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Parallel libraries such as OpenMP distribute the iterations of parallel-for-loops among the threads, using a
programmer-specified scheduling policy. While the existing scheduling policies perform reasonably well in
the context of balanced workloads, in computations that involve highly imbalanced workloads it is extremely
non-trivial to obtain an efficient distribution of work (even using non-static scheduling methods like dynamic
and guided). In this paper, we present a scheme called COst aware Work Stealing (COWS) to efficiently extend
the idea of work-stealing to OpenMP.

In contrast to the traditional work-stealing schedulers, COWS takes into consideration that (i) not all
iterations of a parallel-for-loops may take the same amount of time. (ii) identifying a suitable victim for
stealing is important for load-balancing, and (iii) queues lead to significant overheads in traditional work-
stealing and should be avoided. We present two variations of COWS: WSRI (a naive work-stealing scheme
based on the number of remaining iterations) and WSRW (work-stealing scheme based on the amount of
remaining workload). Since in irregular loops like those found in graph analytics, it is not possible to statically
compute the cost of the iterations of the parallel-for-loops, we use a combined compile-time + runtime
approach, where the remaining workload of a loop is computed efficiently at runtime by utilizing the code
generated by our compile-time component. We have performed an evaluation over seven different benchmark
programs, using five different input datasets, on two different hardware across a varying number of threads;
leading to a total of 275 number of configurations. We show that in 225 out of 275 configurations, compared to
the best OpenMP scheduling scheme for that configuration, our approach achieves clear performance gains.

CCS Concepts: • Software and its engineering→ Compilers; Runtime environments.
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1 Introduction
With multicore systems going mainstream, efficient parallel computing has become a necessity
rather than a choice. One common pattern seen in modern parallel applications is loop-level
parallelism. Almost all the modern task-parallel languages, like OpenMP [27], Cilk [1], Chapel [6],
HJ [5], X10 [7], and others, have built-in support for parallel-for-loops, which are used by the
programmers to parallelize the main computing tasks of the applications. Thus, the performance of
the parallel applications typically depends on that of the parallel-for-loops, which in turn depends
on how the iterations of the loop are distributed among the runtime threads; this problem is
commonly known as the loop-scheduling problem. One of the common optimization techniques of
loop-scheduling is to ensure that load-imbalance between the threads is minimized.
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1 #pragma omp parallel

2 {

3 #pragma omp for schedule(SCHEDULING_METHOD)

4 for (int i = 0; i < g->N; i++) {

5 node* cur = elem_at (&g->vertices , i);

6 p = cur ->data;

7 for (int j = 0; j < cur ->degree; j++) {

8 node* neighbor=elem_at (&cur ->neighbors ,j);

9 neighbor_p = neighbor ->data;

10 /*Some work involving p and neighbor_p */}}}

Fig. 1. A typical pattern found in many IMSuite kernels.

In regular loops, where work done in each iteration is comparable and mostly utilizes a regular
data access pattern, achieving a good load balance is relatively easy. However, when with irregular
loops, the loop scheduling problem becomes very challenging as illustrated in the following example.
Figure 1 shows a typical pattern (in C+OpenMP) found in many IMSuite [13] kernels and

many graph analytics kernels. At Line 1, the omp parallel pragma creates a team of threads, to
concurrently execute the parallel-region (Lines 2-10). At Line 3, the omp for pragma defines a
work-sharing construct (parallel-for-loop) that distributes the iterations of the parallel-for-loop
among the team of threads (using a user chosen scheduling method). Thus, in Line 4, the parallel-
for-loop has g->N number of independent iterations to be distributed among the team of threads.
Even though every iteration of the loop executes the same code, the time to execute each iteration
depends on the serial loop at Line 7. Since the value of cur->degree is input dependent and varies
with different values of i, it becomes hard to identify an optimal schedule for such parallel-for-loops,
especially when the value of the degree field of the vertices varies significantly. For example, for
the YouTube dataset (discussed in Section 6) the degree of vertices varies between 1 to 28800. This is
a typical case with all the power-law graphs [37], a highly important type of input; some examples
of power-law graphs include: twitter (and other social media) connection graphs, citation networks,
web-graphs, and so on [23].

Loop-scheduling is a NP-hard problem and there have been various approaches proposed in the
past [4, 24, 25] to tackle this problem. Over the past decade or so, there have been many performance
critical applications using irregular parallel loops, which bring in additional challenges for loop-
scheduling. Some of the current approaches to derive performance in application with irregular
parallel loop include static scheduling [27], loop-chunking [25], deep chunking [29], dynamic
and guided scheduling [27], work-stealing [1], and so on. In static scheduling, loop-chunking
and deep-chunking, the iterations of the loop are distributed among the threads, before the loop
starts executing. While such a scheme incurs very low overheads, it suffers from the fact that
once the iterations are assigned to any thread, they are not reassigned to another thread, even
if the latter thread has finished executing its assigned list of iterations. This may cause a fair
amount of load-imbalance. Recently, Booth and Lane [3] presented a case for a randomly chosen
victim based scheme of work-stealing scheduling (with dynamic chunk-size) for OpenMP and
show that its performance is comparable to that of dynamic/guided schemes of OpenMP. These
dynamic and guided scheduling schemes of OpenMP and the popular work-stealing scheme allow
the iterations to be distributed at runtime, they suffer from multiple drawbacks: (1) they incur a
fair amount of overhead to maintain the work-queues (for example, Nandivada et al. [25] show
that the work-stealing runtime performs much worse than the simple block-chunked code), (2)
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identifying the optimal block-size is non-trivial for irregular loops, (3) once a set of iterations have
been assigned to a thread, they cannot be reallocated based on the actual workload.
To address these issues, in this paper, we propose a scheme that efficiently extends the idea of

work-stealing to OpenMP called COst aware Work Stealing (COWS). COWS gives us the best of
both worlds: the low overheads of static scheduling and dynamic load balancing of workstealing.
We present two variations of COWS: work-stealing based on remaining iterations (WSRI) and

work-stealing based on remaining workload (WSRW). For WSRI, we maintain the remaining
iterations for each thread in an efficient data-structure. ForWSRW, we use a mixed compile-time and
runtime approach: the compile-time analysis emits application-specific code to efficiently estimate
the workload (at runtime), and the remaining workload is computed at runtime by executing this
code. In WSRI and WSRW, our modified work-stealing scheduler uses the remaining iterations and
remaining workload, respectively, to choose a suitable victim. Even though we present the idea
of COWS in the context of OpenMP, it can be used in other parallel languages (such as Cilk, X10,
Chapel, and so on) that support parallel-for-loops.
Our Contributions:
• We propose a new technique called COWS for load balancing irregular parallel loops. COWS
supports two different schemes that differ on how the victims are chosen: work-stealing based on
remaining iterations (WSRI) and work-stealing based on remaining workload (WSRW).
• We propose a queue-free cost-aware work stealing algorithm to choose the victim for work-
stealing. This is based on an efficient scheme to maintain the remaining iterations for each thread.
• We have implemented the static compiler component of COWS (relevant for WSRW) in the
IMOP compiler framework and the runtime component (relevant for both WSRI and WSRW) in
libgomp a shared library for OpenMP in GCC. We have studied the performance of COWS on seven
popular shared memory kernels running on two different hardware systems and show that COWS
performs significantly better than the cyclic, static, dynamic, guided, and WSR (work-stealing with
random victim selection) schedules, for power-law graphs. We have also found that in the context
of roughly-regular graphs and COWS gives reasonable performance improvement over the rest.
The rest of the paper is organized as follows. We give a brief background about some of the

important relevant concepts in Section 2. In Section 3, we describe our proposed cost aware
work stealing (COWS) scheme. In Section 4, we discuss four new optimizations to improve the
performance of the proposed COWS scheme. In Section 5, we discuss some salient features of our
proposed scheme. We present an elaborate evaluation of our scheme in Section 6. We discuss the
related work in Section 7 and conclude in Section 8.
2 Background
Scheduling schemes in OpenMP. OpenMP supports four scheduling policies (static, dynamic,
guided, and runtime) to map an iteration i of parallel-for-loop (with N iterations) to one of the T
threads. (i) static schedule: scheduling method specified as static[, ch]. The optional argument
ch may be passed by the programmer to specify the chunk size and the iteration i gets mapped to
the thread (i / ch)%T. We term a special case of static scheduling when ch = 1, as cyclic chunking.
When the option ch is not passed, it is set to a default value N/T; we use the term static schedule
to denote this default scheduling policy. (ii) dynamic schedule: scheduling method is specified as
dynamic[, ch]. Every time a thread is idle, it is assigned at most ch (default value = 1) iterations.
(iii) guided schedule: scheduling method is specified as guided[, ch]. Every time a thread is
idle, it is assigned max(ch, remaining-iterations/number-of-idle-threads) number of iterations.
(iv) runtime schedule: scheduling policy is inferred at runtime by reading the environment variable
(OMP_SCHEDULE), which in turn must be set to one of the above three policies. To implement our

, Vol. 1, No. 1, Article . Publication date: November 2023.



4 Prasoon Mishra and V. Krishna Nandivada

#pragma omp for schedule (runtime)
for (all-iterations) { loop-body }

(a)

// assign a list of iterations to each thread.
GOMP_parallel_loop_runtime();
do{
for (all-assigned-iterations) { loop-body }
GOMP_loop_runtime_next(); //next iters list

} while (iterations-are-available);
(b)

Fig. 2. An OpenMP parallel-for-loop (a) and sketch of
its translation by GCC (b).

Fig. 3. Overall control flow of thread 𝑡𝑖 , whose current-
iteration-list is ⟨𝑡 𝑗 , 𝑥𝑖 , 𝑦𝑖 ⟩ and reservation size is 𝑐 .

proposed work-stealing approach, the programmer has to state the schedule clause as runtime
and set OMP_SCHEDULE to one of the two proposed schemes: WSRW or WSRI.
Translation of parallel-for-loops. Figure 2 shows how the existing GCC compiler translates a
parallel-for-loop with runtime-schedule. The translated code is executed by each thread. We piggy-
back on this translation scheme to invoke our proposed work-stealing algorithms (in Section 3.4.2).
Work Stealing. In work-stealing scheduling, each thread is initially given a set of iterations to
execute. When a thread runs out of work of its own, it identifies a victim and steals some work
from it. Typically the work (for example, the subset of iterations of the parallel-for-loop) assigned
to (or stolen by) each thread is stored in a queue.
3 Cost Aware Work Stealing
The traditional work-stealing schedulers, despite their advantages, suffer from multiple issues,
especially when applied to parallel-for-loops: (i) the schedulers are unaware of the workload of
different tasks and consider all the tasks are equal, (ii) choosing the suitable victim for stealing to
improve load-balancing is challenging, (iii) the overhead of maintaining the queue can be expensive,
and (iv) these schedulers have been designed to efficient work on a list of explicitly created individual
tasks (and not iterations of a loop like OpenMP parallel-for-loops). In this section, we present the
details of our proposed COst aware Work Stealing (COWS) scheme that addresses these issues. Our
scheduling scheme targets the parallel-loops in irregular task parallel programs, whose iterations
are distributed among the different runtime threads.

The COWS scheme does not maintain any global queue. Instead, the iterations of the for-loops
are initially distributed among all the runtime threads (say, total𝑇 number of threads). For efficiency,
we assume this initial distribution is done using a cyclic distribution (iteration 𝑖 is assigned to a
thread with thread-id 𝑖%𝑇 ). For ease of explanation, we use the subscript notation 𝑡 𝑗 to denote
the thread with thread-id 𝑗 . Like typical work-stealing, once a thread runs out of work (iterations
assigned to it), the thread tries to steal work from other threads. In this process, our scheme tries to
steal from that thread whose remaining workload is maximum. We now detail our scheme below.
3.1 Efficiently Maintaining the Remaining Workload
Considering the overheads of maintaining queues to store the tasks assigned to any thread, we
use two key insights: (i) the initial list of iterations assigned to any thread 𝑡𝑖 need not be stored
and can be inferred any time by using the thread id 𝑖 , the total number of threads 𝑇 , and the
total number of iterations 𝑁 ; for example, say 𝑁 = 10, 𝑇 = 3, then the initial list of iterations
assigned to 𝑡0 are [0, 3, 6, 9]. For any thread, we call this initial list of iterations to be executed as
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initial-iteration-list. (ii) At any point of time during execution, a thread may be executing iterations
from its initial-iteration-list or iterations stolen from the initial-iteration-list of another thread. The
current-iteration-list for the 𝑖𝑡ℎ thread 𝑡𝑖 can be represented as a three tuple ⟨𝑡 𝑗 , 𝑥𝑖 , 𝑦𝑖⟩, where 𝑡 𝑗
represents the 𝑗𝑡ℎ thread, 𝑥𝑖 indicates the index of the iteration in the initial-iteration-list of 𝑡 𝑗 that
𝑡𝑖 has to execute, and 𝑦𝑖 indicates the number of remaining iterations to be executed by 𝑡𝑖 from the
initial-iteration-list of 𝑡 𝑗 starting from 𝑥𝑖 .
3.2 Control flow of a thread
Figure 3 depicts the flowchart of the overall control flow of any thread. For efficiency, we allow a
parameter 𝑐 (detailed in Section 5) denoting the reservation size; each thread reserves 𝑐 iterations at
a time from its current-iteration-list and executes them, with a guarantee that no thread can steal
from these reserved iterations. A thread 𝑡𝑖 , with current-iteration-list ⟨𝑡 𝑗 , 𝑥𝑖 , 𝑦𝑖⟩, starts by checking
if it has a non-zero number of remaining iterations (𝑦𝑖 ).
If 𝑦𝑖 > 0, the thread first atomically reserves at most 𝑐 iterations from the current-iteration-list

(box D). Then it executes those 𝑐 iterations sequentially. This scheme ensures that no other thread
can steal the reserved iterations while 𝑡𝑖 is executing these iterations. In the flowchart, greyed
boxes with the bold boundaries indicate the critical sections.
If 𝑦𝑖 ≤ 0, 𝑡𝑖 will become a thief and try to choose a victim thread 𝑡𝑘 . We will discuss about

the different schemes to choose the suitable victims later in this section. If 𝑡𝑖 can find a victim
𝑡𝑘 , then 𝑡𝑖 will try to atomically steal half the remaining workload from the current-iteration-list
of 𝑡𝑘 (box B). We steal half the iterations as it leads to the smallest critical path in terms of the
number of remaining iterations. This stealing includes (atomically) setting appropriate values in
the current-iteration-list of both the victim and the thief. Note that while the thief 𝑡𝑖 is choosing a
victim and trying to set its current-iteration-list, the victim continues to execute its iterations and
may have proceeded to complete more iterations than what 𝑡𝑖 had observed in box F. And hence,
before proceeding to execute the stolen iterations, the thief must check if the stolen-iteration-list
has non-zero iterations (𝑦𝑖 > 0). More details about this modified work-stealing algorithm can be
found in Section 3.5. Each thread continues this cycle, as long as victim threads are found.

Example. Assume that there are 10 iterations in a parallel-for-loop. Figure 4 shows how different
threads maintain their iteration lists, if there are 3 threads at runtime, and 𝑐 = 1. The initial-iteration-
list is the same as the current-iteration-list in the starting (row 3). As each thread has some iterations
to execute, they will reserve 𝑐 iterations from the current-iteration-list. Row 4 shows the updated
current-iteration-lists after the first reservation. Suppose 𝑡2 completes all the remaining iterations
while other threads are still executing their first iteration; Row 5 shows the current-iteration-lists.
Now 𝑡2 becomes a thief and will try to choose a victim. Suppose that it chooses 𝑡0 as the victim and
successfully steals work (half of the remaining iterations = 1 iteration) from it. Row 6 shows the
current-iteration-lists after the stealing. Supposing that no more stealing happens, and the threads
complete their assigned iterations, Row 7 shows the final values for the current-iteration-lists.

In work-stealing, choosing a suitable victim is an important consideration for obtaining highly
performant execution. Another equally important consideration is the time taken to choose the
victim, as the overheads for the same, can overshadow the gains due to work-stealing. For a scheme
that chooses the victim randomly, its efficiency takes a big hit due to the possibly large overheads
arising out of a large number of times the thieves may have to steal the iterations. We call such a
scheme WS-Random (WSR, in short).
We now discuss two strategies to choose the victims such that (i) we minimize the number of

steals, and (ii) the overheads for victim selection are minimal. Both of our strategies are inspired by
the simple intuition that a thief should choose a victim with the maximum amount of remaining
work, which in turn is likely to reduce the number of steals and improve the overall performance.
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1. 𝑡0 𝑡1 𝑡2
After initial cyclic distribution.

2. List of iterations [0, 3, 6, 9] [1, 4, 7] [2, 5, 8]
3. initial-iteration-list ⟨0, 0, 4⟩ ⟨1, 0, 3⟩ ⟨2, 0, 3⟩

After each thread has reserved 𝑐 iterations, for itself.
4. current-iteration-list ⟨0, 1, 3⟩ ⟨1, 1, 2⟩ ⟨2, 1, 2⟩
𝑡2 finished all the initially assigned iterations, other threads still executing iteration#1.
5. current-iteration-list ⟨0, 1, 3⟩ ⟨1, 1, 2⟩ ⟨2, 3, 0⟩

After 𝑡2 has stolen one iteration from 𝑡1.
6. current-iteration-list ⟨0, 1, 2⟩ ⟨1, 1, 2⟩ ⟨0, 3, 1⟩
All threads finished assigned iterations; no more stealing.
7. current-iteration-list ⟨0, 3, 0⟩ ⟨1, 3, 0⟩ ⟨0, 4, 0⟩

Fig. 4. Illustration of how the threads maintain their iteration lists.

3.3 Remaining Iterations as the Estimate for Remaining Work
Since we are only focused on distributing the iterations of a parallel-for-loop among the threads,
one of the most intuitive estimates for measuring the workload remaining with any thread is the
number of remaining iterations assigned to that thread. To be able to use this metric, a thief needs
to be able to obtain the remaining number of iterations of every possible victim. This is very easy
to obtain: the thief can iterate over the current-iteration-list of each thread (typically the number
of threads is a small number) to obtain the victim with the maximum number remaining-iterations.
We call such a scheme WS-Remaining Iterations (WSRI, in short).
3.4 Using the Remaining Work As the Cost Estimate
When a team of threads are executing a parallel-for-loop, the metric of the remaining-number-of-
iterations of thread may not be an accurate estimate of the remaining workload currently assigned
to the thread. This is especially true in the context of irregular task parallel programs, where the
cost of each iteration can vary significantly. To address such a challenge we propose a work-stealing
scheme based on the remaining workload (WSRW, in short).
Statically estimating the cost of the iterations during compilation time may not be possible as

the iteration code may be input-dependent. For example, for the code snippet shown in Figure 1,
each iteration i of the parallel-loop iterates over the neighbors of the i𝑡ℎ node. Thus, the cost
of each iteration i depends on the degree of the i𝑡ℎ node and cannot be estimated statically. To
address such issues, inspired by prior works that recognize such a difficulty [29, 33], we propose
to use a mixed static + dynamic technique, where we first estimate the cost of each iteration as a
function parameterised over some input variable. In the previous example, the cost of iteration i,
can be expressed as a function of elem_at(&g->vertices, i)->degree. We take such parametric
cost-expressions and use them to compute the actual cost at runtime. Figure 5 shows the block
diagram of our overall process, consisting of a compile-time component and a runtime component.
3.4.1 Compile-time Component.The input OpenMP C program is first profiled (instrumented and
executed) to obtain the costs of every input independent part of the code; we use a technique similar
to that of Shrivastava and Nandivada [33]. The next phase of compilation (shown in Figure 5a) has
two main steps: (i) Cost expression generator and (ii) Runtime work initializer emitter.

Cost expression generator.We use the profile generated costs to generate cost-expressions for both
input dependent and independent parts of the code. This cost-expression generator uses the scheme
of Shrivastava and Nandivada [33, Section 3.1, Figure 7] to generate the cost expression (CostExpr)
for the body of each parallel-for-loop; we give a brief summary of the same in Appendix A. For
example, in the code shown in Figure 1, Lines 5-6, and 8-10 are input independent. Say the cost
of input independent statement at line 𝑖 is given by 𝐶𝑖 . Similarly, for the for-loop, say 𝐶7−1 gives
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(a) Compile-time component.

(b) Runtime-time component.

Fig. 5. Overall technique: the grey boxes are the
main components of our technique.

1 int tid = omp_get_thread_num ();

2 long chunk = loopBound/T + 1;

3 int counter = 0;

4 long result = 0;

Thread
local

5 TArr[tid]= realloc(TArr[tid],

6 chunk*sizeof(long ));

7 #pragma omp for schedule(static ,1)

8 for (int i=0; i<loopBound; i++){

9 result += CostExpr;

10 TArr[tid][ counter ++] = result;}

Fig. 6. Runtime workload-estimator code, emitted just
before a parallel-for-loop, whose for-loop is of the form
for(i=0;i<loopBound;i++){. . . }.

the cost of the initialization statement, 𝐶7−2 gives the cost of the predicate, and 𝐶7−3 gives the
cost of the increment statement. Then the cost expression returned by the getWL function of
Shrivastava and Nandivada [33] for the body of the parallel-for-loop would be𝐶5+𝐶6+𝐶7−1+ (node
*)elem_at(&g->vertices, i)->degree* (𝐶7−2 + 𝐶8 + 𝐶9 + 𝐶10 + 𝐶7−3). In case, the getWL
function fails to obtain an accurate cost-estimate for the iterations of a parallel-for-loop (for example,
in case of iterations contain a while-loop), then for that parallel loop, we abort the WSRW scheme,
and fall back to WSRI.

Runtime workload-estimator emitter. As we had discussed before, our goal is to emit some small
code that can estimate the remaining-workload of each iteration at runtime. Since a program
may contain multiple parallel-for-loops and the workloads (or cost, in short) of their iterations
across different loops may vary, we may have to emit the workload estimating code for each
parallel-for-loop separately.
For each parallel-for-loop, after generating the cost-expressions, we emit the code shown in

Figure 6 that estimates the workload for each iteration of that loop. Here, we use T to represent
the number of runtime threads (can be obtained by invoking omp_get_num_threads function).
For each thread, we need to be able to maintain (and retrieve) the cost of each iteration assigned
to it. A simplistic design would be that for each thread (with id = tid), we maintain (for each
thread tid) an array of long-integers, such that the i𝑡ℎ element will hold the cost of the i𝑡ℎ

iteration allotted to thread tid. This would require an additional loop (iterating over that array)
to compute to remaining workload for each thread. For efficiency reasons, we instead store the
TArr[tid], as a prefix-sum array, which in turn makes it easier to quickly compute the remaining
workload of each thread. Lines 9-10 show the code to maintain the prefix-sum. For example, for a
thread with current-iteration-list ⟨𝑡, 𝑥,𝑦⟩, the remaining workload can be obtained by evaluating
TArr[𝑡][𝑥 +𝑦]−TArr[𝑡][𝑥]. One point to note is that we use the system call realloc to allocate
the memory (if required) before executing the workload-estimator code.

Example. For the code shown in Figure 1, the emitted workload-estimator code can be obtained
by replacing the variable loopBound with the term g->N in Figure 6.
3.4.2 Runtime Component.Figure 5b shows the runtime component of our proposed scheme. Before
executing any parallel-for-loop, each thread computes the total workload assigned to it at runtime
(by invoking the code similar to that shown in Figure 6).

Each OpenMP parallel-for-loop gets translated (by GCC) into three parts (as shown in Figure 2) :
(i) assign an initial list of iterations, (ii) execute the assigned iterations, and (iii) obtain next list of
iterations to be executed. The last two parts are executed in a loop, till there are iterations to be
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1

FunctionWorkSteal() // Returns SUCC if it is able to
steal any iterations, FAIL otherwise.

2 Lock ( 𝑔𝑙𝑜𝑏𝑎𝑙 ) ;
3 𝑣 = findVictim() ;
4 if 𝑣 == -1 then
5 Unlock ( 𝑔𝑙𝑜𝑏𝑎𝑙 ) ;
6 return FAIL;

7 busyStatus[𝑣] = true ;
8 Unlock(𝑔𝑙𝑜𝑏𝑎𝑙 )

C
riticalsection
for

allthieves.

;
9 Lock ( 𝑙𝑜𝑐𝑎𝑙𝑣 ) ;

10 if (stealPt=WorkDivider(𝑣)) == 0 then
11 Unlock( 𝑙𝑜𝑐𝑎𝑙𝑣 ) ;
12 return FAIL;

13 Say the CIL of 𝑣 is ⟨𝑡 𝑗 , 𝑥,𝑦⟩;
14 Set the CIL of 𝑣=⟨𝑡 𝑗 , 𝑥, stealPt)⟩;
15 Unlock(𝑙𝑜𝑐𝑎𝑙𝑣 )

C
riticalsection

for
thiefand

victim
.;

16 busyStatus[𝑣] = false ;
17 Set the CIL of thief = ⟨𝑡 𝑗 , stealPt+1, 𝑦 − stealPt⟩ ;
18 return SUCC;

Fig. 7. Work-Stealing algorithm. Abbreviations used: CIL =
current-iteration-list

Function findVictim(ThreadId 𝑖𝑑):
//Returns victim-id or -1

𝑣𝑖𝑐𝑡𝑖𝑚 = -1;
𝑤𝑜𝑟𝑘𝑚𝑎𝑥 = 0;
for 𝑖 = 0 to T-1 do:

if busyStatus[𝑖] == 𝑡𝑟𝑢𝑒

then
continue

Say the CIL of 𝑡𝑖 = ⟨𝑡 𝑗 , 𝑥,𝑦⟩;
𝑤𝑜𝑟𝑘 = TArr[ 𝑗] [𝑥 + 𝑦] -
TArr[ 𝑗] [𝑥] ;
if 𝑤𝑜𝑟𝑘 > 𝑤𝑜𝑟𝑘𝑚𝑎𝑥 then

𝑤𝑜𝑟𝑘𝑚𝑎𝑥 =𝑤𝑜𝑟𝑘 ;
𝑣𝑖𝑐𝑡𝑖𝑚 = 𝑖;

return 𝑣𝑖𝑐𝑡𝑖𝑚;

Fig. 8. WSRW victim finding scheme.
𝑇 = # threads. Abbreviations used: CIL
= current-iteration-list.

executed. Corresponding to these three parts, the runtime component has three sub-components.
While the first two sub-components of our design match that of the typical current OpenMP
translations, the last sub-component differs, where we invoke our cost ware work-stealing algorithm.
3.5 Cost Aware Work Stealing Algorithm
We now discuss our work-stealing algorithm (shown in Figure 7), which implements the work-
stealing part of the flow-chart shown in Figure 3. Our algorithm has four interesting properties:
(i) the algorithm may be invoked by multiple threads at the same time; (ii) while multiple thieves
are trying to identify who will steal first, the victim is not locked; (iii) a victim is chosen based
on its remaining workload; and (iv) the algorithm avoids the usage of queues and instead takes
advantage of the efficient structure of the current-iteration-list.
The algorithm uses two locks, a global lock which is shared by all the threads, and a local lock

which is unique to each victim. The thief takes a global lock before trying to choose the victim and
makes sure that only one thief chooses a victim at a time. This ensures that no two thieves should
choose the same victim simultaneously. The victim is chosen by invoking the method findVictim.

Algorithm findVictim. The details of this algorithm vary depending on the type of work-stealing
scheme: for example, for WSRI, it invokes a code as described in 3.3. For WSRW, Figure 8 shows
the code for the findVictim method. The code is similar to that of WSRI, except that unlike WSRI
(where we choose the victim with maximum number of remaining iterations), in WSRW, we choose
the victim with maximum remaining work. To compute the remaining workload for any thread 𝑡𝑖 ,
we use the previously populated prefix-sum array TArr (Line 18).

In Figure 7, after finding the victim, the thief sets its busyStatus flag and unlocks the global lock.
This setting of the status flag ensures that no other thief can choose this victim, till the flag is set to
false. After choosing a victim, we take a local lock of that victim thread; each thread has a local
lock that is acquired by that thread before it reserves iterations from its own current-iteration-list

, Vol. 1, No. 1, Article . Publication date: November 2023.



COWS for High Performance 9

1 FunctionWorkDivider(ThiefID 𝑣):
2 Say the current-iteration-list of 𝑣 = ⟨𝑡 𝑗 , 𝑥,𝑦⟩ ;
3 Threshold = (TArr[𝑥 + 𝑦] − TArr[𝑥])/2;
4 stealPt = 𝑦;
5 for (𝑖 = 𝑥 ; 𝑖 < 𝑥 + 𝑦; 𝑖 + +):
6 𝑐𝑜𝑠𝑡 = TArr[𝑖] − TArr[𝑥];
7 if 𝑐𝑜𝑠𝑡 ≥ Threshold then
8 stealPt = 𝑖;
9 break;

10 return stealPt;

Fig. 9. Work divider for the WSRW scheme.

(Figure 3, box D). We distribute the iterations as per the Work Divider function. Note that in this
design, global lock is taken for a very short period, only to find the victim thread (and not for actual
stealing, which may take a longer time). We then acquire individual locks on the victim thread’s
resources, thereby reducing the contention among the thieves to a large extent.
WorkDivider algorithm. The details of this algorithm varies based on the strategy of work-

stealing. The Algorithm 9 gives details of the WorkDivider function for the WSRW scheme. Ideally
our goal is to steal half of the remaining workload of the victim thread. But since we steal in terms
of iterations of the loop, we may end up stealing half or less than half of the remaining workload.
We identify the index of the earliest iteration (stealPt), such that the iterations of the victim, from 𝑥

to stealPt, have at least Threshold (set to half the remaining workload) amount of workload. The
remaining iterations (from stealPt+1 to 𝑦) can be stolen; the algorithm returns stealPt. In case of
WSRI, the WorkDivider simply returns 𝑦 −𝑦/2 (uses integer divison), if the current-iteration-list of
the victim is ⟨𝑡 𝑗 , 𝑥,𝑦⟩.

In Figure 7, if we find that the stealPt (indicating the starting index of the list of iterations to be
stolen) is same as 𝑦 (the last iteration of the victim), then it indicates that there are no iterations
to steal. Otherwise, we first update the current-iteration-list of the victim before unlocking 𝑙𝑜𝑐𝑎𝑙𝑣 .
Then, we reset the busy flag for the victim (making it available for stealing by other thieves) and
set the current-iteration-list of the current thief.
4 Optimizations
Opt1: Redundant Initialization. TheWSRW scheme proposed in Section 3, emits code to populate
the TArr array before every parallel-for-loop. Many times it happens that the same parallel-for-
loop is run consecutively for many rounds; for example, till a fixed point criteria is reached; for
example, in page-rank a parallel-loop is executed till the difference of ranks of pages does not vary
‘significantly’ between two consecutive rounds. In such cases populating TArr again and again can
be redundant. We address this issue by emitting additional code before the parallel-for-loop, to
check whether the same parallel-for-loop was executed immediately before. And if so, we don’t
populate TArr and instead reuse the previously populated values. This optimization can only be
applied if the number of iterations of the loop and the variables present in the cost-expression
string for the iterations of a loop, do not change between two consecutive invocations of the loop.
Opt2: Loops with same cost for each iteration. Our proposed scheme is mainly targeting loops
where the cost of the iterations are non-uniform. Thus we identify uniform parallel-for-loops,
where all the iterations perform exactly the same amount of work, and then use the default cyclic
schedule. This optimization can only be applied if the number of iterations of the loop and the
variables present in the cost-expression string for the iterations of a loop, do not change between
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#pragma omp for
for (i=0;i<N;i++) {
if (node[i] is marked){process-neighbors.}}

Fig. 10. Illustrative pseudo code for a topology driven algorithm.

two consecutive invocations of the loop. This optimization prevents the unnecessary initialization
overheads of WSRW where we know we can get better performance using cyclic for such loops.
Opt3: Loop bodies guarded with a predicate. A pattern we have found in some kernels is that
only a subset of the iterations of the parallel-for-loop perform computation, in each invocation
of the parallel-for-loop. For example, Figure 10 shows an illustrative pseudo code showing a
similar behavior. Our proposed cost estimation scheme (Section 3.4) computes the cost of an if-else
statement as the maximum cost of the then-block and else-block and consequently, may lead to
inaccurate work-estimates (especially when the number of active nodes can be a small fraction of
the total number of nodes). In such cases, we again fall-back on WSRI owing to its lesser overheads.
Opt4: Optimized WorkDivider. The WorkDivider function shown in Figure 7, goes through all
the remaining iterations of a thread to identify the value of the variable stealPt. This algorithm is
inefficient as the number of iterations per thread can be huge. We exploit the property of TArr (a
prefix-sum array) and a strategy similar to binary search to devise a more efficient way finding the
value of stealPt. Instead of sequentially iterating from 𝑥 to 𝑥 + 𝑦 (in Figure 9), we use the middle
point ((2 ∗ 𝑥 + 𝑦)/2) to divide the array into two halves. The amount of work in either half can be
calculated in 𝑂 (1) time: The work of left and right halves can be calculated using the expression
TArr[(2∗𝑥 +𝑦)/2+1] −TArr[𝑥] and TArr[𝑦] −TArr[(2∗𝑥 +𝑦)/2], respectively. If they are exactly
dividing the workload into two halves then we set stealPt to the middle point. Otherwise, we repeat
this divide and conquer strategy to find the partition such that the iterations of the victim, from 𝑥

to stealPt, have at least Threshold (set to half the remaining workload) amount of workload. This
WorkDivider algorithm is more efficient – complexity is 𝑂 (𝑙𝑜𝑔𝑁 ) (compared to the complexity
𝑂 (𝑁 ) for the code shown in Figure 9), where 𝑁 is the number of iterations of the parallel-loop.
5 Discussion
Reorganise Data vs. Scheduling. During our study, we observed that not only the scheduling
techniques but also the data layout of the input graph can impact the performance of the parallel-
for-loops. This is because the data-layout can impact the distribution of the nodes/edges to the
threads (and hence load balancing), and the locality of data-access by each thread. We generated
multiple versions of the same graphs, where each version has a different organization (for example,
vertices sorted by their degree, vertices ordered by their level in the breadth first search (BFS)
graphs, and so on). We ran different programs (each program having a fixed schedule) against
different versions of the same input graph. While we could not identify any particular reordering
scheme as the best scheme across different benchmarks, we still feel that it is an interesting future
work to explore the idea of changing the data layout based on the program behavior to improve
load imbalance and locality.
Static Scheduling. Static scheduling is one of the schedule provided by OpenMP where assignment
of loop iterations to thread happens during compile time. This scheme has the least overhead among
all the other schedules provided by OpenMP. While it is known that static-scheduling works very
well when all the iterations have uniform workload, we have found that for iterations with non-
uniform workload, cyclic scheduling (see Section 2)) typically works much better (compared to
other scheduling schemes given by OpenMP) when dealing with large real-world scale-free graphs
as well as roughly regular graphs. These advantages of cyclic distribution (over static schedule)
have also been reported by prior works [18, 32]. The reason why static and the cyclic schedule
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work better because OpenMP provides a very highly tuned implementation of these schemes that
involve minimal overhead (does not involve locks, or invoke the scheduler, and so on).
An important point to note is that, when the schedule is set to "runtime" and during execution

we set the environment variable OMP_NUM_THREADS to "static" (or static,1), then we have found
that many times the static schemes (static and cyclic) took more/comparable time compared to
guided/dynamic schemes. But when we set the schedule to "static" or "static,1", OpenMP uses a
highly efficient scheme to realize these scheduling policies with minimal overheads and that led
to efficiency in many of the benchmarks. Thus, we use these efficient numbers of the baseline
OpenMP for our comparison.
Dynamic/Guided Scheduling. It can be argued that the performance of dynamic and guided
scheduling can be improved by tuning the chunk size. However, tuning the chunk size for each
application is a difficult and time-consuming task. Therefore, we stick to the default chunk size for
our experiments.

We find that in the absence of the right chunk-size for the guided/dynamic schemes, for irregular
loops where static/cyclic may not provide the best load-balance, our proposed scheme is most
effective.
Parameters Used In COWS. There are two parameters that we have used in COWS: (i) the
reservation size 𝑐 (see Figure 3) and (ii) the minimum iteration limit, below which we will not steal
iterations from any victim. We ran many experiments and based on that set 𝑐 = 4√total-workload and
minimum iteration limit = 5. Note that doing a thorough search of this space to study the behaviour
of different formulae and coming up with a scheme to identify the best possible reservation-size
and the minimum iteration limit is a challenging task in itself, but is beyond the scope of this paper.
We leave it as an interesting future work.
Identifying the best scheduling policy. In Section 6, we show that for a variety of kernels our
proposed technique performs very well compared to the default scheduling policies of OpenMP,
especially in the context of irregular kernels. However, we would like to note that the comparative
efficiency of different scheduling policies not only depends on the individual scheduling policies, but
also on the specific kernel at hand, and the exact organization of the input. As both of these factors
greatly impact the overheads, load-balancing, and even data locality. Consequently, it becomes
difficult to identify the best scheduling policy across all the kernels and all their possible inputs.
We leave it as a future work to identify the best scheduling policy for any given parallel kernel
and input. Additionally, it would be an interesting future work to perform a limit study on how far
different scheduling policies are from the optimal possible scheduling for a varied sets of kernels
and inputs. This would give directions to the future researchers on where the maximum scope of
improvement remains.
Possible Overheads Of Locking. In Figure 7, in the first critical section, locking is required only
by the thieves (without blocking the workers). In the second critical section, the locking is only
between the thief and the worker (note: the overheads of the lock mainly depends only the number
of contending threads). These heuristics ensure low overheads, which is also established in our
empirical evaluation (Section 6.3).
6 Implementation and Evaluation
As discussed in Section 3, our proposed techniques have two components: the compile-time com-
ponent and the runtime component. We have implemented our proposed compile-time component
in IMOP [26], an open-source compiler framework (source-to-source) for OpenMP programs that
makes it convenient to write compiler passes. Our implementation spanned 1.3𝑘 lines of Java
code. We have implemented our proposed runtime component in libgomp, a shared library for
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OpenMP(Version:4.5) in GCC-11.2; this runtime component spanned 1.4𝑘 lines of C code. The run-
time component is implemented in such a way that the binary code generated by the existing GCC
compiler will use our proposed COWS scheduler based on the value of an environment variable
(OMP_SCHEDULE). To use any of the discussed schedulers, the program has to set the schedule clause
in the parallel-for-loop to runtime and appropriately set the value of this environment variable –
to WSRW, WSRI, or WSR. To perform a comparative evaluation, we also used the schedulers provided
by OpenMP (static, cyclic, dynamic, or guided). For dynamic and guided, we use the default chunk
size (= 1). We chose a fixed chunk size as it is well known [3] that it is quite challenging to find
the right chunk size(s) that will provide the best performance for all the benchmarks. Further, we
stick with the default chunk-size for OpenMP, lest we are criticized for having bias in fixing a
chunk-size or a set of fixed chunk-sizes. For these three default schedulers, we set the schedule
clause directly in the for-loop, instead of using the “runtime” schedule option, as the latter was
comparatively inefficient than the earlier option. All the input codes were compiled with the −O2
level optimization of GCC.
Our proposed techniques were evaluated on seven popular shared-memory kernels shown in

Figure 11: K-committee (KC) – creates committees such that no two members in the committee are
at a distance > a pre-defined value 𝐾 ; leader election for general graphs (LE) – finds a leader in a
parallel/distributed environment; breadth first search (BFS) – computes the diameter of a rooted
graph; bellman ford (BF) – computes distance of every node from the root; dominating set (DS) –
finds dominating set of the given graph; page rank (PR) – iteratively computes the rank of each node
in the graph; and connected components (CC) – computes the number of connected components
in the graph; The first five kernels are taken from IMSuite [13] (we excluded the remaining kernels
implementing randomised algorithms, as their base execution times varied significantly) and
remaining two were written based on kernels used in prior literature [30]. Figure 11 also lists
some characteristics of these kernels. These include, number of lines of code, number of static
parallel-for-loops, the number of dynamic parallel-for-loops encountered in the context of the five
above discussed inputs, and the different optimizations (discussed in Section 4) that were applicable
for the benchmark. We see that in case of KC, the number of dynamic parallel-for-loops are same
across the inputs. This is because, the number of parallel-for-loops in KC depend only on the value
of 𝐾 (maximum distance among the members of the community) – a constant value, irrespective of
the input.
To generate the cost of input independent statements, the profiling was done using a very

small input (randomly generated graph of 32 nodes). We observed that the total compilation time
overheads were negligible.

All these kernels have a common characteristic that they have at least one irregular loop. Given
skewed inputs (for example, power-law graphs) these codes lead to highly non-uniform workloads,
with high amount of imbalance among the iterations of the parallel-for-loops. Since the main target
of our proposed scheme is to realize high performance in codes and inputs leading to non-uniform
workloads, we will first focus on such workloads. To do so, we picked three input graphs from
SNAP (i.e. Stanford Large Network Dataset Collection) [23]: Youtube, LiveJournal and Orkut graphs.
Besides testing the efficacy of our proposed system in the context of highly non-uniform workloads,
we also tested our code against inputs where the resulting workload among the iterations of
the parallel-for-loops is more uniform – this works as the worst-case scenario for us where the
overheads due to our proposed scheme are most striking. To do so, we picked two roughly regular
input graphs from SNAP: RoadNet-CA and RoadNet-PA. Figure 12 shows some characteristics of
all these datasets.
We performed the evaluation on two systems: (i) Aqua: a node in a high-end super-computing

cluster containing an Intel(R) Xeon(R) Gold 6248 processor, with two sockets, each having 20 cores
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Bench LOC SL UL DA DB DC DD DE Optimizations Applied
Opt1 Opt2 Opt3 Opt4

1. KC 403 6 2 28 28 28 28 28 F T F T
2. LE 269 3 2 34 30 16 1288 1044 T T F T
3. BFS 231 2 1 15 15 9 556 543 T T T T
4. BF 258 3 1 40 40 25 1666 1624 F T F T
5. DS 525 12 4 949 NA NA 212 157 F T F T
6. PR 184 2 1 30 26 52 44 44 T T F T
7. CC 170 2 1 7 9 4 243 249 F F F T

Fig. 11. Benchmarks used for evaluations and their characteristics. Abbreviations: LOC: Lines of code; SL:
#static parallel-for-loops; UL: #uniform parallel-for-loops; DA, DB, DC, DD and DE are the #dynamic parallel-
for-loops for Youtube, LiveJournal, Orkut, RoadNet-CA and RoadNet-PA respectively; Opt1, Opt2, Opt3 and
Opt4 are the four optimizations discussed in Section 4.

Input #Vertices #Edges Min degree Max degree
Youtube 1.13M 2.98M 1 28.8K
LiveJournal 4.84M 68.99M 1 2.7K
Orkut 3.07M 117.18M 1 27.5K
RoadNet-CA 1.96M 2.76M 1 12
RoadNet-PA 1.08M 1.54M 1 9

Fig. 12. Characteristics of the datasets used.

(total 40 cores) and total memory of 192GB. and (ii) Goodwill: a standalone server containing an
Intel(R) Xeon(R) Gold 6240 processor, with two sockets, each having 18 cores (total 36 cores) with
SMT enabled; leading to a maximum of 72 hardware threads, and total memory of 125GB.
For each benchmark kernel, we evaluated seven different schemes of scheduling: i) dynamic

ii) static iii) cyclic iv) guided v) WSR vi) WSRI vii) WSRW. We studied the performance of
these scheduling schemes for varying number of hardware threads (in powers of two). In specific,
we pay special attention to the cyclic schedule, which we found (in our experiments) to be the
best among the default schedules supported by OpenMP, in majority of the cases. For running a
program on a system with 𝑇 number of hardware threads, we set the number of software threads
(OMP_NUM_THREADS) also to 𝑇 .

To understand the impact of our proposed techniques we show the evaluation in five dimensions:
(i) performance gains in the context of highly irregular graphs, (ii) behavior in the context of
roughly regular graphs, (iii) overheads for victim selection, (iv) a study on the number of steals
operations, and (v) impact of proposed optimizations.
6.1 Performance Gains in Highly Irregular Graphs
In this section, the graphs show the speedups obtained due to various scheduling schemes, compared
to the OpenMP dynamic schedule, for the three power-law graph inputs. Among the different
default scheduling schemes of OpenMP, the best scheduling scheme varies depending on the
specific benchmark, input and number of runtime-threads. We have found that cyclic schedule
performed the best among the default scheduling schemes for the most part. Thus, for each kernel,
we additionally highlight the performance of WSRI and WSRW compared to the cyclic schedule
(as a geomean average).

KC. Figure 13 shows the speedups obtained for the KC kernel.We compute the speedup of a kernel
due to a schedule X, for a given configuration (input dataset, System and the number of hardware
threads), using the formula: (time taken to execute the kernel using dynamic-schedule)/(time taken
to execute the kernel using schedule X).
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(a) System = Aqua

(b) System = Goodwill

Fig. 13. Kernel = KC. Speedups with respect to dynamic scheduling. The points have been connected only to
improve the visibility.

Our schemes WSRW and WSRI, clearly outperform all the other schemes. Overall, we see that
on the Aqua system the speedups varied between 2.47× to 10.741× for WSRW and 2.479× to 10.66×
for WSRI. Similarly, on the Goodwill system the speedups varied between 1.538× to 8.899× for
WSRW and 1.529× to 8.522× for WSRI.

It can be seen that the performance of WSRW is comparable to WSRI. It is because, here, two
parallel-for-loops that are the primary source of workload had while-loops because of which we
WSRW falls back to WSRI (see Section 3.4.1).

Compared to the cyclic-schedule, for varying number of cores and across all the three inputs,
WSRW (and WSRI) was 1.10× and 1.03× better on Goodwill and Aqua system, respectively.

On the Aqua system, when the number of threads increased from 16 to 32, performance does
not scale at the same (high) rate. This is because, it is a two-socket machine and the inter-socket-
communication overheads start when the number of threads are more than 20 cores (as each socket
on Aqua has 20 cores). A similar trend can be seen on Goodwill, where each socket has 18 cores.
Secondly, there is a dip in performance gains when we increase the threads from 32 to 64 or 72. This
is because after when we increase the number hardware threads to beyond 36, we start running
our cores on the SMT threads, where the performance does not scale up like the regular cores. We
have observed similar hardware based behaviours on the other four kernels as well.
LE. Figure 14 shows the speedups obtained for the LE kernel. Overall we see that for the LE

kernel, WSRW clearly outperforms all the other schemes. Overall we see that on the Aqua system
the speedups varied between 1.115× to 6.171× for WSRW and 1.1× to 4.265× for WSRI. Similarly,
on the Goodwill system the speedups varied between 1.048× to 5.443× for WSRW and 0.998× to
3.761× for WSRI.

It was seen that performances of both WSRI and cyclic was comparable on Aqua but on Goodwill,
WSRI performed better. We attribute this to the faster memory subsystem on Aqua leading to
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(a) System = Aqua

(b) System = Goodwill

Fig. 14. Kernel = LE. Speedups with respect to dynamic scheduling. The points have been connected only to
improve the visibility.

lesser overheads. On LE, we can observe an approximate order among the different scheduling
schemes: WSRW, WSRI, cyclic, WSR, guided, static, dynamic. The only exception was in the Orkut
input, where we see that static and guided performed worse than dynamic. We have found similar
degradation in static and guided in other kernels as well (PR, DS, and CC). The reason for the
degradation in static schedule is the high load imbalance due to the naive scheduling policy. The
guided scheme suffered because of (i) the inability to reallocate after allocation, (ii) high contention
for locking.
Compared to the cyclic-schedule, for varying number of cores and across all the three inputs,

WSRWwas 1.13× and 1.18× better on Aqua and Goodwill system, respectively. Similarly, compared
to the cyclic-schedule, WSRI was 1.01× and 1.05× better on Aqua and Goodwill system, respectively.

BFS. Figure 15 shows the speedups obtained for the BFS kernel. Overall we see that for the BFS
kernel, WSRW, WSRI and cyclic outperform the rest in majority of the cases. Also, it is difficult
to find a clear winner among these three for BFS on these inputs. Overall we see that on the
Aqua system the speedups varied between 1.17× to 9.98× for WSRW (and WSRI). Similarly, on
the Goodwill system the speedups varied between 1.233× to 17.352× for WSRW (and WSRI). The
performance of WSRW and WSRI look similar due the application of Opt3 (Section 4) on the main
loop.
Compared to the cyclic schedule, for varying number of cores and across all the three inputs,

WSRW (and WSRI) was 0.95× and 1.09× better on Aqua and Goodwill system, respectively. The
reason for this slightly lower performance of WSRW and WSRI, compared to cyclic in the context
of BFS is that in this kernel, though WSRI and WSRW pay the respective overheads, the work
estimate is still not accurate. Thus we do not get much gains compared to cyclic (a highly efficient
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(a) System = Aqua

(b) System = Goodwill

Fig. 15. Kernel = BFS. Speedups with respect to dynamic scheduling. The points have been connected only to
improve the visibility.

scheme of scheduling with minimal overheads; see Section 5). However, WSRW and WSRI perform
better than the remaining scheduling schemes.
BF. Figure 16 shows the speedups obtained for the BF kernel. Overall we see that for the BF

kernel, WSRW outperform all the other schemes, except for 72 threads on Goodwill for Orkut and
LiveJournal inputs, where the guided scheme narrowly outperforms WSRW. We believe that some
low level issues arising out of enabled SMTs at 72 threads is leading to the relatively improved
performance of the guided schedule. WSRI and cyclic outperform each other at many points. Overall
we see that on the Aqua system the speedups varied between 2.21× to 5.64× for WSRW and 2.21×
to 5.49× for WSRI. Similarly, on the Goodwill system the speedups varied between 1.02× to 7.39×
for WSRW and 0.98× to 7.2× for WSRI.
Compared to the cyclic-schedule, for varying number of cores and across all the three inputs,

WSRWwas 1.06× and 1.05× better on Aqua and Goodwill system, respectively. Similarly, compared
to the cyclic-schedule, WSRI was 0.98× and 1.0× better on Aqua and Goodwill system, respectively.

DS. Figure 17 shows the speedups obtained for the DS kernel. The base kernel ran out of memory
for Orkut (on both the systems), and for LiveJournal the was taking many hours to complete a single
run. Hence, we have limited our evaluation to Youtube (on Aqua and Goodwill) and LiveJournal
(on Aqua) only. Overall we see that for the DS kernel, WSRI outperforms WSRW in majority of the
cases and WSRW is the second best schedule. There are 12 parallel for loops in this kernel, hence
the overhead of initialization of TArr does slightly impact the performance of the WSRW. Overall
we see that on the Aqua system the speedups varied between 1.05× to 1.28× for WSRW and 1.02×
to 1.31× for WSRI. Similarly, on the Goodwill system the speedups varied between 1.11× to 1.64×
for WSRW and 1.2× to 1.77× for WSRI.
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(a) System = Aqua

(b) System = Goodwill

Fig. 16. Kernel = BF. Speedups with respect to dynamic scheduling. The points have been connected only to
improve the visibility.

(a) System = Aqua (b) System = Goodwill

Fig. 17. Kernel = DS. Speedups with respect to dynamic scheduling. The points have been connected only to
improve the visibility.

Compared to the cyclic-schedule, for varying number of cores and across all the three inputs,
WSRWwas 1.01× and 1.10× better on Aqua and Goodwill system, respectively. Similarly, compared
to the cyclic-schedule, WSRI was 1.04× and 1.20× better on Aqua and Goodwill system, respectively.
PR. Figure 18 shows the speedups obtained for the PR kernel. Overall we see that for the PR

kernel, WSRW and (to a large extent) WSRI clearly outperform all the other schemes. Overall we
see that on the Aqua system the speedups varied between 1.085× to 8.103× for WSRW and 1.062×
to 6.218× for WSRI. Similarly, on the Goodwill system the speedups varied between 1.006× to
6.024× for WSRW and 0.98× to 5.364× for WSRI.
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(a) System = Aqua

(b) System = Goodwill

Fig. 18. Kernel = PR. Speedups with respect to dynamic scheduling. The points have been connected only to
improve the visibility.

Compared to the cyclic-schedule, for varying number of cores and across all the three inputs,
WSRWwas 1.15× and 1.16× better on Aqua and Goodwill system, respectively. Similarly, compared
to the cyclic-schedule, WSRI was 1.03× and 1.10× better on Aqua and Goodwill system, respectively.
CC. Figure 19 shows the speedups obtained for the CC kernel. Overall we see that for the CC

kernel, even though WSRW mostly outperform WSRI, WSR, cyclic, static, and guided, WSRW,
WSRI, and cyclic had comparable performance at many points. Overall we see that on the Aqua
system the speedups varied between 0.711× to 2.952× for WSRW and 0.718× to 2.87× for WSRI.
Similarly, on the Goodwill system the speedups varied between 0.703× to 3.279× for WSRW and
0.671× to 2.867× for WSRI.
The Orkut input data-set shows an interesting point: the dynamic schedule out-performs the

rest. We believe this particular behavior is because of the way in which the data is organized in the
Orkut dataset.
Compared to the cyclic-schedule, for varying number of cores and across all the three inputs,

WSRWwas 1.06× and 1.12× better on Aqua and Goodwill system, respectively. Similarly, compared
to the cyclic-schedule, WSRI was 1.03× and 1.08× better on Aqua and Goodwill system, respectively.

Summary. Across five different benchmark programs, using the three different power-law input
datasets, on two different hardware, across varying number of threads we show that WSRW and
WSRI get on average (geomean) performance gains of 1.10× and 1.05×, respectively (max 2× and
1.57×, respectively) over the cyclic schedule (the overall best among the default schedules provided
by OpenMP). Further, considering the fact that these gains are obtained on top of GCC -O2 level
optimized codes, we argue that these gains are significant.
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(a) System = Aqua

(b) System = Goodwill

Fig. 19. Kernel = CC. Speedups with respect to dynamic scheduling. The points have been connected only to
improve the visibility.

6.2 Behavior in the Context of Roughly Regular Graphs
The main target of our proposed scheduling scheme are the graphs that lead to high imbalance
among the iterations of parallel-for-loops. To understand the possible negative impact of our
proposed scheduling schemes, we evaluated them using the same set of kernels (Figure 11) on
roughly regular graph datasets (RoadNet-CA and RoadNet-PA, shown in Figure 12). For brevity,
we only show the performance results for the max number of cores available on the respective
hardware systems; we have observed that the numbers for the remaining cores are similar.
The Figure 20 shows the performance of WSRW and WSRI shown as speedups over cyclic-

scheduling - the overall best among the default OpenMP scheduling techniques; for brevity, we skip
the comparison with other schedules. Overall, we can see that WSRW performs slightly better than
cyclic-scheduling, while WSRI performs slightly worse. Note that though these inputs are roughly
regular, the iterations of the parallel-loops do not have have the exact same workload, thus leading
to imbalance (albeit less compared to the power-law graphs) which can be exploited by COWS.
WSRW shows gains where the overheads of WSRW are compensated by the gains resulting from
improved load-balance. Compared to WSRI, we believe that WSRW performs better because it uses
profiling information, whereas WSRI does not.

Across the two datasets and both the hardware, we find that WSRW obtains speedups of 1.07×,
1.34×, 0.96×, 0.97 ×, 1.01×, 1.17× and 1×, for KC, LE, BFS, BF, DS, PR and CC respectively. Similarly,
across the two datasets and both the hardware, we find that WSRI obtains speedups of 0.97×, 0.9×,
0.96×, 0.73 × ,0.97×, 0.92× and 0.90×, for KC, LE, BFS, BF, DS, PR and CC respectively. We see that
even in the context of roughly regular graphs, WSRW performs reasonably well, without much
impact due to its overheads.
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Fig. 20. Speedup of WSRW and WSRI over cyclic-scheduling on roughly regular graphs. Number of threads =
maximum # cores.

Overheads KC LE BFS BF DC PR CC Avg
i. 0.02% 0.025% 0.14% 0.01% 0.01% 0.45% 2.4% 0.43%
ii. 0.007% 0.001% 0.05% 0.03% 0.02% 0.001% 0.05% 0.03%

total 0.027% 0.026% 0.19% 0.04% 0.03% 0.451% 2.45% 0.47%

Fig. 21. Overheads for victim selection.

6.3 Overheads for victim selection
There are two main components of overheads for victim selection (i) Initialization cost of TArr
array. (ii) Cost paid by a thief to find the victim (may not be part of the critical-path). We have
found that the total overhead is a small percentage of the execution time. For example, Figure 21
shows the overheads for victim selection for different benchmarks on the Aqua system. It can be
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Fig. 22. % reduction in the number of steal operations for WSRI and WSRW schemes, compared to WSR.

seen that on average the overhead was very low (0.47%). This attests to the efficacy of our proposed
optimization. The results were similarly low for Goodwill; numbers omitted for brevity.
6.4 A study on the number steal operations
We also compared the number of successful steal operations performed by different work-stealing
schedulers (WSR, WSRI and WSRW). Figure 22 shows reduction in the number of steal operations,
for WSRI and WSRW compared to WSR. Though this reduction does not directly correspond to
increase in performance but the improvement does indicate that the load balancing is likely to be
better. Further, we can see that WSRW has significantly lower number of steal operations compared
to WSRI. This is due to the fact that WSRW steals based on the amount of remaining workload and
not based on the remaining number of iterations, this in turn leads to better load balance in WSRW,
which is reflected in the fewer number of steals.

The findings are inline with the common understanding that neither too many, nor too few steals
may be beneficial. For example, the classical scheduling schemes do not perform any steals, but
still perform worse, as they totally lose out on the benefits of work-stealing.
6.5 Impact of Optimizations
To study the impact of the proposed optimizations (Section 4) we have compared the performance
of WSRW, with and without the proposed optimizations. Figure 23 shows the geometric mean
performance gains (across all the five datasets) due to each of our proposed optimizations; when
the kernels are run using the maximum number of available hardware cores on each system. Recall
from Figure 11 that not all optimizations were applicable to all the benchmarks, and hence for each
benchmark, Figure 23 shows only the applicable bars for the optimizations. Opt1 and Opt3 provide
the most significant performance boost wherever applicable. Impact of various optimizations ranges
from 1.02× to 1.45× on Aqua and 1.01× to 1.33× on Goodwill.
Overall Summary of Evaluation. Overall, we find that compared to the default scheduling

schemes supported by OpenMP, our proposed scheduling technique leads to clear gains in the
context of parallel-for-loops with high workload imbalance among its iterations, while giving us
acceptable performance in the context of parallel-for-loops with more or less balanced workloads
among the iterations. Our evaluation over seven different benchmark programs, using five different
input datasets, on two different hardware across a varying number of threads (leading to a total
of 275 number of configurations) shows that in 225 out of 275 configurations, compared to the

, Vol. 1, No. 1, Article . Publication date: November 2023.



22 Prasoon Mishra and V. Krishna Nandivada

0

1

2

KC LE BFS BF DS PR CC

S
p
e
e
d
u
p

Opt1

Opt2

Opt3

Opt4

Total

1
.1
1

1
.3
0

1
.1
0

1
.0
3

1
.0
5

1
.0
2

1
.2
0

1
.1

1
.0
5

1
.2
9

1
.0
3

1
.0
2

1
.0
2

1
.0
4

1
.0
3

1
.0
2

1
.0
2

1
.0
6

1
.1
8

1
.6
4

1
.2
4

1
.1
4

1
.1
7

1
.0
2

(a) Aqua

0

1

2

3

KC LE BFS BF DS PR CC

Opt1

Opt2

Opt3

Opt4

Total

1
.1
9

1
.9
1

1
.1
1

1
.0
6 1
.1
4

1
.0
9 1
.2
0

1
.0
9

1
.0
8

1
.5
3

1
.0
2

1
.0
4 1
.1
1

1
.0
4

1
.0
3

1
.0
3

1
.0
7

1
.0
8

1
.3
8

2
.6
9

1
.2
4

1
.1
2 1
.2
3

1
.0
7

(b) Goodwill

Fig. 23. Impact of various optimization on WSRW. Speedups baseline: WSRW with no optimizations.

best OpenMP scheduling scheme for that configuration, WSRW achieves clear performance gains
(maximum upto 2 ×). In the remaining 50, except for one configuration where the degradation
was 30% (Figure. 19b, Orkut graph, 16 threads), the worst case degradation was not more than
10%. Further, unlike in the default schemes of OpenMP, we do not need to manually choose a
chunk-size in COWS and still get high performance. We also show that the proposed optimizations
are impactful.
7 Related Work
Loop-scheduling. There have been many works that go beyond the default set of scheduling
schemes (static, dynamic, guided) supported by OpenMP [17, 21, 24, 27]. Especially considering
the challenges in scheduling irregular parallel loops, there have been many focused attempts in
this direction. Many work-sharing scheduling strategies have been implemented in LLVM. [19]
shows that none of the scheduling strategies of LLVM were significantly superior to the rest across
all the benchmarks. And most of the time their scheme were similar to that of dynamic/guided.
In contrast, as shown in Section 6, our proposed scheme outperforms (upto 4 ×) these two in all
the seven benchmark kernels, for all inputs, for varying number of threads (except for CC kernel,
and Orkut input). BinLPT [28] is a workload-aware loop scheduler that takes the estimate of the
workload of the parallel-for-loop from the user to distribute the iterations. Thoman et al. [35] also
present a scheme that uses a combined compiler and runtime approach where they compute the
‘effort estimation functions’ for the parallel loops. One main issue with their technique is that their
scheme mainly works on affine loops with no heap access. Prabhu and Nandivada [29] extend
this idea to handle arbitrary loops. One main issue with all these schemes is that they assign the
iterations of the loop before the loop starts executing and do not have provisions for dynamically
re-assigning the iterations based on the actual execution. In contrast, our scheme does dynamic
load balancing by performing work-stealing based on the estimate of the remaining workload. It
would be interesting to extend our work with some of the prior techniques of loop scheduling to
improve processor affinity and cache locality [9, 10, 15, 16, 34].
Profile-guided Optimization. Profile-guided optimizations have been used for a long time

to improve the performance of parallel programs. For example, Chen et al. [8] use profiling to
improve the mapping of processes to different processors and Shrivastava and Nandivada [33] use
profiling to migrate the threads and scale the frequency of processors for saving energy. Similarly,
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Kejariwal et al. [20] and Bull [4] use profiling (history) information to efficiently chunk future
instances of parallel-for-loops. In this paper, we use the profile-guided information to compute the
cost of parallel-for-loops, which helps in efficiently choosing the victim for work-stealing. This
overall improves the performance of our scheme.

Work-stealing. Another popular approach to balance the non-uniform workload of the parallel-
for-loop is work-stealing [1, 2, 12, 14]. Prior works [31, 36] have shown that even though Cilk
supports work-stealing for task-parallelism, for data-parallel loops OpenMP outperforms Cilk
significantly. Durand et al. [11] show that stealing half the iterations of the victim is an effective
strategy. We improvise on this by stealing iterations which will reduce the workload of the victim
by half. We shows that our proposed scheme of cost aware work stealing outperforms the baseline
OpenMP. Recently Booth and Lane [3] present a work-stealing with dynamic chunk size based
scheduling (victim randomly chosen) that uses the history of the loop-execution to identify the
“reservation size" for each thread. They only compare their scheme against dynamic/guided (and not
against cyclic – one of the best performing schemes of OpenMP) and show that their performance is
comparable to guided/dynamic. In contrast, we propose a cost-aware work stealing scheme, which
uses the remaining-workload to identify the victim and the reservation size. Further, our scheme
has very low overheads and overall performs better than almost all of the schedules supported by
OpenMP (including cyclic).
There have been prior works [11, 22] that perform work-stealing NUMA aware work-stealing.

We believe that our proposed techniques can be extended with those ideas to realize improved
performance in NUMA aware systems.
8 Conclusion
In this paper we presented a scheme that efficiently extends the idea of work-stealing to OpenMP,
by taking into consideration the remaining workload with each thread; we call our scheme COst
aware Work Stealing (COWS, in short). We present two variations of COWS: WSRI (based on
remaining number of iterations) and WSRW (based on the amount of remaining workload). Inter-
nally COWS uses an efficient representation of assigned work and performs work-stealing with
minimal overheads. We evaluated our implementation on seven different benchmark kernels, using
five different input datasets, on two different hardware, for varying number of threads (leading to
a total 275 configurations) and show that in 225 out of 275 configurations, compared to the best
OpenMP scheduling scheme for that configuration, our approach achieves clear performance gains.
We argue that COWS gives the best of both worlds: the low overheads of static scheduling and
dynamic load balancing of work-stealing.
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A Appendix

1 Function getWL(Node X):
// Returns an expression (as a string) constaining an estimate of the work-load of one

iteration of OpenMP parallel-for-loop
2 int staticC = 0; // input independent

3 String dynamicC = “0”; // input dependent

4 foreach 𝑆 ∈ 𝑋 .𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠:
5 case S is a loop:
6 String lboundC = getLoopBound(S);
7 String predC = predEvalCost;
8 String lbodyC = getWL(S.body);
9 dynamicC = dynamicC ∥ “+” ∥ lboundC ∥ “*(” ∥ predC ∥ “+” ∥ lbodyC ∥ “)”;

10 case S is an if-then-else statement:
11 String predC = predEvalCost;
12 String thenC = getWL(S.thenBody);
13 String elseC = getWL(S.elseBody);
14 dynamicC = dynamicC ∥ “+” ∥ predC ∥ “+” ∥ MAX(thenC, elseC);

15 case Otherwise:
16 staticC = staticC + S.staticC

17 return dynamicC ∥ “+” ∥ string(staticC); // CostExpr

Fig. 24. Function to calculate the workload of each iteration of OpenMP parallel-for-loop.

For the sake of completeness, we restate the important aspects of the cost-expression generator
scheme of Shrivastava and Nandivada [33, Section 3.1, Fig. 7] to generate the cost expression
(CostExpr) for the body of each parallel-for-loop; interested readers may see the complete details
in their paper.

The function getWL maintains the cost-expression of the parallel for loop in two parts: an input
dependent part (in a string variable dynamicC), and an input-independent part (in an integer
variable staticC). The final expression denoting the cost of the iteration of the parallel-for-loop
is obtained by concatenating dynamicC and staticC; we use the ∥ operator to concatenate two
strings. The function iterates over all the statements of the parallel for loop. If the statement is a
loop, getWL generates a string denoting an expression that multiplies the loop-bound, to the cost
of the loop iteration (including the loop-predicate cost and loop body), and appends this string to
dynamicC. This multiplication ensures that two iterations executing the same syntactic piece of
code with different values for the loop-bound expressions will have different workloads at runtime.
The function getLoopBound tries to identify (and return as a string) a closed-form expression
denoting the loop bound. If the loop-bound expression cannot be computed (for example, for a
while-loop), then getLoopBound conservatively returns a special constant CL. If any of the called
functions (getLoopBound, or getWL) returns CL, then getWL returns CL. This special casing is not
explicitly shown in Fig. 24, for ease of explanation. If the statement is a conditional, getWL generates
an expression to compute the conservative worst-case cost of the statement (including the cost of
evaluating the predicate). The macro𝑀𝐴𝑋 (𝑌1, 𝑌2), expands to “(”∥𝑌1∥“ ≥ ”∥𝑌2∥“)?”∥𝑌1∥“ : ”𝑌2.
If the current statement is a simple statement (neither a loop nor a conditional), then getWL
increments staticC by the static cost of the current statement.
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