 and conclude in Section 7.

2. OVERVIEW OF THE TALLAM AND GUPTA REGISTER ALLOCATOR

In this section, we introduce the bitwidth aware global register allocation algorithm pre-
sented by Tallam and Gupta [Tallam and Gupta 2003]. The overall block diagram and the
algorithm for bitwidth aware register allocation by Tallam and Gupta are given in Figure 2
and Figure 3 respectively. The key components of the algorithm are:

—Determining widths of variables: (Step 1) First, bitwidth of a variable is represented using
the leading and trailing dead bits. Remaining middle bits are considered live and are not
explicitly expressed. We term this representation as LTR width representation. Secondly,
the authors propose a forward followed by a backward data flow analysis to determine
actual width of a variable at every program point. Both the data flow analysis algorithms
operate on a lattice over leading and trailing dead bit pairs. Note that, LTR ignores the
fact that some of the bits in the middle live bit section may be dead.

—Variable Packing: (Steps 2–9) This is an iterative algorithm that at each step packs a
pair of interfering variables into a single packing variable so that at no point their col-
lective width is greater than the available number of bits in a physical register (given
by the Maximum interference width (MIW) of the variables). Packing is performed on
the interference graph whose edges are annotated with LTR width information. As nodes
in the interference graph are packed, the LTR information for the packed variables are
computed on-the-fly using estimated maximum interference graph (EMIW) for efficiency
reasons. The packing algorithm tries to answer the following key question:
Key question:Given a set of variables and a constant k, does there exist a packing that
reduces the number of variables to k such that the width of no packing variable is greater
than the size of physical register.
This problem is shown to be NP-complete (by reducing it to a bin-packing problem), and
the authors present a heuristic to prioritize the variables (and construct the PriorityList)
to determine the order of packing.

— Intra-variable moves: (Step 10–11) After packing is done, intra variable move instructions
are added to the IR for packing and extracting bits. This may require rebuilding the
interference graph for the register allocation pass.

—Register allocation (Step 12): A graph coloring based register allocator is invoked to per-
form allocation, coalescing and assignment.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Packing

Information
Variable Packing

Bitwidth

Information

Bitwidth
Computation

Input
Program

Global Register
Allocation

Transformed

Programmove instr.
Insert

Fig. 2. Block diagram of the Tallam Gupta bitwidth aware register allocator.

Determine width of variables at various program points;1

Build the Interference graph;2

Associate labels to the edges of the interference graph based on the maximum3

interference width of two variables;
PriorityList = Construct a prioritized list of all the variables;4

while ¬PriorityList.empty() do5

n = PriorityList.removeTop();6

foreach node that n interferes, say n′ do7

if n and n′ can be packed together into a single physical register then8

Merge n and n′ to a single node in the interference graph ;9

Rename each packing variable and in the process introduce intra-register moves;10

Rebuild the interference graph if needed;11

Perform graph coloring based global register allocation;12

Fig. 3. Bit-aware global register allocation

In this paper, we present several enhancements to the variable packing phase and reuse the
rest of the components of the traditional bitwidth aware global register allocation algorithm.

3. IMPROVEMENTS IN VARIABLE PACKING

In this section, we propose two enhancements to variable packing. First, we describe a new
static single assignment (SSA) based program representation that splits the live ranges of
SSA variables into smaller fixed width W-SSA variables based on their widths at various
program points. The smaller live ranges of the fixed width W-SSA variables create more
opportunities for the packing algorithm. Second, we propose powers-of-two-representation
(PoTR) of width information for W-SSA variables. This leads to optimal packing at the cost
of modest bit wastage.

3.1. Width-SSA (W-SSA) form

A key property of a program represented in SSA form is that each variable is defined only
once (and thus have a fixed value throughout its life-time). This enables many powerful
analyses such as partial redundancy elimination, sparse conditional constant propagation,
and so on. Similar to the guarantee provided in an SSA program with respect to the value
of a variable, it is desirable to have a constant actual width per variable throughout its
lifetime. None of the current program representations that we are aware of gives such a
guarantee.

Bitwidth sensitive programs access different bit sections of a variable at different program
points, and thus induce different sets of useful bits at various program points. We use this
notion of useful bits to define the actual width of a variable.

Definition 3.1. Actual width: the set of contiguous bits of a variable that are actually
required (useful) for its use or definition at a program point2.

2We use width to refer to the starting and ending bits of the bit section of a variable as opposed to size
which represents the number of bits in the width representation. Note that, the actual width of variables at

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

L1: v = 232 − 1;
L2: print v;

· · ·
Ln: x = v & 0xFFFF;

(a)

L1 : v1 = 232 − 1;
L2 : print v1;

v2 = Ψ(v1, 32, 0, 15)
· · ·

Ln : x = v2 & 0xFFFF;
(b)

Fig. 4. A program and its corresponding W-SSA form

We present an intermediate program representation called width-SSA (W-SSA in short)
which guarantees that each variable present in the program (called a W-SSA variable) has
only one definition and has the same unchanged actual width. Figure 4 shows an SSA pro-
gram fragment and its corresponding W-SSA translation. The code fragment in Figure 4(a)
is in SSA form. Variable v requires 32 bits at L1 and L2. However, after L2 the program
uses only the lower 16 bits of v. That is, the actual width of v is not constant in this pro-
gram (in SSA form). Figure 4(b) shows an equivalent program in W-SSA form. The original
variable v has been split into two W-SSA variables v1 (which requires 32 bits) and v2 (which
requires 16 bits). The narrow width of v after the print statement is captured using a select
function Ψ that takes four arguments: (1) the source variable name; (2) the declared size
of the source variable; (3) starting bit position; (4) the ending bit position. The function
Ψ returns the required selection. The actual width of v1 and v2 are fixed throughout the
program. That is, the actual width of v1 is 32 bits and the actual width of v2 is 16 bits3

(the lower 16 bits of variable v).
Before we present the algorithm for W-SSA translation, we introduce some notations. We

use the set Vars to denote the set of SSA variables in the program and Nodes to denote the
set of nodes (statements) in the program. Note that, we do not treat the SSA φ nodes in
any special way compared to the other nodes. We use a map Use : Nodes 7→ P (Vars); for
any node n, Use(n) returns the set of variables used at n. Similarly, we use another map
Def : Nodes 7→ P (Vars); for any node n, Def(n) returns the (singleton) set of variables
defined at n in case of assignment statements, and an empty set otherwise. We also use the
dominator map Dom : Nodes 7→ P (Nodes); for any node n, Dom(n) returns the set of nodes
dominated by n.
In Figure 5, we present an algorithm to transform a given input program in SSA form

to W-SSA form. The input SSA program is derived from an IR in three address code. The
W-SSA translation algorithm consists of three phases:
(A) Rename-vars: This phase creates W-SSA variables by identifying each definition and

use of SSA variables, and computes the set wssaVars. New W-SSA variables are created
by breaking the live range of an SSA variable with varying actual widths. That is, the new
live ranges of the W-SSA variables corresponding to an SSA variable and the union of the
live ranges of the W-SSA variables matches the live range of the original SSA variable. In
Figure 5, Lines 3–5 replace each occurrence of an SSA variable v, with a new name (variable)
vi; v is called the root variable of vi. We use different literals u, v, w to denote different SSA
variables. We use the subscripted variables v1, v2, · · · , vi to denote the W-SSA variables of
v. We identify each def or use of a variable as a unique W-SSA variable4.

(B) Build-W-dominators: To represent the w-dominator (abbreviated for width-
dominator) information, we define the map WDom : (Nodes × wssaVars) 7→ P (Nodes ×

various program points can be computed using existing static bit-section analysis algorithms [Tallam and
Gupta 2003; Stephenson et al. 2000; Barik and Sarkar 2006].
3It can be seen that the statement Ln in Figure 4(b) can now be copy-coalesced by the coalescing pass of
register allocation with a copy instruction x = v2.
4This information can easily be refined using a global value numbering pre-pass. We leave this as future
work.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

wssaVars). For example, (n1, v1) ∈ WDom(n2, v2) indicates that W-SSA variable v1 at node
n1 is width-dominated by W-SSA variable v2 at node n2. We say (n1, v1) ∈ WDom(n2, v2) if
v2 can be used to extract the useful bits of v1, n2 strictly dominates n1 and there exists
no other (n3, v3) such that (n3, v3) ∈ WDom(n1, v1) and (n2, v2) ∈ WDom(n3, v3). A trivial yet
correct approach to build WDom information could have been to treat the definition of the
root SSA variable v as the w-dominator of all the W-SSA variables. This leads to longer
live ranges for the W-SSA variables. We avoid this by identifying the closest w-dominator.
Note that, the WDom map ensures that each W-SSA variable has at most one w-dominator
and the W-SSA variables defined at any node have no w-dominators.

To build w-dominators, we use an utility map ℜ : (wssaVars×Nodes) 7→ (Int× Int). For
any variable vi that is either defined or used at node n, ℜ(vi, n) returns the lower and upper
bit indices of the actual width of the variable vi at node n5. The actual size of vi at node n
with ℜ(vi, n) =(ll, ul) is ul− ll+1. Given two range pairs r1 = (ll1, ul1) and r2 = (ll2, ul2),
we say that r1 ⊆ r2 iff (ll2 ≤ ll1) ∧ (ul1 ≤ ul2). Similar to the Use and Def maps, we define
Usew and Defw maps to return the set of used and defined W-SSA variables, respectively.

In Figure 5, Lines 7–11 compute WDom information. For the example program shown in
Figure 4, WDom(L2, v1) = {(Ln, v2)}.
(C) Insert-Ψ-nodes: To extract the relevant bits for a variable v1 that is used at node n1,

we insert a Ψ node after n2, where (n2, v2) w-dominates (n1, v1)
6. Note that, we do not insert

Ψ nodes at the iterated dominance frontiers (IDF) [Muchnick 1997] unlike the insertion of
φ nodes in SSA. This is done to avoid bit wastage that might result from carrying the extra
bits from the IDF until the last use program point.

(D) Eliminate-useless-vars The above presented steps may lead to creation of W-SSA
variables that may have their live ranges and the actual widths completely contained within
another. We invoke a cleanup optimization phase to replace all such variables with smaller
range and width with the larger ones.

3.1.1. Complexity. The functions Rename-vars and Insert-Ψ-nodes have complexity linear in
the number of nodes. In the case of Build-W-dominators, though the function could iterate
over all the variables at each node; in reality, it needs to do so for only those variables that are
used at that program point. For a program in 3-address code, this will always be a constant.
Knowledge of this key point makes the complexity of the algorithm quadratic in the number
of nodes (O(n2)). The complexity of bit-section analysis (required for computing ℜ) and
dominators computation is O(n) [Tallam and Gupta 2003; Alstrup et al. 1996]. Hence, the
worst case time complexity of the overall algorithm in Figure 5 is O(n2).

3.1.2. Code Generation. Similar to the code generation for SSA form, code generation for
programs inW-SSA form would need to translate away the Ψ nodes. A typical (unoptimized)
translation of a Ψ operation is given using a sequence of bitwise operations:

v2 = Ψ(v1, s, ll, ul) =⇒
v3 = v1 ≪ s− ul − 1
v2 = v3 ≫ ul + ll + 1

where ≫ and ≪ represent the shift-right and shift-left operators respectively.

3.1.3. Correctness. We present an informal correctness argument. For the W-SSA transfor-
mation presented in Figure 5 to be correct, the following two points must hold.

5Since the input program is in SSA form, no node will both define and use the same variable. Also, since
the input SSA program is derived from a program in three address code, it will not have a case where a
node has multiple uses of a variable with different actual sizes.
6If the source v2 and destination v1 both refer to the same set of bits of variable v, the select operator Ψ
behaves like a copy operation. All these redundant copy instructions can be optimized away by a post pass
of copy propagation after our algorithm.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

function Rename-vars()1

begin2

wssaVars={};3

foreach n ∈ Nodes, v ∈ Use(n) ∪ Def(n) do4

replace the variable v at node n, with vi, where i is fresh;5

add vi to wssaVars;6

end7

function Build-W-dominators()8

begin9

WDom(n2, v2) = {(n1, v1)|10

n1 ∈ Nodes ∧ v1 ∈ wssaVars ∧ v2 ∈ Usew(n2) ∪ Defw(n2) ∧ v1 ∈ Usew(n1)∧
n1 ∈ Dom(n2) ∧ ℜ(v1, n1) ⊆ ℜ(v2, n2)∧
(¬∃n3 ∈ Nodes, v3 ∈ wssaVars : (n1, v1) ∈ WDom(n3, v3) ∧ (n3, v3) ∈ WDom(n2, v2)) };

end11

function Insert-Ψ-nodes()12

begin13

foreach n2 ∈ Nodes do14

if (n1, v1) ∈ WDom(n2, v2) then15

Let ℜ(v1, n1) = (ll1, ul1);16

Let ℜ(v2, n2) = (ll2, ul2);17

insert v1 = Ψ(v2, ul2 − ll2 + 1, ll1, ul1) after n2;18

end19

function Eliminate-useless-vars()20

begin21

foreach n2 ∈ Nodes do22

if (n2) ∈ Dom(n1) then23

Say two W-SSA variables vj and vi (with a common root variable) are used24

in n1 and n2 respectively;
if ℜ(vj , n1) ⊆ ℜ(vi, n2) then25

Replace every occurrence of vj with vi;26

Eliminate the Ψ node that defines vj ;27

end28

Fig. 5. Transforming a program to W-SSA form

—The W-SSA transformations preserves SSA form: Intuition: Each W-SSA variable has
exactly one w-dominator and thus is defined only once.

—W-SSA transformation does not alter the semantics of the program: Intuition: We do not
introduce any new live ranges. We only subdivide existing live ranges into contiguous live
ranges. Further, the union of the live ranges of the W-SSA variables matches the live range
of the root SSA variable.

3.2. Optimal variable packing algorithm with PoTR

Tallam and Gupta have proved the NP-completeness nature of the variable packing algo-
rithm. This is true where the actual width of a variable can have any value in the range 0 to
the statically defined size of the variable. If we restrict the actual width of variables to the
next-powers-of-two, then packing can be achieved optimally. In this section, we first present

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

to
ta

lV
ar

s

Variable sizes

Fig. 6. Distribution of actual widths of variables in BITWISE benchmark suite.

an empirical study of the bitwidth information in BITWISE benchmark set to demonstrate
the modest bit wastage due to powers-of-two representation (PoTR) for the actual widths
of W-SSA variables. Further, we discuss an optimal variable packing algorithm using the
PoTR representation.

3.2.1. Bitwidth Representation. Figure 6 depicts the distribution of the actual sizes of vari-
ables in BITWISE benchmark suite [Ste] using a bit-section analysis described in [Tallam
and Gupta 2003]. BITWISE benchmark suite represents a set of kernels from applications
in the embedded systems domain. We calculate the total number of variables having differ-
ent actual widths (totalV ars) that are live at any program point across all the benchmark
programs. We have plotted totalV ars against all possible sub-word variable sizes (1 bit –
31 bits, for 32 bit integers). One observation we make is that the distribution of actual
sizes are clustered around numbers which are powers of two. This interesting observation
is leveraged to represent the actual widths such that the actual size of each variable is a
power-of-two irrespective of the statically defined size of the variable; we call it the powers-
of-two-representation (PoTR). Such a representation could result in the wastage of bits as
each non-powers-of-two-sized-variable will be padded with extra bits to expand the size to
the next number that is a power of two. Such a wastage could be significant. However for
the above benchmarks, we calculated the resulting bit wastage (computed as a percentage
of extra bits required over the total number of bits) and found it to be around 13%. This
modest bit wastage is tolerable since PoTR representation can help answer the key ques-
tion presented in Section 2 in polynomial time (as shown in the reminder of this section)
provided the size of the physical register is a power of two, which is the case in practise.

3.2.2. Packing Algorithm. Our optimal variable packing algorithm is based on the optimal
bin-packing algorithm of Coffman et al.[Coffman et al. 1987]. Figure 7 presents the optimal
variable packing algorithm. It takes a set V of W-SSA variables in PoTR and outputs a
set Out containing the packing variables (the new packed variables). We assume that the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

function OptimalPacking(V)1

begin2

Queue Q = Sort V in the decreasing order of the sizes of the W-SSA variables;3

Out = empty set;4

v′ = create a new packing variable;5

used = 0; Avail(v′) = maxSize;6

while Q.size() 6= 0 do7

vi = Q.remove();8

packSetMap.add((vi, (v
′, used, used+ Size(vi)− 1))); // vi is packed inside9

v′

used = used+ Size(vi);10

Avail(v′) -= Size(vi);11

// Assert(Avail(v′) ≥ 0)
if Avail (v′) == 0 then12

Out.add(v′);13

v′ = create a new packing variable;14

used = 0; Avail(v′) = maxSize;15

if Avail (v′) 6= Size(v′) then Out.add (v′);16

return Out;17

end18

Fig. 7. Optimal variable packing algorithm for W-SSA variables in PoTR.

map Size : Vars 7→ Int returns the size of the W-SSA variable, and Avail : Vars 7→ Int
returns the number of available bits in the packing variable. The algorithm starts with a list
of W-SSA variables sorted in the decreasing order7 of their sizes and greedily packs them
into the current packing variable. The set packMapSet ⊆ wssaVars× (wssaVars×N ×N)
is used to maintain the packing information; (a, (b, i, j)) ∈ packMapSet indicates that the
input W-SSA variable a is packed in the packing variable b from the bit positions i to j. The
set Out is updated every time a packing variable gets full or when we break out of the while
loop. The complexity of the algorithm is bound by the complexity of sorting (O(n log n)).

3.2.3. Optimality of Packing Algorithm. Despite being greedy in nature, the algorithm pre-
sented in Figure 7 is optimal; optimality result derived from the optimality result of the
bin-packing problem where the bin and the objects have powers-of-two sizes [Coffman et al.
1987].
Our packing result is optimal modulo the bit-wastage resulting from PoTR representation

of actual widths. Additionally, the optimal variable packing algorithm only solves the bin-
packing problem without taking into consideration any possible constraints (interferences)
between variables (see [Irani and Leung 1996]).

3.3. Modifications to Bitwidth-aware register allocation

Figure 8 shows the new block diagram for bitwidth-aware register allocator as proposed
in this section. The blocks with double lines are our contributions over Tallam and Gupta.
Given bitwidth information from any bit-section analysis, we first translate the program into
W-SSA form and round the actual widths of W-SSA variables to the next-powers-of-two.
Subsequently, the variable packing algorithm takes as input the program in W-SSA form
and generates the new packing variables. The packing variables and the W-SSA variables

7Irrespective of the order (increasing or decreasing) in which the W-SSA variables are sorted in Line 3, the
algorithm would still lead to optimal packing.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

are eliminated in the Ψ elimination phase using additional intra-variable move instructions.
In the end, we invoke the global register allocator (as done by Tallam and Gupta).

4. IMPROVING THE VARIABLE PACKING PRECISION BY COALESCING

Coalescing of variables was introduced by Chaitin [Chaitin 1982] and has been studied
extensively in the context of register allocation. Coalescing of variables gets rid of some of the
avoidable move instructions in the generated code. There exists several variants of coalescing
- aggressive [Chaitin 1982], conservative [Briggs et al. 1994], optimistic [Park and Moon
2004], iterative [George and Appel 1996]. In the context of bitwidth-aware register allocation,
as discussed in Section 1, the example program shown in Figure 1(a) demonstrates the
significance of coalescing for better packing and in turn improved register allocation. In this
section, we present a combined phase of variable packing and coalescing (cPAC). We first
formulate the decision version of the cPAC problem and follow it up with an heuristic based
solution for the same.

Problem: Given an interference graph G = (V,E) and two integers k1 and k2, does there
exist a variable packing that can pack variables of V in k1 number of 32 bit variables, such that
at most k2 non-interfering variables are not coalesced.

As a special case to the above problem statement, if the actual width of every variable
is 32 bits, the problem trivially reduces to the graph coloring problem [Garey and Johnson
1979], which is NP-complete. Figure 9 presents a heuristic based solution to the combined
problem of coalescing and packing - it iteratively performs coalescing and follows it up with
packing. Coalescing is performed aggressively like Barik and Sarkar [Barik and Sarkar 2006].
The function SafelyAggressiveCoalesce is the entry point of our algorithm. It takes as

input a set V of W-SSA variables with PoTR representation of actual widths. The function
first initializes a “contains” map C; C(vi) returns the set of SSA root variables corresponding
to all the W-SSA variables contained in vi. Note that, because of packing and coalescing,
a single packing variable may contain multiple W-SSA variables. For each possible bucket
(denoted by the set of W-SSA variables having the same actual width), we iteratively co-
alesce all possible variables aggressively (BucketCoalesce) and then, pack pairs of these
coalesced variables into the next width bucket (PackBucket). Considering the complex-
ity of coalescing algorithm [Bouchez et al. 2007], we avoid presenting any particular order
among the variables ready for coalescing. In our implementation, the ‘SelectList’ function
returns a list variables seen in the syntactic order of the program. At the end of the loop,
BucketCoalesce is invoked to coalesce the variables of actual width 2r that takes advan-
tage of the non-interference among variables in the current bucket. At this point in the
algorithm, there is a possibility that in each bucket zero or more W-SSA variables do not
get packed and carried to another bucket (see the description of PackBucket). To coalesce
and pack these variables (across buckets), we invoke the function CrossBucketCoalesce
followed by OptimalPacking algorithm (Figure 7).
BucketCoalesce: In each bucket, we try to aggressively coalesce pairs of variables that

do not interfere. We use a function SelectList : wssaVars× Int 7→ P (wssaVars); SelectList

Optimal Packing
EliminatePacking

Information move instr.
Insert

Bitwidth
Computation

Input Program
in SSA form

Global Register
Allocation

Transformed

Program

Rename
Variables

Build Insert

W−Dominators
Information

Bitwidth

Program in

Ψ nodes

Ψ nodes

W-SSA form

Fig. 8. Block diagram of the improved bitwidth aware register allocator.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

function SafelyAggressiveCoalesce(V)1

begin2

foreach vi ∈ V do C(vi) = {root variable of vi};// Initialization3

Say the max size of any variable be k = 2r;4

foreach i = 0; i < r; i = i+ 1 do5

BucketCoalesce(i); PackBucket(i);6

BucketCoalesce(V, r); CrossBucketCoalesce(V, 0, r − 1); OptimalPacking(V);7

end8

function BucketCoalesce(V, i)// Coalesce in bucket i.9

begin10

Worklist w = SelectList(V, i); // all the 2i sized variables from V11

CoalesceWorkList(w);12

end13

function CoalesceWorkList(V,w)14

begin15

while ¬w.empty() do16

vi = w.removeTop() ; // Removes one element17

if ∃ui ∈ w ∧ (ui, vi) 6∈ Interf then18

// Coalesce ui, vi.
w.remove(ui); V.remove(vi); V.remove(ui);19

x = create a new var; w.add(x);V.add(x);20

C(x) = C(vi) ∪ C(ui); UpdateInterf(vi, x); UpdateInterf(ui, x);21

end22

function PackBucket(V, i)// Pack variables of size 2i23

begin24

Worklist w = SelectList(V, i);25

while ¬w.empty() do26

vi = w.removeTop(); // Removes one element.27

if ∃ui ∈ w ∧ C(vi) ∩ C(ui) == {} then28

Assert(vi, ui) ∈ Interf;29

w.remove(ui);30

x = create a new var of size 2i+1 ; V.add(x);31

C(x) = C(vi) ∪ C(ui) ; UpdateInterf(vi, x); UpdateInterf(ui, x);32

end33

function CrossBucketCoalesce(V,m, n)34

begin35

Worklist w = emptyList;36

foreach i = m; i ≤ n; i++ do w.add(SelectList(V, i));37

CoalesceWorkList(w);38

end39

function UpdateInterf(vi, x)40

begin41

foreach (vi, ui) ∈ Interf do42

Interf = Interf − {(vi, ui), (ui, vi)}; Interf = Interf ∪ {(x, ui), (ui, x)};43

end44

Fig. 9. Combined Packing and Coalescing algorithm.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

(V, i) returns a set (represented as a worklist) of variables from V , with actual width 2i.
The set Interf contains the set of all interfering pairs of variables. For each pair of non-
interfering variables (vi, ui), we replace the pair with a coalesced variable that (a) interferes
with all the variables that vi and ui interfere with, and (b) contain all the variables that vi
and ui contain. For the coalesced variable, Line 21 updates the C map and the interference
information (using the function UpdateInterf).
PackBucket: In this function, we try to pack pairs of variables of actual width 2i into a

variable of actual width 2i+1. Note that, since we have already performed aggressive coa-
lescing for the current bucket, every chosen pair of variables interfere. Hence, the assertion
of Line 29 in the code listing holds. We pack two variables only if their “contained” W-SSA
variables do not share any common root variables. The reason is that, if two W-SSA vari-
ables v1 and v2, generated from a root variable v are packed into a single packing variable
then we would be wasting more bits. After packing is completed, Line 32 updates C map
and the Interf set (using the function UpdateInterf).

4.1. Complexity

Each invocation of BucketCoalesce takes O(|V |2) time, where V is the set of W-SSA
variables in the program. Note that Interf can be represented as a two dimensional array
and then the insertion, search and delete operations all can be done in constant time. It
may also be noted that function UpdateInterf takes O(|V |) time. Function PackBucket
takes O(|V |2) time. Since r is a constant in practice, the worst case time complexity of our
algorithm is O(|V |2).

4.2. Example

We now consider the example shown in Figure 1(b) and apply the algorithm presented in
Figure 9. The transformation sequence, for one bucket (size 16) is shown in Figure 10. Note
that unlike in Figure 1(b), we avoid showing the edge-weights (which is required for the
approach of Tallam and Gupta) and instead show the size of the variables as an annotation
on each node. In the fifth invocation of BucketCoalesce function (for i = 4), we coalesce
w1 and L1 into w1L1, w2 and L2 into w2L2, w3 and L3 into w3L3, and w4 and L4 into w4L4.
Next we invoke the PackBucket function and pack w1L1 and w2L2 into a 32 bit variable
w1L1w2L2, and w3L3 and w4L4 into another 32 bit variable w3L3w4L4. This interference
graph will require two physical registers during register allocation pass.

4.3. Overall Bitwidth-aware register allocation

Figure 11 depicts the final block diagram for the bitwidth-aware register allocator using the
algorithm presented in this section. It is similar to the one presented in Section 3, except
that the optimal packing algorithm has been replaced by a combined phase of coalescing
and packing.

L4
(16)

L3
(16)L2

(16)

w1
(16)

w4
(16)

w3
(16)

w2
(16) (16)

w2L2

(16)
w1L1 (16)

w4L4

(16)
w3L3

w1L1w2L2

(32)

L1
(16)

(32)
w3L3w4L4

Coalesce Packing

Fig. 10. Combined phase of coalescing and packing in action

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

EliminatePacking

Information move instr.
Insert

Bitwidth
Computation

Input Program
in SSA form

Global Register
Allocation

Transformed

Program

Rename
Variables

Build Insert

W−Dominators
Information

Bitwidth

Program in

and coalescing
Combined packing

Ψ nodes

Ψ nodes

W-SSA form

Fig. 11. Block diagram of the new bitwidth aware register allocator using the combined packing and
coalescing algorithm.

4.4. Safety in cPAC

While coalescing can lead to better packing of variables, arbitrary coalescing may produce a
large number of packing variables after packing. We first present a safety criteria and argue
that our combined coalescing and packing algorithm meets the safety criteria.

Definition 4.1. Safety criteria: A combined coalescing and packing algorithm (vCP) is
safe with respect to a packing algorithm (vP) if for every input program P : n1 ≤ n2, where
n1 is the number of packing variables generated by vCP for P , and n2 is that generated by
vP for P .

Theorem 4.2. The SafelyAggressiveCoalesce algorithm is safe with respect to the
OptimalPacking algorithm shown in Figure 7.

Proof. (Sketch)
For an input program P , the number of packing variables that are produced after
OptimalPacking is directly related to the sum of the total number of bits Σ(V) of the
variables present in V . This results in ⌈Σ(Vs)/M⌉ number of packing variables, where M is
the maximum possible width of a packing variable and Vs is the set of variables for a given
size s.
For the same program P , we invoke SafelyAggressiveCoalesce(Vs). Let us assume

that the set of variables considered by the OptimalPacking (invoked in Line 7 of Figure 9)
is given by Ve. It can be easily seen that Σ(Vs) ≥ Σ(Ve). That is, any invocation of the
coalescing phase would never increase the total number of bits, because any successful
invocation of the coalescing function (predicate in Line 18 succeeds) would decrease it,
and unsuccessful coalescing operation would leave it unchanged. Similarly, the PackBucket
function has no impact on the total number of bits. Thus, ⌈Σ(Vs)/M⌉ ≥ ⌈Σ(Ve)/M⌉, and
hence, SafelyAggressiveCoalesce would not result in more number of packing variables
than OptimalPacking when invoked on the same input program. Hence the proof.

4.5. Discussion

Note that, the safety criteria does not take into account the optimality of our cPAC algorithm
in terms of the total number of coalesced variables and their actual widths. This is done
deliberately to keep the issues of optimality and safety separate. We ensure that the absence
of optimality does not lead to any amount of degradation in packing for the following phase.
Another point related to register allocation is that the packing phases of cPAC algorithm

invoked via PackBucket do not affect the register pressure at any program point (only
interfering variables of equal actual width are packed). However, the coalescing phases
(invoked via BucketCoalesce, and CrossBucketCoalesce) and the global packing phase
OptimalPacking may increase the register pressure. This can be easily overcome by modify-
ing the coalescing and global packing algorithms with the help of a predicate that conserva-
tively checks if the coalescing/packing under consideration increases the register pressure of
the program and performs coalescing and packing, only in cases where the register pressure

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

is not increased. We use a two simple heuristics (that do not adversely affect the complexity
of the algorithm) to address this issue:

—We only coalesce and pack non simple nodes. A node is simple, if its degree is less than the
total number of available physical registers. This way, we do not pack or coalesce variables
which are guaranteed to get a register.

—We modify the CoalesceWorkList function, such that we coalesce variables with highest
dynamic total cost first. We define dynamic total cost as the combined dynamic cost of
storing variables to memory, loading variables from memory, and packing and unpacking
of packed variables.

We use these heuristics in our empirical evaluation to establish the effectiveness in our
introduced phases.

5. EXPERIMENTAL RESULTS

We now report on the results obtained from our prototype implementation of the optimal
packing described in Section 3 and the combined packing and coalescing phase described in
Section 4. The goal of this section is two fold: (a) to evaluate the PoTR and W-SSA repre-
sentation. (b) to empirically establish the impact of coalescing on packing. The benchmarks
were all taken from the BITWISE benchmark set [Ste]. All implementations were carried
out in GCC 4.1 framework targeted to x86 platform. We have tested our analysis at -O2
level of optimization of gcc. In our implementation, we avoid rounding the widths and just
use a greedy packing on a sorted list of variables. Note that, this strategy will never do
worse than the case where the widths are rounded off, and in some cases may do better.
The changes to the (basic) algorithms in Figure 7 and Figure 9 are trivial and we only
present differences from the basic versions.

— In Figure 7, the ‘Assert’ after line 10 is eliminated.
— In Figure 7, line 11 is replaced with

‘if Avail (v′) ≤ 0 then’
— In Figure 9, line 3 is replaced with

‘Say the max size of any variable be k ≤ 2r; // for the smallest r.’

Figure 12 compares the performance of packing and coalescing algorithms described in this
paper against the packing algorithm described in [Tallam and Gupta 2003]8. The bitwidth
information for all the variables across all program points is computed using the static anal-
ysis described in [Tallam and Gupta 2003] and is provided as an input to all the algorithms.
We have abbreviated the Tallam and Gupta “packing phase” with PKG, “optimal packing
phase” with OPK, and the “combined packing and coalescing phase” with CPC.
For our packing and coalescing algorithms, we present the input programs inW-SSA form.

The number of W-SSA variables are shown in column 5 of Figure 12. Since multiple W-SSA
variables are created for varying sizes of an SSA variable, the number of W-SSA variables
generated (column 5) is either equal to or more than the number of original SSA variables
(column 2). On average the number of W-SSA variables were found to be around 40% more
than the number of SSA variables.

Comparing the number of packing variables obtained by using [Tallam and Gupta 2003]
(column 3) and the packing algorithm described in Section 3 (column 6), it can be seen
that the performance of our packing algorithm is comparable. However, Tallam and Gupta
is consistently performing better. Further investigations revealed another interesting issue
in our packing algorithm: in edge detect benchmark we found that one pseudo variable
had initial size of 16 bits, and subsequent size of 32. This resulted in the creation of two

8We have avoided the compile time numbers as we did not see any visible deterioration in compile time.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

W-SSA variables and our algorithm ended up using two packing variables, whereas Tallam
Gupta approach uses a single 32 bit variable across all program points. This reinforces our
original motivation for combined coalescing and packing algorithm to enhance bitwidth-
aware register allocation algorithm performance.
The coalescing and packing algorithm described in Section 4 significantly improves the

number of (W-SSA) packing variables. In the best case, it improves up to 95.1% in column
10 of Figure 12 (for life benchmark). The geometric average improvement was found to be
62.99%. It can also be seen that our combined coalescing and packing algorithm significantly
outperforms the variable packing obtained by Tallam and Gupta (up to 95.1%, geometric
average 60.32%). We conclude from such an evaluation that coalescing has significant impact
on the performance of packing algorithm in bitwidth-aware register allocation.
To establish the real benefit of packing, we define a metric dynamic total cost as the

total cost of the dynamic spill loads, spill stores, packing, and unpacking; the execution
frequencies are obtained by profiling the applications9. Now, we compare the performance
of our proposed algorithm by studying the impact of our algorithm and that of Tallam and
Gupta on dynamic total cost.
For each of the benchmarks discussed in Figure 12, we compare, in Figures 13 and 14,

the impact on dynamic total cost in the presence of three packing algorithms10: (i) pack-
ing algorithm of Tallam and Gupta (TG - red line). Since we are comparing Tallam and
Gupta with our packing algorithm that includes aggressive coalescing, we invoked a post
pass of aggressive coalescing [Budimlic et al. 2002] and to be fair used the lower11 of the
following two dynamic total costs: TallamGupta + aggressive coalescing, and stand alone
TallamGupta. (ii) Our combined phase of coalescing and packing (cPAC - green line). (iii)
Our combined phase of coalescing and packing supported by the heuristic discussed in Sec-
tion 4.5. (cPACH - blue line). For varying number of available registers (6, 8, 10, 12, 16,
18), we plotted the dynamic total cost for each of the three methods. We can make the
following observations:

— For four benchmarks TG performs better for fewer number of registers (adpcm and bub-
blesort for six registers, life up to ten registers, and motiontest to eight registers). For
the first two of these benchmarks, cPAC and cPACH catchup and outperform TG in the
presence of 8 or more registers. For the later two benchmarks, cPAC and cPACH catchup
with TG for higher number of available registers. The reason behind this is that our greedy
heuristic mentioned in Section 4.5 does not currently take into account the packing and
unpacking overheads explicitly (it primarily focuses on register pressure). Note that, both
cPAC and cPACH lead to much better spill cost compared to TG (and also the total
number of coalesced and packed variables as shown in column 8 of figure 12) for these
benchmarks at lower registers, but the cost of packing and unpacking mitigates these spill
cost benefits. This we believe can be easily fixed by extending our current heuristic to
coalesce while also controling the packing and unpacking costs.

— For the convolve benchmark all the three algorithms incur in zero cost (and hence all the
three curves are superimposed on top of one another).

— For blint, cPAC and TG incur the same cost and thus are superimposed. In jacobi, cPAC
and cPACH are superimposed on each other as our greedy heuristic does not find enough
opportunities to improve the code.

—Overall both cPAC and cPACH outperform TG for most of the observed points.

9For the benchmark ‘softfloat’, the base gcc compiler was giving a SEGFAULT while collecting the profile
information. We had to disable the profiling for one function (estimateDiv64To32) to include the results for
the benchmark; we instead used static frequencies for the loops in the function.
10In practise all the spills may not be equal and depending on the architecture the load and store costs may
differ.
11Note: coalescing may increase the total dynamic cost under some circumstance.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

TG Our algorithms. Sec 3, Sec 4 Overall impr
benchmark # # % # #vars % #vars % % %

orig vars less W-SSA after less after less less less
SSA after over vars opt over CPC over over over
vars PKG orig OPK W-SSA +OPK W-SSA orig TG

adpcm 26 19 26.9 59 34 42.4 12 79.7 53.8 36.8
bilint 12 11 8.3 17 10 41.2 3 82.4 75.0 72.7
bubblesort 20 18 10.0 30 20 33.3 8 73.3 60.0 55.6
convolve 8 8 0.0 15 10 33.3 4 73.3 50.0 50.0
edge detect 104 103 1.0 130 110 15.4 26 80.0 75.0 74.8
histogram 29 28 3.4 44 29 34.1 8 81.8 72.4 71.4
jacobi 36 32 11.1 60 50 16.7 11 81.7 69.4 65.6
levdurb 37 37 0.0 57 45 21.1 13 77.2 64.9 64.9
life 47 47 0.0 68 49 27.9 12 82.4 74.5 74.5
median 33 33 0.0 47 39 17.0 13 72.3 60.6 60.6
motiontest 12 12 0.0 16 13 18.8 9 43.8 25.0 25.0
mpegcorr 30 29 3.3 44 33 25.0 10 77.3 66.7 65.5
newlife 62 61 1.6 87 71 18.4 13 85.1 79.0 78.7
sha 610 610 0.0 618 616 0.3 30 95.1 95.1 95.1
softfloat 581 534 8.1 878 758 13.7 243 72.3 58.2 54.5

Fig. 12. Comparison of our algorithms presented in Section 3 and Section 4 vs. variable packing algorithm
developed by Tallam and Gupta (TG) for optimized code (using -O2).

—cPACH performs better cPAC on nearly all of the benchmarks; this signifies the relevance
of our heuristic.

— It can be seen that for each benchmark, all the three curves flatten out for increasing
number of registers. The flattened portions corresponds to the packing and unpacking
cost which is incurred independent of the number of registers; the spill load/store cost
becomes zero with increasing number of registers.

—Owing to improved packing of variables we incur less spill cost and slightly higher pack-
ing/unpacking cost.

6. RELATED WORK

Traditional SSA form [Cytron et al. 1991] keeps track of definition and uses of scalar vari-
ables. Several research activities have undergone in extending traditional SSA form to rep-
resent various attributes (Concurrent-SSA [Lee et al. 1997], Array-SSA [Knobe and Sarkar
1998]) in a particular domain. Our W-SSA form is another such representation that splits
original program live ranges into smaller ones which have unique width throughout their
life time. We have shown that such a representation aids in efficient variable packing.
Recently, narrow width values have caught the attention of researchers, and they have

explored both hardware [Ergin et al. 2004; Lipasti et al. 2004; Kondo and Nakamura 2005],
and compiler assisted [Tallam and Gupta 2003] techniques to pack multiple values into
a single physical register. In this paper, we take inspiration from the compiler assisted
techniques of Tallam and Gupta [Tallam and Gupta 2003] and present new efficient measures
to pack variables containing subword data in an efficient way.
Tallam and Gupta [Tallam and Gupta 2003] introduced the notion of bitwidth-aware

register allocation in the compilers. They provide a heuristic to pack narrow width data
that uses interference graph annotated with edge labels based on the maximal interference
of variables. Interfering variables are packed iteratively until no more packing can be done.
New edge labels are computed on-the-fly using heuristic estimates that obey intermediate
value theorem [Tallam and Gupta 2003]. A new set of estimates are proposed in [Barik and
Sarkar 2006] that improve the packing algorithm. Both [Barik and Sarkar 2006] and [Tallam

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Fig. 13. Plot I: Comparison of dynamic total cost (= spill load cost + spill store cost + packing cost
+ unpacking cost). Plots captions from left to right: adpcm, bilint, bubblesort, convolve, edge detecteps,
histogram, jacobi, and levdurb. We assume the relative cost of a spill load or a store instruction is 4 compared
to the cost of pack/unpack instruction is 1; this is consistent with the costs assumed by the underlying gcc
framework for different analyses and transformations.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Fig. 14. Plot II: Comparison of dynamic total cost (= spill load cost + spill store cost + packing cost +
unpacking cost). Plots captions from left to right: levdurb, life, median, motiontest, mpegcorr, newlife, sha.

and Gupta 2003] pack variables without coalescing them during packing, which our approach
does.

Coffman et la [Coffman et al. 1987] discuss the properties of powers-of-two in bin pack-
ing problem. Bar-Noy et al. [Bar-Noy et al. 2004] discuss optimal solutions for windows

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

scheduling problem with powers of two windows. In this paper, we apply a similar solution
to variable packing.
Coalescing is well studied in the context of register allocation: conservative coalescing

by [Briggs et al. 1994], aggressive coalescing by [Budimlic et al. 2002], optimistic coalescing
by [Park and Moon 2004], and iterative coalescing by [Appel and George 2001]. Bouchez
et al. [Bouchez et al. 2007] present a good account of the complexity of different variations
of the coalescing problem. To our knowledge, coalescing in the presence of narrow width
data has not been studied in the literature. Our paper addresses this issue in the presence
of W-SSA form and powers-of-two representation and provides a heuristic for a combined
packing and coalescing phase.

7. CONCLUSION AND FUTURE WORK

In this paper, we have presented improvements to the variable packing algorithm of the
bitwidth-aware register allocation algorithm proposed by Tallam and Gupta [Tallam and
Gupta 2003]. We propose modifications to both bitwidth representation and program rep-
resentation via PoTR and W-SSA respectively, to realize the improvements. We show that
variable coalescing is an important ally of variable packing and present an iterative aggres-
sive coalescing based packing algorithm. Our experimental results show decreases in the
number of variables of up to 76.00% when compared to the original number of variables in
the SSA form. Our approach led to a significant reduction in dynamic spilling, packing and
unpacking instructions. We get these improvements at the cost of transforming the input
program into W-SSA form and reverting it back. We are currently exploring how other
optimizations such as memory coalescing may be able to take advantage of code in W-SSA
form.
Rigorous performance evaluation of our generated optimized code on a cycle accurate

simulator that admits efficient packing/unpacking instructions would be one of the key
challenges that we leave as future work. Another interesting future work is to extend our
variable packing algorithm to efficiently pack in registers with varying sizes; this is important
for architectures like Intel that allow efficient access of partial registers : different parts
of the EAX can be accessed as AX (lowerMost 16 bits), AL (lowermost 8 bits) or AH
(bits 8–16). Another interesting future work is the possibility of directly incorporating our
algorithm inside the register allocation pass instead of keeping them separate. Since both
these components have a phase ordering issue between them, such a combined approach
might deliver better results.

Acknowledgements

The work is partially supported by the New Faculty Seed Grant, funded by IIT Madras
CSE/11-12/567/NFSC/NANV. We would like to thank the anonymous reviewers for their
comments and suggestions on the past submissions related to this paper. In particular, the
idea about the greedy approach to improve the actual packing (described in the beginning
of section 5), and the basic intuition behind the Eliminate-useless-vars were provided by
the reviewers of ACM TACO.

REFERENCES

Bitwise benchmarks. http://www.cag.lcs.mit.edu/bitwise/bitwise benchmarks.htm.

Alstrup, S., Lauridsen, P. W., and Thorup, M. 1996. Dominators in linear time. DIKU technical re-
port 35.

Appel, A. W. and George, L. 2001. Optimal spilling for CISC machines with few registers. In SIGPLAN’01
Conference on Programming Language Design and Implementation. 243–253.

Bar-Noy, A., Ladner, R. E., and Tamir, T. 2004. Windows scheduling as a restricted version of bin pack-
ing. In SODA ’04: Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms.
224–233.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Barik, R. and Sarkar, V. 2006. Enhanced bitwidth-aware register allocation. In CC. 263–276.

Bouchez, F., Darte, A., and Rastello, F. 2007. On the complexity of register coalescing. In International
Symposium on Code Generation and Optimization. 102–114.

Briggs, P., Cooper, K. D., and Torczon, L. 1994. Improvements to graph coloring register allocation.
ACM Transactions on Programming Languages and Systems 16, 3, 428–455.

Budimlic, Z., Cooper, K. D., Harvey, T. J., Kennedy, K., Oberg, T. S., and Reeves, S. W. 2002. Fast
copy coalescing and live-range identification. SIGPLAN Not. 37, 5, 25–32.

Chaitin, G. J. 1982. Register allocation and spilling via graph coloring. SIGPLAN Notices 17, 6, 98–105.

Coffman, Jr., E. G., Garey, M. R., and Johnson, D. S. 1987. Bin packing with divisible item sizes. J.
Complex. 3, 406–428.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991. Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions on Programming
Languages and Systems 13, 4, 451–490.

Ergin, O., Balkan, D., Ghose, K., and Ponomarev, D. 2004. Register packing: Exploiting narrow-width
operands for reducing register file pressure. In Proceedings of the 37th annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, Washington, DC, USA, 304–315.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory of NPCom-
pleteness. Freeman.

George, L. and Appel, A. W. 1996. Iterated register coalescing. ACM Transactions on Programming
Languages and Systems 18, 3, 300–324.

Irani, S. and Leung, V. 1996. Scheduling with conflicts, and applications to traffic signal control. In
Proceedings of the seventh annual ACM-SIAM symposium on Discrete algorithms. 85–94.

Knobe, K. and Sarkar, V. 1998. Array SSA form and its use in parallelization. In Symposium on Principles
of Programming Languages. 107–120.

Kondo, M. and Nakamura, H. 2005. A small, fast and low-power register file by bit-partitioning. In
Proceedings of the 11th International Symposium on High-Performance Computer Architecture. IEEE
Computer Society, Washington, DC, USA, 40–49.

Lee, J., Midkiff, S. P., and Padua, D. A. 1997. Concurrent static single assignment form and constant
propagation for explicitly parallel programs. In Languages and Compilers for Parallel Computing. 114–
130.

Lipasti, M. H., Mestan, B. R., and Gunadi, E. 2004. Physical register inlining. In Proceedings of the 31st
annual international symposium on Computer architecture. IEEE Computer Society, Washington, DC,
USA, 325.

Muchnick, S. S. 1997. Advanced compiler design and implementation. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Park, J. and Moon, S.-M. 2004. Optimistic register coalescing. ACM Trans. Program. Lang. Syst. 26, 4,
735–765.

Stephenson, M., Babb, J., and Amarasinghe, S. 2000. Bitwidth analysis with application to silicon
compilation. In ACM SIGPLAN Conference on Programming Language Design and Implementation.
Vancouver, British Columbia.

Tallam, S. and Gupta, R. 2003. Bitwidth aware global register allocation. In Proceedings of the 30th
Symposium on Principles of programming languages. 85–96.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January YYYY.

