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Task parallelism has increasingly become a trend with programming models such as OpenMP 3.0, Cilk, Java

Concurrency, X10, Chapel and Habanero-Java (HJ) to address the requirements of multicore programmers.
While task parallelism increases productivity by allowing the programmer to express multiple levels of

parallelism, it can also lead to performance degradation due to increased overheads. In this paper, we

introduce a transformation framework for optimizing task-parallel programs with a focus on task creation
and task termination operations. These operations can appear explicitly in constructs such as async, finish

in X10 and HJ, task, taskwait in OpenMP 3.0, and spawn, sync in Cilk, or implicitly in composite code

statements such as foreach and ateach loops in X10, forall and foreach loops in HJ, and parallel loop
in OpenMP.

Our framework includes a definition of data dependence in task-parallel programs, a happens-before anal-

ysis algorithm, and a range of program transformations for optimizing task parallelism. Broadly, our trans-
formations cover three different but inter-related optimizations: 1) finish-elimination 2) forall-coarsening,

and 3) loop-chunking. Finish-elimination removes redundant task termination operations, forall-coarsening

replaces expensive task creation and termination operations with more efficient synchronization operations,
and loop-chunking extracts useful parallelism from ideal parallelism. All three optimizations are specified

in an iterative transformation framework that applies a sequence of relevant transformations until a fixed
point is reached. Further, we discuss the impact of exception semantics on the specified transformations, and

extend them to handle task-parallel programs with precise exception semantics. Experimental results were

obtained for a collection of task-parallel benchmarks on three multicore platforms: a dual-socket 128-thread
(16-core) Niagara T2 system, a quad-socket 16-core Intel Xeon SMP, and a quad-socket 32-core Power7

SMP. We have observed that the proposed optimizations interact with each other in a synergistic way,

and result in an overall geometric average performance improvement between 6.28× and 10.30×, measured
across all three platforms for the benchmarks studied.
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1. INTRODUCTION
Two complementary compiler based approaches for multi-core enablement of software
are 1) compilation and optimization of explicitly parallel programs and 2) automatic
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extraction of parallelism from sequential programs. This paper follows the first ap-
proach with a focus on task parallelism in programming models such as OpenMP
3.0 [OpenMP ], Cilk [Blumofe et al. 1995], Java Concurrency [Peierls et al. 2005],
X10 [Charles et al. 2005], Chapel [Chapel 2005], and Habanero-Java (HJ) [Habanero
2009]. While task parallelism increases productivity by allowing the programmer to
express multiple levels of parallelism that may be a natural fit with the underlying
algorithm, it can also lead to performance degradation due to increased overheads. In
this paper, we introduce a transformation framework for optimizing task-parallel pro-
grams, with a focus on a) reasoning about dependency relations in task-parallel pro-
grams and b) optimizing task creation, termination, and synchronization operations.
Experimental results were obtained for a collection of task-parallel benchmark pro-
grams written in HJ on three platforms: a dual-socket 128-thread (16-core) Niagara T2
system, a quad-socket 16-core Intel Xeon SMP, and a quad-socket 32-core Power7 SMP.
These results show geometric average performance improvements of 6.56×, 6.28×,
and 9.77× on the three platforms respectively, due to the optimizations introduced in
this paper. For certain benchmarks for which the original versions were highly ineffi-
cient, the maximum improvements on these three platforms ranged from 1103.90× to
3935.88×.

In addition to the performance benefits, we believe that this transformation frame-
work can serve as an exemplar for optimizations for future explicitly parallel pro-
grams. Optimization of parallel programs is a challenging research area because the
historical foundations of code optimization are deeply entrenched in the Von Neumann
model of sequential computing and have to be reworked for parallelism. As we will
discuss, a number of new legality constraints and supporting transformations need to
be incorporated in a unified transformation framework to optimize task-parallel pro-
grams. Our framework includes a definition of data dependence in task-parallel pro-
grams (called happens-before dependence), a static happens-before dependence analy-
sis algorithm, and a host of whole program transformations that help to achieve per-
formance benefits under three broad heads: a) finish-elimination to optimize task
termination operations, such as finish in X10 and HJ, taskwait in OpenMP 3.0, and
sync in Cilk, b) forall-coarsening to reduce the task creation and termination over-
heads incurred by parallel loops present within sequential loops, and c) loop-chunking
to derive useful parallel iterations from a given parallel loop specifying the ideal par-
allelism. These transformations pose interesting challenges in the presence of both
data dependence and other synchronization operations. Another interesting challenge
comes in the presence of programs that throw exceptions. The analysis and transfor-
mations presented in this paper can handle all of these challenges. We also introduce
a seq clause that simplifies writing and optimization of threshold conditions in task-
creation operations such as async spawning. To the best of our knowledge, this is the
first such framework to include this set of analyses and transformations for optimizing
task-parallel programs.

We now present the motivation behind each of the three categories of optimizations
discussed in this paper and note some of the underlying challenges.

Finish-elimination
The finish-elimination optimization involves eliminating and/or reshaping the finish
regions to reduce synchronization overhead and improve ideal parallelism. As an
example, Fig. 1 shows a code fragment from the BOTS Health benchmark [Du-
ran et al. 2009] rewritten in HJ1. Each call to method sim village par(v) con-

1While HJ is the language used to describe the problem and our solution, the approach described in this
paper is applicable to any task-parallel language.
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void sim_village_par(Village vil){
// Traverse village hierarchy

1: finish {
2: final Iterator it = vil.forward.iterator();
3: while (it.hasNext()) {
4: final Village v=(Village)it.next();
5: async seq ((sim_level-vil.level) >= bots_cutoff_value)
6: sim_village_par(v);

} // while
7: ... ...;
8: } // finish:
9: ... ...
} // end function

Fig. 1: Original Code for BOTS Health benchmark

void sim_village_par(Village vil){
// Traverse village hierarchy
1: if ((sim_level-vil.level) < bots_cutoff_value){
2: finish {
3: final Iterator it = vil.forward.iterator();
4: while (it.hasNext()) {
5: final Village v=(Village)it.next();
6: async sim_village_par(v);

} /*while*/
... ...;} // finish

} else {
7: final Iterator it = vil.forward.iterator();
8: while (it.hasNext()) {
9: final Village v = (Village)it.next();
10: sim_village_par(v);

}
... ...;}

... ...
} // end function

Fig. 2: Optimized Version of Fig. 1.

tains a finish construct spanning lines 1-9. The async seq construct in lines 5 and
7 executes the function sim village par(v) sequentially if condition (sim level -
vil.level >= bots cutoff value) is true, otherwise it creates a child task to invoke
sim village par(v) (see Section 2 for details on HJ syntax). As a result, multiple child
tasks created in multiple iterations can execute in parallel with the parent task. The
parent task waits at the end of line 9 for all these child tasks to complete since the
scope of the finish construct ends at line 9. The code fragment in Fig. 2 shows the ef-
fect of applying finish-elimination optimization on the example code shown in Fig. 1.
As can be seen, the number of dynamic finish constructs executed in Fig. 2 are fewer
than in Fig. 1 since no finish constructs are executed in the else part of the code. The
impact of this optimization depends on the relative overhead of task termination with
underlying runtime scheduling policy such as work-sharing or work-stealing.
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Forall-coarsening2

To illustrate the challenges in forall-coarsening, Fig. 3(a) shows the pedagogical One-
Dimensional Iterative Averaging program [Chamberlain et al. 2004]. The forall loop
has an implicit outer finish inside which n parallel tasks are created to execute the
loop body. These n tasks terminate and join at the end of the forall loop. These task
creations and terminations are repeated in each iteration of the while loop, which can
result in a large overhead. A naive attempt to move the forall header outside the se-
rial loop (as shown in Fig. 3(b)) would lead to an incorrect translation: in this example,
the original computation outside the forall (sum and exchange) in Fig. 3(a) should be
executed only once per iteration of the while loop, and only after the termination of
the forall loop. In the translated program shown in Fig. 3(b), the sum and exchange
code is executed for each iteration of the serial loop, which in turn is executed once
for each parallel iteration of the forall loop, leading to incorrect semantics. A similar
problem would arise if the input program could throw exceptions (see Section 5 for
details). Further, the code shown in Fig. 3(b) has a data race on A and newA among
the parallel iterations of the forall loop and thus needs to be remedied by insert-
ing additional synchronization operations (shown in Fig. 3(c)). The next statement
in this correct translation serves as a barrier with a single statement [Yelick et al.
2007] that is guaranteed to be executed by only one task3. We present a two-phased
approach for forall-coarsening: a) Simple forall-coarsening to increase the granu-
larity of synchronization-free parallelism, b) forall-coarsening with synchronization
to increase the granularity of parallelism that may involve the addition of new syn-
chronization operations.

Loop-chunking
We start with the correctly transformed code after forall-coarsening shown in
Fig. 3(c). The code correctly captures the programmer’s original intent. However, if
n is larger than the number of available hardware threads, this code can incur signif-
icant overhead since the barrier synchronization performed by the phaser involves all
n iterations. As indicated earlier, loop-chunking [Kennedy and Allen 2002] is a stan-
dard approach to improve the efficiency of a parallel loop. Fig. 4(a) shows the result of
performing a chunking transformation mechanically on the forall loop, with the goal
of decomposing the forall loop into chunks of S iterations. (The 1:n:S notation in the
new jj forall loop is akin to the low : high : stride triple notation in Fortran 90 [Met-
calfe and Reid 1990].) There has been considerable past work to address the problem
of selecting an optimal value of S. The general problem of analytically determining
the optimal chunk size of a parallel loop in the presence of overhead and variance was
studied by Kruskal and Weiss [Kruskal and Weiss 1985]. Their approach was extended
by Flynn and Hummel [Flynn and Hummel 1990] to a sequence of multiple batches,
each batch using a progressively smaller chunk size than the previous batch. The idea
of using progressively smaller chunk sizes was also advocated by Polychronopoulos
and Kuck [Polychronopoulos and Kuck 1987]. In models like OpenMP [OpenMP ], the
programmer can guide the implementation by providing chunk policy and chunk size
values that can be set dynamically for different platforms. Note that the code transfor-
mation in Fig. 4(a) is independent of the value of the chunk size, S, and that S can in
fact even be set at runtime. Thus, our transformation framework is orthogonal to the

2In a previous conference submission [Zhao et al. 2010], we referred to the forall-coarsening phase as
forall-distillation.
3The detailed semantics of next with single statement is described in Section 2.1.1.
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1: delta = epsilon+1; iters = 0;
2: while (delta > epsilon) {
3: forall (j : [1:n]) {
4: newA[j] = (oldA[j-1]+oldA[j+1])/2.0;
5: diff[j] = Math.abs(newA[j]-oldA[j]);

} // forall
// sum and exchange

6: delta = diff.sum(); iters++;
7: temp=newA; newA=oldA; oldA=temp;

} // while
(a)

1: delta = epsilon+1; iters = 0;
2: forall (j : [1:n]) {
3: while (delta > epsilon) {
4: newA[j] = (oldA[j-1]+oldA[j+1])/2.0;
5: diff[j] = Math.abs(newA[j]-oldA[j]);

// sum and exchange
6: delta = diff.sum(); iters++;
7: temp=newA; newA=oldA; oldA=temp;

} // while
} // forall

(b)

1: delta = epsilon+1; iters = 0;
2: forall (j : [1:n]) {
3: while (delta > epsilon) {
4: newA[j] = (oldA[j-1]+oldA[j+1])/2.0;
5: diff[j] = Math.abs(newA[j]-oldA[j]);

// sum and exchange
6: next single {
7: delta = diff.sum(); iters++;
8: temp=newA; newA=oldA; oldA=temp;

} // next single
} // while

} // forall
(c)

Fig. 3: (a) One-dimensional iterative averaging example. (b) Naive forall-coarsening
may be semantically incorrect. (c) Correct coarsening.

problem of selecting the optimal value of S, and we defer to the best-known solutions
in practice to address that problem4.

However, though this chunking transformation is legal for parallel loops that do not
contain synchronization operations, it is not legal for the example in Fig. 3(c) since it
contains a next (barrier) operation. In particular, the transformed version Fig. 4(a) will
attempt to complete all iterations of the while loop for iteration j before starting itera-
tion j+1 from the same chunk, and this semantics is different from that of the original
code in Fig. 3(c). A semantically correct transformed version is shown in Fig. 4(b). A
similar need for careful optimization would arise if the original forall loop contained
signal and wait operations instead of barrier operations. In general, our optimization

4If the chunk size is variable, the 1:n:S triple will have to be replaced by a call to an appropriate runtime
iterator.
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1: delta = epsilon+1; iters = 0;
2: phaser ph = new phaser(single);
3: forall ( point[jj] : [1:n:S] ) phased(single(ph)) {
4: for (int j = jj ; j <= min(jj+S-1,n) ; j++) {
5: while ( delta > epsilon ) {
6: newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;
7: diff[j] = Math.abs(newA[j]-oldA[j]);
8: next single { // barrier with single statement
9: delta = diff.sum(); iters++;
10: temp = newA; newA = oldA; oldA = temp;

} // next single
} // while

} // for
} // finish

(a)

1: delta = epsilon+1; iters = 0;
2: phaser ph = new phaser(single);
3: forall ( point[jj] : [1:n:S] ) phased(single(ph)) {
4: while ( delta > epsilon ) {
5: for (int j = jj ; j <= min(jj+S-1,n) ; j++) {
6: newA[j] = (oldA[j-1]+oldA[j+1])/2.0 ;
7: diff[j] = Math.abs(newA[j]-oldA[j]);

} // for
8: next single { // barrier with single statement
9: delta = diff.sum(); iters++;
10: temp = newA; newA = oldA; oldA = temp;

} // next single
} // while

} // finish
(b)

Fig. 4: (a) Naive (incorrect) chunking of the program shown in Fig. 3(c); (b) Correct
chunking

pass chunks foreach loops, whether one is tightly contained inside a finish barrier,
such as in forall (note: a forall can be seen as syntactic sugar for finish foreach),
or is present standalone.

Combined effect of the different optimizations
The transformations presented in this paper can be used in conjunction with each
other. To get an understanding of the scope of these transformations together, Fig. 5(a)
shows an HJ program that first computes elements of a table as an average over its
neighbors from previous row. Then, based on a global option, it either processes each
element in each row in parallel to compute the sum or aggregates the elements of each
row in a serial code. After applying finish-elimination, forall-coarsening and loop-
chunking, the transformed code can be seen in Fig. 5(b). Compared to the original
code the transformed code has reduced number of barriers, avoids creating useless
activities, and extracts useful parallelism from ideal parallelism, resulting in overall
efficient code.

An interesting part of this transformation framework is that, it is generic in nature
and can be used in conjunction with other analyses and optimizations for task-parallel
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1: for (i:[1..n] {
2: forall (j:[1..1024]) {
3: A[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1])/3;
4: }
5: finish {
6: if (!aggregate) {
7: foreach (j: [1..1024]) {
8: double tmp = processSingle(A[i][j]);
9: atomic sum+= tmp;
10: }
11: }else {
12: sum += processAgg (A[i]); // has no escaping asyncs
13: }
14: } // finish
15: }

(a)

1: forall (j1:[1..16]) { // forall lifted
2: for (i:[1..n] {
3: for (j2:[1..64]) { // chunked loop
4: j = (j1-1) * 64 + j2; // adjusting the index for chunking
5: A[i][j] = (A[i-1][j-1] + A[i-1][j] + A[i-1][j+1])/3;
6: next; // synchronization
7: } } } // forall
8: if (!aggregate) {
9: forall (j1:[1..16]) { // foreach lifted
10: for (j2:[1..64]) { // chunked loop
11: j = (j1-1) * 64 + j2; // adjusting the index for chunking
12: for (i: [1..n]) {
13: double tmp = processSingle(A[i][j]);
14: atomic sum+= tmp;
15: } } } } // forall
16: else {
17: for (i: [1..n]) {
18: sum += processAgg (sum[i]); // has no escaping asyncs
19: } } // else

(b)

Fig. 5: (a) HJ program shows the scope of our work. (b) Transformed HJ program
to show the complexity of the problem. Order of transformations: finish-elimination,
forall-coarsening, loop-chunking.

programs. For instance, the approach introduced in this paper could be used as a pre-
pass to optimizations such as synchronization optimization [Nicolau et al. 2009].

Contributions

— An iterative algorithm to eliminate redundant finish operations that tries to in-
crease ideal parallelism in the program.

— Simple forall-coarsening: a transformation scheme that reduces the task cre-
ation/termination overhead without introducing any additional synchronization op-
erations.
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— forall-coarsening with synchronization: a more aggressive transformation scheme
that replaces task creation/termination operations by lighter-weight barrier synchro-
nizations.

— An iterative algorithm to realize useful parallelism from given specifications of ideal
parallelism by chunking parallel loops.

— Additional optimizations used to further improve performance as a post-optimization
phase. These include redundant next/next single elimination (RNSE), an algorithm
to eliminate and strength reduction of barrier operations, and loop readjustment that
marks loop-exchange operations during prior transformation phases and reverses
some of them to improve spatial data locality.

— Preservation of exception semantics: the transformation framework presented in this
paper respects the exception semantics of the HJ language (derived from the X10 v1.5
exception model [Charles et al. 2005]).

— Experimental results: our framework has been implemented within the HJ compi-
lation system [Habanero 2009] and has been evaluated on three different platforms.
The proposed optimizations interact with each other in a synergistic way and overall
result in a geometric average performance improvement between 6.28× to 10.30×,
measured across all three platforms.

Organization: The rest of this paper is organized as follows. Section 2 introduces the
HJ parallel programming language that is used in this paper as the target of the opti-
mizations. Section 3 presents the basic techniques used in the optimization framework,
including the basic program analysis and transformation schemes. Section 4 presents
the main optimization framework, and Section 5 gives the details of how to main-
tain the correct exception semantics during optimization. Section 6 discusses how all
the proposed optimizations are integrated in our transformation framework. Section 7
describes how to implement this optimization framework with the HJ compilation sys-
tem. In Section 8, we present the experimental results collected on three different
hardware platforms. Section 9 discusses the research work related to the techniques
introduced in this paper and finally, we conclude in Section 10.

2. BACKGROUND
2.1. Habanero Java (HJ) Language
Our input programs are written in HJ [Habanero 2009], which extends the earlier
Java-based version (v1.5) of the X10 programming language [Charles et al. 2005] with
phasers [Shirako et al. 2008] among other additions and modifications. The scope of
this paper is limited to the async, finish, and isolated parallel constructs in HJ,
thereby making this work applicable to any task-parallel language with primitives
for task creation, termination, and mutual exclusion. These constructs are summa-
rized below. Following the basic principles of structured programming, these constructs
can be arbitrarily nested with each other5 and with other sequential control-flow con-
structs in Java.

async: Async is the HJ construct for creating or forking a new asynchronous task.
The statement async 〈stmt〉 causes the parent task to create a new child task to exe-
cute 〈stmt〉 asynchronously (i.e., before, after, or in parallel) with the remainder of the
parent task. 〈stmt〉 is permitted to read/write any data in the heap and to read any
final local variable in the parent task’s lexical environment.

In this paper, we introduce an extension to async that simplifies programmer-
controlled serialization of task creation. The extension takes the form of a seq clause
with the following syntax and semantics:

5The only exception is that finish and async are not permitted within an isolated statement.
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async seq(cond) <stmt> ≡ cond ? <stmt>: async <stmt>

Blocking operation (such as critical section, or barrier operation) inside an async-seq
statement may lead to undesirable (and sometimes undefined) behavior. We employ a
runtime mechanism to ensure that there are no blocking operations inside a async-seq
statement; otherwise, a runtime exception is thrown.

The main benefit of the seq clause is that it removes the burden on the programmer
to specify <stmt> twice with the accompanying software engineering hazard of ensur-
ing that the two copies remain in sync. In the future, we plan to explore approaches in
which the compiler and/or runtime system can select the serialization condition auto-
matically for any async statement.

isolated: An isolated statement expresses a global critical section among all tasks.
It supports weak atomicity, since no mutual exclusion guarantees are enforced be-
tween a statement within an isolated block and a statement outside an isolated block.
We take inspiration from prior work [Larus and Rajwar 2006] and use the “isolated”
keyword instead of “atomic” to make explicit the fact that the construct supports weak
isolation rather than strong atomicity. Nesting of isolated statements is permitted but
is redundant. HJ prohibits async and finish statements within an isolated statement.
However, isolated blocks may contain loops, conditionals, and other forms of sequential
control flow.

finish: The HJ statement finish 〈stmt〉 causes the parent task to execute 〈stmt〉
and then to wait until all sub-tasks created within 〈stmt〉 have terminated, including
transitively spawned tasks. Operationally, each instruction executed in an HJ task has
a unique Immediately Enclosing Finish (IEF) statement instance [Shirako et al. 2008].

An async in statement S is considered to be escaping [Guo et al. 2009] (also referred
to as e-async) if it is not enclosed in a finish statement within S i.e., if its IEF is not
contained within S.

Besides termination detection, the finish statement plays an important role with
regard to exception semantics. As in X10, an HJ task may terminate normally or
abruptly. A statement terminates abruptly when it throws an exception that is not han-
dled within its scope; otherwise, it terminates normally. If any async task terminates
abruptly by throwing an exception, then its IEF statement also terminates abruptly
and throws a MultiException [Charles et al. 2005] formed from the collection of all ex-
ceptions thrown by all abruptly terminating tasks in the IEF. In contrast, in the Java
model, an exception is simply propagated from a thread to the top-level console.

foreach: The statement foreach (point p : R) S supports parallel iteration over
all the points in region R by launching each iteration as a separate async. A point is an
element of an n-dimensional Cartesian space (n ≥ 1) with integer-valued coordinates.A
region is a set of points and can be used to specify an array allocation or an iteration
construct as in the case of foreach. For instance, the region [0:200,1:100] specifies a
collection of two-dimensional points (i,j) with i ranging from 0 to 200 and j ranging
from 1 to 100.

A foreach statement does not have an implicit finish (join) operation, but its ter-
mination can be ensured by enclosing it within a finish statement at an appropriate
outer level. Further, any exceptions thrown by the spawned iterations are propagated
to its IEF instance.

2.1.1. Phasers. In this section, we summarize the phaser construct [Shirako et al.
2008] as an extension to X10 clocks [Charles et al. 2005]. Phasers integrate collective
and point-to-point synchronization by giving each activity (task) the option of register-
ing with a phaser in signal-only/wait-only mode for producer/consumer synchroniza-
tion or in signal-wait mode for barrier synchronization. In addition, a next statement
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for phasers can optionally include a single statement (next {S}), which is guaranteed
to be executed exactly once during a phase transition [Yelick et al. 2007].

These properties, along with the generality of dynamic parallelism and the phase-
ordering and deadlock-freedom safety properties, distinguish phasers from synchro-
nization constructs in previous studies including barriers [Gupta 1989; OpenMP ],
counting semaphores [Sarkar 1988], and X10’s clocks [Charles et al. 2005]. Though
phasers as described in this paper may seem X10-specific, they are a general uni-
fication of point-to-point and collective synchronizations that can be added to any
programming model with dynamic parallelism such as OpenMP [OpenMP ], Intel’s
Thread Building Blocks, Microsoft’s Task Parallel Library, and Java Concurrency Util-
ities [Peierls et al. 2005].

A phaser is a synchronization object that supports the following six operations by an
activity Ai:

(1) new: When Ai performs a new phaser(MODE) operation, it results in the creation of
a new phaser ph such that Ai is registered with ph according to MODE. The default
mode is signal-wait; it includes signal and wait capabilities, and is used when
MODE is omitted.

(2) phased async: When Ai performs “async phased (ph1〈mode1〉, ph2〈mode2〉, . . . )Aj”
statement, it creates a child activity Aj registered with a list of phasers with
specified modes. If 〈modek〉 is omitted, the same mode as Ai is assumed by default.

(3) drop: Ai drops its registration on all phasers when it terminates. In addition, when
Ai finishes executing a finish statement F , it completely de-registers from each
phaser ph for which F is the IEF for ph’s creation. This constraint is necessary for
the deadlock freedom property for phasers [Shirako et al. 2008].

(4) next: The next operation has the effect of advancing each phaser on which Ai is
registered to its next phase, thereby synchronizing all activities registered on the
same phaser. The semantics of next is equivalent to a signal operation followed by
a wait operation. The exception semantics for the single statement was unspeci-
fied [Shirako et al. 2008]. We define the exception semantics of the single statement
as follows: an exception thrown in the single statement that causes all the tasks
blocked on that next operation to terminate abruptly with a single instance of the
exception thrown to the IEF task. 6.

(5) signal: A signal operation by Ai is shorthand for a ph.signal() operation per-
formed on each phaser ph on which Ai is registered with signal capability. Note
that ph will advance to its next phase when all activities registered on ph with
signal capability perform ph.signal() operations.

(6) wait: A wait operation by Ai is a blocking operation to wait for all phasers on
which Ai is registered with wait capability to advance to the next phase. Note that
a wait operation is always performed as the latter part of a next operation and
hence does not cause any deadlock.

forall: HJ introduces forall 〈stmt〉 as syntactic sugar for “finish{ ph=new
phaser(SIG WAIT NEXT); foreach phased(ph) 〈stmt〉}”. The scope of the phaser ph is
limited to the implicit finish in the forall, and thus the parent task will drop its
registration on ph after all the iterations of forall are created.

2.2. Classical Loop Transformations
This section briefly summarizes some classical loop restructuring techniques that have
historically been used to improve parallelism and data locality, and expose other op-
portunities for compiler optimization [Wolfe 1996; Kennedy and Allen 2002].

6Since the scope of a phaser is limited to its IEF, all tasks registered on a phaser must have the same IEF.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A Transformation Framework for Optimizing Task-Parallel Programs A:11

— Strip Mining is a loop transformation that replaces a single loop with two nested
loops with smaller segments. This restructuring is an important preliminary step for
vectorization, tiling, SIMDization, and other transformations for improving locality
and parallelism.

— Loop Interchange results in a permutation of the order of loops in a perfect loop
nest and can be used to improve data locality, coarse-grained parallelism, and vec-
torization opportunities.

— Loop Distribution divides the body of a loop and generates several loops for differ-
ent parts of the loop body. This transformation can be used to convert loop-carried
dependences to loop-independent dependences, thereby exposing more parallelism.

— Loop Unswitching is akin to interchanging a loop and a conditional construct.
If the condition value is loop-invariant, it can be moved outside so that it is not
evaluated in every iteration.

— Loop Fusion is the inverse of loop distribution. It merges two loops to generate a
loop with a single header. This transformation can also help improve data locality,
coarse-grained parallelism, and vectorization opportunities.

The legality constraints for these transformations are well understood for cases in
which the input program is sequential. In Sections 3.2 and 5, we show how these trans-
formations can be extended in the context of task-parallel programs in the presence of
synchronizations and exceptions.

2.3. Program Structure Tree
Agarwal et al. [Agarwal et al. 2007] introduced a program representation called a Pro-
gram Structure Tree (PST) which statically represents the parallelism structure of a
single procedure. A PST for a procedure in a program is a rooted tree (N,E), where

— the set N of nodes can have the following types: root, statement, loop, async,
finish, and isolated. The root type corresponds to the start of the procedure,
and the statement type corresponds to all other statements except loop, async,
finish, and isolated.

— the set E contains edges resulting from reducing the abstract syntax tree of the
procedure into the types listed above.

We present a program structure graph (PSG) as an extension of PST to represent the
whole program by incorporating call graph information. A program structure graph is
given by a rooted graph (N,E), where a node in the set N may have the additional
types: function and call, besides the types of the nodes of PST. Similarly, we extend
the edge set by admitting optional labels call 〈context〉 and return 〈context〉; in-
tuitively, context contains the calling context. For the sake of this presentation, we
assume that each finish statement is represented as a pair of nodes in the PSG: begin-
finish and end-finish.

3. BASIS OF OUR TRANSFORMATION FRAMEWORK
In this section, we present three fundamental instruments of our transformation
framework: advances in program analysis techniques for task-parallel programs, ex-
tensions to traditional loop transformations in the context of task-parallel programs,
and a set of new transformations in task-parallel programs presented as variations of
some of the traditional optimizations in the context of parallel constructs. We start the
section by discussing two aspects of program analysis for task-parallel programs: data
dependence and happens-before dependence analysis. We follow it up with two differ-
ent sets of program transformation primitives that are inspired from many traditional
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program transformation techniques. To simplify the presentation, we first focus on
the restricted case where the input code is known to be exception-free. Later in Sec-
tion 5, we discuss the more general case involving exceptions. We use HJ as the target
language for describing the programs and the transformations there on. However, the
specified transformations can be applied in other similar task-parallel languages (such
as X10, OpenMP, Cilk and so on).

3.1. Data Dependence in Task-Parallel Programs
Legal program transformation requires the preservation of the order of ordered in-
terfering memory accesses in the input program. Data dependence analysis has tra-
ditionally enforced this requirement and to maintain the legality of transformations
of sequential programs. Modern optimizing compilers use data dependence analysis
for various program analysis and transformations, including loop transformations and
automatic parallelization [Kennedy and Allen 2002; Wolfe and Banerjee 1987]. How-
ever, dependence analysis is more challenging in the context of task-parallel languages
since parallel language constructs, such as async, impact which pairs of interfering
data accesses should be treated (or not) as data dependences.

Another aspect of parallel language semantics that impacts the legality of program
transformations is the memory consistency model. The data dependence framework
introduced in this paper can be viewed from two perspectives. From the perspective of a
strong memory model such as Sequential Consistency [Lamport 1979], this framework
only specifies transformations that are legal for data-race-free programs. In this case,
our framework would be applicable to memory models such as that proposed for C++
in which the behavior of programs with data races is undefined. From the perspective
of a weak memory model, such as Location Consistency [Gao and Sarkar 2000], this
framework specifies transformations that are legal for all programs whether or not
they exhibit data races.

3.1.1. Dynamic happens-before dependence. In this section, we extend the classical def-
inition of data dependence in sequential programs to happens-before dependence in
parallel programs. We begin by adapting the definition of a happens-before relation
(HB) of Lamport [Lamport 1978] to a dynamic execution of an HJ program. Specifically,
the relation HB on instances IA and IB of statements A and B is the smallest relation
satisfying the following conditions:

(1) (Sequential order) If IA and IB belong to the same task, and IB is sequentially
control or data dependent on IA, then HB(IA, IB) = true.

(2) (Async creation) If IA is an instance of an async statement, and IB is the
corresponding instance of the first statement in the body of the async, then
HB(IA, IB) = true.

(3) (Finish termination) If IA is the last statement of an async task, and IB is the end-
finish statement instance of IA’s immediately-enclosing-finish (IEF) instance, then
HB(IA, IB) = true.

(4) (Isolated) All instances of interfering isolated blocks in a dynamic execution of an
HJ program can be assumed to be serialized in some total order. If IA is the last
statement in an isolated block instance, and IB is the first statement of the next
isolated block instance in the total order, then HB(IA, IB) = true.

(5) (Transitivity) If HB(IA, IB) = true and HB(IB , IC) = true then HB(IA, IC) = true.

Given the dynamic HB relation, we define a dynamic happens-before dependence re-
lation HBD on statements A and B as follows. We say that HBD(A,B) = true if there is
a possible execution of the program with instances IA and IB of statements A and B
that satisfies all the following conditions:
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// Before loop distribution
for (int i = ...) {
/* S1 */ X[f(i)] = ... ;
async { /* S2 */ ...

= X[g(i)]; }
}

=⇒

// After loop distribution
for (int i = ...)

/* S1 */ X[f(i)] = ... ;
for (int i = ...)

async { /* S2 */ ... = X[g(i)]; }

Fig. 6: Loop distribution example

(1) HB(IA, IB) = true,
(2) IA and IB access the same location X and at least one of the accesses is a write,

and
(3) There is no statement instance IC in the same execution that writes X such that

HB(IA, IC) = true and HB(IC , IB) = true.

As with dependence analysis of sequential programs, we classify the dependence as
flow, anti, and output when the accesses performed by IA and IB are read-after-write,
write-after-read, and write-after-write respectively. Further, the HBD relation can be
qualified by restricting the sets of instances participating in the dependence akin to
direction vectors and distance vectors in sequential programs. It should be easy to
see that the HBD relation degenerates to sequential data dependences when the input
program is sequential. Also, as with sequential data dependence analysis, any HBD
analysis performed by a compiler is necessarily conservative to guarantee soundness
i.e., the analysis must err on the side of stating that HBD(A,B) = true when it is unsure
of the dependence relation. Thus, HBD is a “may dependence” analysis.

We conclude this section with a discussion of HBD analysis on the example code frag-
ment in Fig. 6. We have a flow dependence from S1 to S2 on variable X with direction
vector (≤) assuming that the subscript functions f(i) and g(i) are unanalyzable by the
compiler. While a sequential compiler would also report a loop-carried anti-dependence
from S2 to S1 with direction vector (<), no such dependence occurs in the parallel case
according to the definition of HBD since no execution of the code fragment can result
in instances IS1

and IS2
of statements S1 and S2 such that HB(IS2

, IS1
) = true. Thus

there is no dependence cycle that includes S1 and S2. As a result, loop distribution can
be performed on S1 and S2 as shown in Fig. 6 even though loop distribution would be
illegal in the sequential case.

3.1.2. Computation of Happens-Before Dependence. We now present a scheme to compute
the happens-before dependence information based on the static happens-before infor-
mation. It involves a two phase process. We first present a conservative constraint
based algorithm to compute may-happen-before information as a set MHB of pairs: if
(N1, N2) ∈MHB, then N1 may happen before N2. We use N1, N2 · · · (with numeric sub-
scripts) to denote nodes in the PSG, corresponding to the static statements rather than
the dynamic instances. In the second phase, we propagate the may-happens-before in-
formation introduced by the isolated statements.

Phase 1: We generate a set of constraints to compute static happens-before infor-
mation in Fig. 7. Note the following points pertinent to the constraints: (a) Statically
each async statement has a set of one or more IEFs in the PSG; and (b) Unlike a dy-
namic instance of a statement, a static instance can have more than one possible last
statement.

We solve these constraints to generate the set MHB (which contains only partial
may-happen-before information, as this phase does not take into consideration the
isolated statements). In general, the happens-before information may also contain a
condition vector (akin to direction and distance vectors), giving the conditions under
which the relation may hold. In such a case, each element of the set MHB will be
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Phase 1
For each N1, N2 ∈ Nodes:

(1) if N1 and N2 are in the same activity, and N1 is to the left of N2 in G, then (N1, N2) ∈MHB;
(2) if N1 and N2 are in the same activity, and both the nodes have a common loop node as one

of their ancestors in G, then {(N1, N2), (N2, N1)} ⊆MHB;
(3) if N1 is an async statement and N2 is the first statement in that async, then (N1, N2) ∈

MHB;
(4) if N1 is one of the last statements of an async statement and N2 is the end-finish statement

of one of the IEF of the async statement, then (N1, N2) ∈MHB;
(5) if ∃N3 ∈ Nodes, (N1, N3) ∈MHB and (N3, N2) ∈MHB, then (N1, N2) should also be added

to MHB for transitivity i.e., (N1, N2) ∈MHB.

Phase 2
(1) For each N1, N2 ∈ Nodes: if N1 and N2 are isolated statements and (N1, N2) 6∈ MHB and

(N2, N1) 6∈ MHB, then add both (N1, N2) and (N2, N1) to MHB i.e., {(N1, N2), (N2, N1)} ⊆
MHB;

(2) Generate and solve the following constraints: For each N1, N2 ∈ Nodes: if ∃N3 ∈ Nodes,
(N1, N3) ∈ MHB and (N3, N2) ∈ MHB, then add (N1, N2) to MHB for transitivity i.e.,
(N1, N2) ∈MHB.

Fig. 7: Constraints to compute static happens-before information. First, solve the con-
straints generated from Phase 1 to compute a first cut of MHB without taking into
consideration the isolated statements ; then execute the Phase 2.

a three tuple where the third element is the condition vector. A discussion on such
precise happens-before information is left for future work.

Phase 2 After we have obtained the partial may-happen-before information in
the first phase, we use a two step process to update the set MHB, to include the
happens-before relation introduced by the isolated statements. Step 1: For each pair
of isolated statements, we introduce a commutative may-happen-before relation, if
they are not already ordered. Step 2: We introduce constraints to address the transi-
tive may-happen-before relation and solve them.

Now we summarize the algorithm to compute static happens-before dependence
(which we call the may-happen-before-dependence), based on the MHB information.
For any two nodes N1 and N2, we say that N2 has a may-happen-before-dependence on
N1, denoted by MHBD(N1, N2) = true, if (i) (N1, N2) ∈ MHB, (ii) N1 and N2 access the
same variable or storage location and one of the access is a write, (iii) ¬∃N3 ∈ Nodes:
MHBD(N3, N1) = true and MHBD(N2, N3) = true. As an illustration, for the code snippet
shown in Fig. 8(a), a subset of the elements from the MHB set, and the complete MHBD
set for each variable are shown in Fig. 8(b) and Fig. 8(c), respectively.

3.2. Extensions to traditional loop transformations
In this section, we present some extensions to the traditional loop transformation tech-
niques in the presence of task-parallel programs. These transformations will be used
later to derive more complex program optimization techniques. Fig. 9 presents some
of our extensions to the traditional loop transformations in the context of task-parallel
programs. The comments under each rule shown in Fig. 9 act as the preconditions
that need to be satisfied for the rule to be applied. An e-async is an escaping async as
defined in Section 2. A statement is considered to be side effect free if (a) it does not
update any variable whose value is visible after the execution of the statement, and (b)
it does not have an e-async. The dependence relations mentioned in the preconditions
refer to the may-happen-before-dependence relations discussed in Section 3.1.2.
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1. X = 0;
2. Y = 0;
3. async {
4. X = 1;
5. isolated {
6. Y = 1;

}
} /* async */

7. async {
8. do {
9. isolated {
10. t1 = Y; }
11. } while(t1 == 0);
12. t2 = X;
13. print t2;

} /* async */
(a)

MHB ⊃ {(1, 2), (3, 4)
(4, 12), (6, 10),
(10, 6), (10, 10)}

(b)

Var (MHBD) Dependencies
X (1, 4), (1, 12), (4, 12), (12, 4)
Y (2, 6), (2, 10), (6, 10), (10, 6)
t1 (10, 11), (10, 10)
t2 (12, 13)

(c)

Fig. 8: Example to illustrate may-happen-before dependence. (a) input program with
labels, (b) some illustrative elements of the MHB set, and (c) may-happen-before de-
pendences.

These preconditions are required for semantically correct translation. For instance,
for the Serial loop-distribution (rule 1) to be correct, there should be no dependence cy-
cle between S1 and S2. While the rest of the rules are different extensions to traditional
loop transformation techniques, the first rule (1) and the last rule (10) are the exact
traditional loop distribution and loop unswitching rules [Muchnick 1997] reproduced
in this paper for completeness. It may be noted that even though, we use the for loop
to describe many of the rules, it is also applicable to other loops (such as while and
do-while). We now discuss a few of the transformation rules.

Unlike Serial loop distribution, Parallel loop distribution (rule 2) does not require
any dependence testing and thus has no preconditions. It builds on a well known
observation that a parallel loop can always be fully distributed [Kennedy and Allen
2002] since a loop-carried dependence is needed to create a distribution-preventing
cycle. Hence the forall loops can be fully distributed. The implicit finish opera-
tions in forall ensure the correctness of the resulting transformation. As in classical
serial loop distribution, it may be necessary in some cases to perform scalar expan-
sion [Kennedy and Allen 2002] on any iteration-private scalar variables that may be
accessed in both S1 and S2.

Rule 3 (Loop/Finish interchange) increases the scope of a finish construct, and it
can do so only if there are no dependencies between the escaping asyncs in S3 and the
body of the serial for loop.

The Serial-parallel loop interchange (rule 4) has similarities to the traditional loop
parallelization rule [Kennedy and Allen 2002]. Rule 5 (Parallel-serial loop interchange)
builds on a well known observation from classical vectorization: “a loop that carries no
dependences cannot carry any dependences that prevent interchange with other loops
nested inside it” [Kennedy and Allen 2002]. Though this observation was developed for
sequential loops that are parallelizable, it is just as applicable to parallel forall loops.
Thus, the interchange in rule 5 can be performed without the need for checking any
data dependences. For simplicity, we assume that the inner sequential loop’s iteration
space, R2, is independent of the outer forall loop’s index variable. Extension of this
rule to support interchange of trapezoidal loops should be straightforward as in past
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work on loop interchange in sequential programs [Kennedy and Allen 2002]. We also
assume that the loop body S does not contain any break or continue statements; sup-
port for those statements is more complicated but can be built on the exception support
in Section 5.

Loop unpeeling (rule 6) expands the scope of a forall loop by adding the statement
S2 to the body of the loop; S2 is executed as a next-single statement. This rule assumes
that S2 does not have break or continue statements.

Loop fusion (rule 7) builds on the classical loop fusion transformation for sequential
code [Kennedy and Allen 2002]. It merges two forall statements by fusing their bodies
and inserting a next (barrier) statement. Both of these rules (unpeeling and fusion) use
the implicit phaser associated with forall.

Loop switching (rule 8) is based on the inverse of classical loop unswitching trans-
formation discussed in Section 4.2. It expands the scope of the forall loop by bringing
an if statement inside the body of the loop.

Rule 9 (Parallel loop unswitching) builds on the classical unswitching transforma-
tion for sequential code [Kennedy and Allen 2002] (also shown in rule 10). The main
assumption here is that the condition e is independent of the forall loop’s index vari-
able.

3.3. Variations of traditional transformations with parallel constructs
In this section, we discuss some new transformations, presented as a variation to
the traditional (non-loop) program transformation techniques in the presence of task-
parallel programs. These transformations, along with the ones presented in Sec-
tion 3.2, will be used later to derive complex program optimization techniques.

Fig. 10 presents some of our extensions to the traditional program (non-loop) trans-
formations in the context of task-parallel programs. The comments under each rule act
as the preconditions that need to be satisfied for the rule to be applied. For instance,
in the Finish distribution (rule 1), if S1 contains an e-async, then the translation may
be incorrect. We now present some details for the rest of the rules.

Redundant finish elimination removes the redundant finish around a forall state-
ment that has no e-asyncs. The Tail finish elimination (rule 5) applies to all the vari-
ants of tail finish statements, such as the finish statement occurring as the last
statement of an e-async statement or as the last statement of a tail if-then block or
else block. The Finish fusion (rule 6) expands the scope of the finish block, provided
there is no dependence between the e-asyncs of S1 and S2.

All these rules apply to both intra-procedural and inter-procedural contexts. In an
inter-procedural context, we may have to do some code replication to maintain the
program semantics. Fig. 11 presents a sample rule in the inter-procedural context.

3.4. Correctness Guarantees
In this section, we present an argument on the semantics-preserving nature of the
transformations presented in the paper. We state it in terms of a theorem on the
semantics-preserving nature of any optimization phase that consists of applying one
more instances of transformation rules presented in Fig. 9 and Fig. 10.

We first present a specialization of the may-happen-before-dependency introduced
in Section 3.1.

Definition 3.1. For a given variable (or storage location) v and any two nodes I1 and
I2, we say that MHBDV (I1, I2, v) = true, if (i) MHBD(I1, I2) = true, (ii) I1 and I2 both access
v and one of the access is a write, and (iii) ¬∃I3 ∈ Nodes: MHBDV (I1, I3, v) = true and
MHBDV (I3, I2, v) = true.
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1. Serial loop distribution:
for (...) { S1;S2; }
// no dependence cycle between S1 & S2

=⇒
{

for (...) {S1;}
for (...) {S2;}

2. Parallel loop distribution:
forall (point p : R1)
{ S1; S2; }

// S1 has no dependence on S2
=⇒

{
forall (point p : R1) S1;
forall (point p : R1) S2;

3. Loop/Finish interchange:
for (S1;cond;S2)

finish S3;
// Say Es = set of e-asyncs in S3
// ¬∃e ∈ Es: cond has dependence on e
// ¬∃e ∈ Es:body of e has loop
// carried dependence on S2, cond or S3

=⇒


S1;
finish

for (;cond;S2)
S3;

4. Serial-parallel loop interchange:
for (i: [1..n])

forall (point p : R1) S;
// iterations of the for loop are independent.
// R1 does not depend on i

=⇒

{
forall (point p : R1)

for (i: [1..n])
S;

5. Parallel-serial loop interchange:
forall (point p : R1)

for (point q : R2) S
// R2 is independent of p
// S contains no break/continue

=⇒

{
for (point q : R2)

forall (point p : R1)
S

6. Loop unpeeling:
forall (point p: R) S1;
S2;
// no break/continue in S2.
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒
{

forall (point p: R)
{S1; next S2;}

7. Loop fusion:
forall (point p: R1) S1;
forall (point p: R2) S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


forall (point p: R1||R2)
{if (R1.contains (p)) S1;
next;
if (R2.contains (p)) S2;}

8. Loop switching:
if (c)

forall (point p: R)
S;

=⇒

{
final boolean v = c;
forall (point p: R)

if (v) S;
9. Parallel loop unswitching:
forall (point p : R1)

if (e) S
//e is a pure function and is independent of p

=⇒
{

if (e)
forall (point p : R1) S

10. Serial loop unswitching:
for(S2;cond1;S3){

if (cond2) S4; else S5;
}

// cond2 has no dependence
// on S2,S3,S4 and S5,
// cond2 has no side effects

=⇒


if (cond2) {

for(S2;cond1;S3) S4;
} else {

for(S2;cond1;S3) S5;
}

Fig. 9: Extending traditional loop transformations for task parallel programs.
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1. Finish distribution:
finish { S1; S2; }
// S1 has no e-asyncs. =⇒

{
S1;
finish { S2; }

2. Finish unswitching:
finish

if(cond)S1; else S2;
// cond has no e-async

=⇒
{

if (cond) finish S1;
else finish S2;

3. If expansion:
finish {

S1;
if(cond) S2; else S3;
S4; }

// no dependence between cond and S1

=⇒



finish {
if (cond)
{S1; S2; S4;}

else
{S1; S3; S4}

}
4. Redundant finish elimination:
finish S;
// S has no e-async. =⇒ { S;

5. Tail finish elimination:
finish { S1;finish S2;} =⇒ { finish {S1; S2; }

6. Finish fusion
finish S1;
finish S2;
// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒


finish{

S1;
S2;

}

Fig. 10: Variations of traditional transformations for programs with parallel con-
structs.

Inter-proc Finish unswitching
finish {
S0; foo(); S5 }

void foo() {
S1;
if(cond)S2;else S3;
S4 };

// cond has no e-async
// cond has no dependence on S0, S1

=⇒



if (cond)
finish{S0;foo1();S5;}

else
finish{S0;foo2();S5;}

foo1() {
S1; S2; S4; }

foo2() {
S1; S3; S4; }

Fig. 11: Inter-procedural finish unswitching.

We now present a definition for semantics preservation for transformations that
ensure that each source AST node can be found at one or more places in the target
AST; extending the argument to the PSGs, for a given source PSG node I1, we will
assume that the set T (I1) gives the corresponding set of nodes in the target PSG.

Definition 3.2. A transformation of a parallel program is semantics-preserving if
the set of happens-before dependencies of all the variables at all program points in the
source program are conservatively preserved in the translated program; that is, in the
source program given a node I1 in the PSG, a variable v, and a set S of nodes such that
∀Ik ∈ S : MHBDV (I1, Ik, v) = true, then in the target program, ∀I2 ∈ T (I1),∀Ij ∈ T (Ik) :
MHBDV (I2, Ik, v) = true.
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LEMMA 3.3. The preconditions for each rule shown in Fig. 9 and Fig. 10 ensure that
the individual transformation resulting from each of the rules is semantics-preserving.

PROOF. (Sketch)
We present a sketch for the proof of the transformations involving parallel constructs

only; the proof for the traditional serial transformations (see the ones prefixed “Serial”
in Fig. 9) are skipped here. Before we proceed to the details, we bring to the notice of
the reader that because of the chosen memory model for any given activity A, as seen
by the other parallel activities, there is no assumed order among the instructions of
activity A. Thus, if a transformation does not introduce any new activities or modify
the MHP information, then the transformation is semantics-preserving, provided the
dependencies among the rest of the statements are preserved.

— (Rule 2 in Fig. 9, Parallel loop distribution): The transformation does not introduce
any new dependence or any change in the MHP information in the program. The
rule does introduce a new statement the second forall statement, but it does not
modify the happens-before-dependence relations.

— (Rule 3 in Fig. 9 Loop/finish interchange): Though this transformation increases the
scope of activities created in S2, but since the different asynchronous tasks created
in S2 have no dependence on different iterations of S2, the transformation does not
effect the happens-before-dependence relations of any source variable.

— (Rule 4 in Fig. 9, Serial-parallel loop interchange): The explanation for this rule is
quite similar to the previous rule.

— (Rule 5 in Fig. 9, Parallel-serial loop interchange): Although the transformation
reduces the scope of the activities created in the forall loop, it does not modify
the happens-before-dependence relation between any statements. While the order
among the forall and for loops are indeed interchanged, but there is no happens-
before-dependence relation between these statements.

— (Rule 6 in Fig. 9, Loop unpeeling): Because of the transformation, some of the e-
asyncs present in S1, which in the source code terminate before S2, may run in
parallel with S2. But the pre-conditions set ensure that there is no happens-before-
dependence between S2 and these e-asyncs.

— (Rule 7 in Fig. 9, Loop fusion): The explanation for this rule is similar to the previous
rule.

— (Rule 8 in Fig. 9, Loop switching): The explanation is trivial, considering that the
evaluation of the predicate still happens before the forall statement.

— (Rule 9 in Fig. 9, Parallel loop unswitching): The precondition ensures that e is a
pure expression and no side effects, and has no dependence on p. Thus, unswitching
the loop makes no difference to the happens-before dependence relations.

— (Rule 1 in Fig. 10, Finish distribution): The transformation does not change sequen-
tial program order. Since this rule is applied only if S1 has no e-asyncs, there is
no change in the MHP information, and the happens-before-dependence does not
change either.

— (Rule 2 in Fig. 10, Finish unswitching): The transformation does not change sequen-
tial program order. Since this rule is applied only if cond has no e-asyncs, there is
no new MHP relation and the happens-before-dependence does not change.

— (Rule 3 in Fig. 10, If expansion): A trivially correct serial transformation involving
code duplication.

— (Rule 4 in Fig. 10, Redundant finish elimination): S has no happens-in-parallel rela-
tion with any the code after the finish closure, since it does not contain e-asyncs.
Eliminating the finish does not violate any happens-before relation. Further, the
elimination of the finish does not effect the order of execution of S.
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— (Rule 5 in Fig. 10, Tail finish elimination): S1 either happens-before or happens-in-
parallel with S2, and eliminating the tail finish does not violate these relations.
Thus there is no change in the happens-before-dependence relations.

— (Rule 6 in Fig. 10, Finish fusion): S1 and S2 have no dependence, thus finish S1 and
S2 can be exchanged without violating any dependence relations between statements
in S1 and S2. Since S2 accesses no shared variables, moving S2 before finish S1 does
not impact the happens-before-dependence relations between the statements of S2
and statements present in other parallel activities. Note that the translation ensures
that S3 starts only after S1 has terminated, as was the case in the input program.

THEOREM 3.4. Any optimization pass consisting of applying one or more instances
of the rules shown in Fig. 9 and Fig. 10 is semantics-preserving.

PROOF. Follows directly from the Lemma 3.3.

4. NEW OPTIMIZATIONS FOR TASK-PARALLEL PROGRAMS
In this section, we discuss the details of our transformation framework to optimize task
parallel programs by presenting three new program optimizations. We use the basic
infrastructure developed in Section 3 to develop new program optimization techniques
for task-parallel programs written in HJ. It may be noted that these optimizations can
be applied in other similar task-parallel languages as well (such as X10, OpenMP,
Cilk). These new optimizations are namely, finish-elimination, forall-coarsening,
and loop-chunking.

4.1. Finish-Elimination
In this section, we introduce a transformation technique to reduce the number of dy-
namic finish operations performed by an HJ program. The same framework should
apply (with some adaptations) to optimizing termination operations in other languages
such as OpenMP’s taskwait and Cilk’s sync.

The basic insight behind finish-elimination is that a finish statement is redun-
dant if its body has no escaping asyncs. Our transformation technique is based on an
iterative algorithm, that incrementally optimizes the program.

4.1.1. Finish elimination algorithm. We now present a new compiler optimization phase
called iterative finish-elimination that depends on the happens-before dependence
analysis discussed above (see Section 3.1).

Fig. 12 shows the block diagram of our finish-elimination phase. Before the entry
to this optimization pass, we first build the program structure graph (defined in Sec-
tion 2.3). We then invoke the iterative finish-elimination algorithm on the root node
of the graph; it performs a post-order traversal of the PSG and recursively invokes the
rules shown in the block diagram (explained in Section 3). We repeated apply redun-
dant finish elimination, tail finish elimination, finish fusion, loop/finish interchange,
finish distribution, serial loop distribution, finish unswitching, if expansion, and Serial
loop unswitching. We continue the iterative process until either no further change is
possible, or there is no parallel code left in the body of the finish node. These sub-
transformations are monotonic in nature and can be applied in any order. After each
successful invocation of a rule on a node n, the program structure is changed and the
PSG needs to be updated; it is sufficient to rebuild the subtree rooted at the parent
node of n.
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Finish 
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Serial Loop 
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Fig. 12: Block diagram of the finish-elimination phase.
Transformation Input code Profitability constraint
1. Finish distribution finish { S1; S2; } S2 has e-asyncs.
2. For loop distribution for (...) { S1;S2; } S1 or S2 has e-async

3. Finish unswitching finish
if(cond)S1; else S2;

S1 or S2 has e-async

4. If expansion
finish {

S1;
if(cond) S2; else S3;
S4; }

S1 has e-async.
S2 or S3 has e-async

5. Loop unswitching

finish {
S1
for(S2;cond1;S3){

if (cond2) S4;
else S5; }// for

S6 } // finish

S4 or S5 has e-async

6. Loop/Finish interchange for (S1;cond;S2)
finish S3;

The set of e-asyncs in S3
is not empty

7. Tail finish elimination finish { S1;finish S2;} S1 and S2 have e-async.

8. Finish fusion finish S1;
finish S2;

S1, and S2 have e-async.

Fig. 13: Profitability constraints for iterative finish-elimination.

In addition to the correctness requirements of these transformation rules (shown
as comments on the rules in Fig. 9 and Fig. 10), the rules are applied only if the prof-
itability requirement is also satisfied. For each of the transformations, the profitability
requirements are shown in Fig. 13.

We now present the effect of invoking the finish-elimination algorithm on the run-
ning example shown in Fig. 1 (reproduced in Fig. 14(a)). There are some omitted shared
heap accesses in the code in Fig. 14(a) line: 9. Thus, because of the possible concurrent
data dependence, the finish node cannot be eliminated (Fig. 14(a) line: 1). Now the
compiler expands async seq to an if-then-else statement and applies if expansion
(rule 3, Fig. 10). Next, it applies loop unswitching, if expansion, finish unswitching,
and redundant finish elimination to derive the optimized code. Before applying the re-
dundant finish elimination rule, the compiler checks that the body of the inner finish
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has no e-async within (pre-condition (1)); it does so by analyzing the body of finish,
which involves analyzing the invoked function sim village par.

4.2. Forall-coarsening
In this section, we present our transformation framework to reduce task creation and
termination overhead. We introduce a new compiler optimization phase called forall-
coarsening. In the HJ program snippet shown in Fig. 15(a), the forall loop inside a
for loop (with m number of iterations) results in creation of m × n number of tasks,
with each of the n tasks waiting on a finish. The main goal of our translation is
to generate coarse grained forall statements that encompass the surrounding for
loops and while loops. Depending on the actual program code, different translations
are possible; Fig. 15(b) and Fig. 15(c) show two translations that coarsen the forall
loop in Fig. 15(a). We call the first translation simple forall-coarsening and the second
one forall-coarsening with synchronization. While both translations are more efficient
than the original code, the translation in Fig. 15(b) is arguably more efficient than
that in Fig. 15(c). However, dependences in different part of the code may (or may not)
permit either of the translations.

We adopt a two-phase strategy for forall-coarsening, as shown in the overall block-
diagram in Fig. 16: first we apply a set of transformations to attempt simple forall-
coarsening (which needs no additional synchronization). After that, we addressing
coarsening that may require synchronization. The different sets of transformations
in each of these two phases satisfy a confluence; though they may be applied in any
order, the resulting transformed code is guaranteed to be the same. Finally, we apply
some cleanup optimizations to further optimize the generated code. We now present
the details of each of these phases.

The rules for simple forall-coarsening and forall-coarsening with synchronization
are derived from the transformation rules given in Fig. 9 and Fig. 10; a similar ap-
proach can also be applied to a limited set of while loops, as in Fig. 3. We first start
with the simple forall-coarsening: for any for loop, we repeatedly apply serial loop
distribution, serial loop unswitching, redundant finish elimination, and serial-parallel
loop interchange until (a) no forall statement occurs in the body of for loops, or (b) no
further change is possible.

In contrast to simple forall-coarsening, intuitively, forall-coarsening with synchro-
nization replaces fork-join synchronization by barrier synchronization, thereby further
increasing the scope of forall iterations. For any forall loop, we repeatedly apply
loop fusion, loop switching, redundant finish elimination, and serial-parallel loop inter-
change until (a) no forall statement occurs in the body of for loops, or (b) no further
change is possible. The idea behind forall-coarsening with synchronization is to re-
place task creation/termination operations by lighter-weight barrier synchronizations.
This enables the programmer to express parallelism at a fine-grained task level and to
leave it to the compiler and runtime to map the parallelism to a coarser level that can
be implemented more efficiently.

Loop interchange is the key transformation to realize forall-coarsening. However,
we do not stop the coarsening pass after a successful loop interchange. We keep iterat-
ing in search of further gains. The key loop-interchange rule discussed above requires
that the body of the for loop should consist of only a forall loop. The other transfor-
mations used in both simple forall-coarsening and forall-coarsening with synchro-
nization are used to fulfill that requirement.

4.2.1. Cleanup Optimizations and Discussion.
The forall-coarsening techniques explained in the previous section may result in

many next barriers inserted in the code. As part of our cleanup optimizations, we use
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// Input program.
void sim_village_par(final Village vil){
1:finish {
2: final Iterator it=vil.iterator();
3: while (it.hasNext()) {
4: final Village v=(Village)it.next();
5: async seq ((sim_level - vil.level)
6: >= bots_cutoff_value)
7: sim_village_par(v);
8: } // while
9: ... ...;
10:} // finish:
11:... ... }

( a)

// After if expansion
void sim_village_par(final Village vil) {
1:finish {
2: final Iterator it=vil.iterator();
3: while (it.hasNext()) {
4: if ((sim_level - vil.level)
5: < bots_cutoff_value)
6: final Village v = (Village)it.next();
7: async sim_village_par(v);
8: else {
9: final Village v = (Village)it.next();
10: sim_village_par(v);
11: } } // while
12: ... ...;
13:} /*finish*/ ... ... }

( b)
// After Loop Unswitching
void sim_village_par(final Village vil) {
1:finish {
2: final Iterator it=vil.iterator();
3: if ((sim_level - vil.level)

< bots_cutoff_value){
4: while (it.hasNext()) {
5: final Village v=(Village)it.next();
6: async sim_village_par(v);} //while
7: } else {
8: while (it.hasNext()) {
9: final Village v=(Village)it.next();
10: sim_village_par(v);} }
11: ... ...;} /*finish*/ ... ...; }

( c)

// After if expansion.
void sim_village_par(final Village vil) {
1:finish {
2: if((sim_level-vil.level)

<bots_cutoff_value){
3: final Iterator it=vil.iterator();
4: while (it.hasNext()) {
5: final Village v=(Village)it.next();
6: async sim_village_par(v);}// while
7: ... ...;
8: }else {
9: final Iterator it=vil.iterator();
10: while (it.hasNext()) {
11: final Village v=(Village)it.next();
12: sim_village_par(v);}
13: ... ...;} /*finish*/}... ...;}

( d)
// After finish unswitching
void sim_village_par(final Village vil) {
1: if ((sim_level - vil.level)

< bots_cutoff_value){
2: finish {
3: final Iterator it=vil.iterator();
4: while (it.hasNext()) {
5: final Village v=(Village)it.next();
6: async sim_village_par(v);} // while
7: ... ...; } // finish
8: } else {
9: finish {
10: final Iterator it=vil.iterator();
11: while (it.hasNext()) {
12: final Village v=(Village)it.next();
13: sim_village_par(v);} // while
14: ... ...;} // finish
15: } ... ...; }

( e)

// After redundant finish elimination
void sim_village_par(final Village vil) {
1:if((sim_level-vil.level)

<bots_cutoff_value){
2: finish {
3: final Iterator it=vil.iterator();
4: while (it.hasNext()) {
5: final Village v=(Village)it.next();
6: async sim_village_par(v);} // while
7: ... ...; } // finish
8:} else {

// finish eliminated
9: final Iterator it=vil.iterator();
10: while (it.hasNext()) {
11: final Village v=(Village)it.next();
12: sim_village_par(v);} // while
13: ... ...;
14: } ... ...; }

( f)

Fig. 14: Applying the iterative finish-elimination algorithm. (a) input program, (b) after
if expansion, (c) after for unswitching, (d) after if expansion, (e) after finish unswitch-
ing, (f) after finish elimination. Transformations are shown in bold face.
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for (int i=0;i<n;++i){
S1;
forall(point[j]:[1..m]){
S2;

}
S3;
}

(a)

for (int i=0;i<n;++i){
S1; }
forall(point[j]:[1..m]){
for (int i=0;i<n;++i){
S2; } }

for (int i=0;i<n;++i){
S3; }

(b)

forall(point[j]:[1..m]){
for (int i=0;i<n;++i){
next S1;//next-single
S2;
next S3;//next-single

}
}

(c)

Fig. 15: (a) Example program, (b) simple forall-coarsening: does not need any addi-
tional barriers (assuming that dependences permit), (c) forall-coarsening with syn-
chronization: requires additional barriers (statements), but is always legal.
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simple for-all coalescing for-all coalescing with synchronization

Fig. 16: Block diagram for forall-coarsening

an algorithm called Redundant Next/Next-Single Elimination (RNSE). We use the fol-
lowing three heuristics:
− A next statement is considered redundant if the task drops the corresponding

phaser without accessing any shared state (updated by another task in the same
phase) after the barrier call.
− A next-single statement {next S;} can be replaced by {next;S;}, if multiple par-

allel instances of the statement S can be executed independent of each other.
− A next statement is considered redundant if it always precedes another barrier,

and the two sets of tasks registered on the phasers of these barriers are identical.
We invoke a post-pass of copy propagation, dead-code assignment elimination, and

loop fusion (rule 7, Fig. 9) that helps us further fine-tune our output.
We make a simple inter-procedural extension to all the transformation rules de-

scribed above. We present a sample inter-procedural transformation for loop inter-
change in Fig. 17. The remaining rules are similar in nature and effect.

While the two forall-coarsening phases explained in this section consist of multiple
transformations, only two of them (serial-parallel loop interchange and loop fusion) ac-
tually contribute to any reduction in task creation and termination overhead. The rest
of the transformations aid in increasing the scope and impact of these two transforma-
tions.

Traditional loop interchange transformation has a known history of impact on the
cache behavior. For example, loop interchange transformation on the example given
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Inter-procedural Loop interchange:
for (i : [1..n])
foo();

void foo () {
forall(point p:R)
// n does not depend on p
// R does not depend on i
S; }

=⇒



forall(point p:R)
for (i: [1..n])
foo();

void foo() {
S;
}

Fig. 17: Sample inter-procedural translation rule.

below can improve the cache performance of accessing b[j][i], but it can degrade the
reuse of a[i] and c[i].

for (i: [1:10000])
for (j : [1:10000])

a[i] = a[i] + b[j][i] * c[i];

As a result, the overall performance may be degraded after loop interchange. Now
say that the inner loop is a forall loop. Loop interchange interestingly can improve/-
worsen the cache behavior of a[i], c[i], and b[j,i] (depending on the cache protocol).
Studying the impact of cache on loop interchange would be an interesting problem in
itself, and we leave it for future work. Increasing task granularity without any con-
trol can also have a negative effect on load balancing (as the total parallelism is re-
duced). Identifying the optimal task size is a quite challenging problem in itself and is
beyond the scope of this paper. We assume that the compiler that invokes our forall-
coarsening phase knows the maximum allowed task size and accordingly can control
the coarsening phase to generate tasks with optimal size.

Another key point to note is that though transformations such as loop fusion and
loop unpeeling can decrease task creation and termination overheads, they may in-
crease memory overheads due to the possible increase in the number of tasks live at
a certain point in time. However, the loop-chunking phase that follows the forall-
coarsening phase ameliorates this issue to a large extent.

We now present the effect of invoking our framework on an input program shown in
Fig. 18(a). Fig. 18(b-h) show the results of applying our transformations on the input
program. As described in Fig. 16, simple forall-coarsening is applied first. There is
no cyclic dependency between S1 and the rest of the loop body, thus enabling loop dis-
tribution (shown in 18(b)). Next, the serial loop unswitching rule is applied, and the
conditional construct is moved out of the for loop (shown in 18(c)). Next, the serial
loop distribution rule is applied (shown in 18(d)). Note that, due to the cyclic depen-
dency between S2 and S3, the loop cannot be further distributed. After the application
of the serial-parallel loop interchange rule (shown in Fig. 18(e)), there is no more scope
for simple forall-coarsening and we proceed to apply forall-coarsening with synchro-
nization.

First, the loop unpeeling rule is applied (shown in Fig. 18(f)). After that, the serial-
parallel loop interchange rule is applied again (shown in Fig. 18(g)); at this point, no
other forall loop occurs in the body of any for loop. To increase the granularity, the
two forall loops can be merged by loop fusion (shown in Fig. 18(h)); this is done in the
context of cleanup optimizations. Comparing the original code (in Fig. 18(a)) and the
final code (in Fig. 18(h)), clearly shows that forall-coarsening is not a straightforward
transformation. Likewise, Fig. 19 shows the correct transformation for the code snippet
in Fig. 3(a).
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// Original example Code
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++){
S1;
if (serial) {

forall (point [p]: THREADS) S2;
S3;
// Say there is cyclic dependency
// between S2 and S3
forall (point [p]: THREADS) S4; } }

(a)

// After serial loop distribution
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++)

S1;
for(int itt=1;itt<=niter;itt++){
if (serial) {
forall (point [p]: THREADS) S2;
S3;

forall (point [p]: THREADS) S4;}}
(b)

// After serial Loop unswitching
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++) S1;
if (serial) {

for(int itt=1;itt<=niter;itt++){
forall (point [p]: THREADS) S2;
S3;

forall (point [p]: THREADS) S4;}}
(c)

// After serial loop distribution
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++) S1;
if (serial) {

for(int itt=1;itt<=niter;itt++){
forall (point [p]: THREADS) S2;
S3; }

for(int itt=1;itt<=niter;itt++)
forall (point [p]: THREADS) S4; }

(d)

// After serial-parallel loop Xchange
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++) S1;
if (serial) {
for(int itt=1;itt<=niter;itt++){
forall (point [p]: THREADS) S2;
S3; }

forall (point [p]: THREADS)
for (int itt=1; itt<=niter; itt++) S4;}

(e)

// After loop unpeeling
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++) S1;
if (serial) {

for (int itt=1; itt<=niter; itt++)
forall (point [p]: THREADS) {

S2;
next S3; }

forall (point [p]: THREADS)
for (int itt=1;itt<=niter;itt++) S4;}

(f)

// After serial-parallel loop Xchange
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++) S1;
if (serial) {

forall (point [p]: THREADS)
for (int itt=1; itt<=niter; itt++) {

S2;
next S3; }

forall (point [p]: THREADS)
for (int itt=1;itt<=niter;itt++) S4; }

(g)

// After loop fusion
THREADS = [0:num_threads-1];
for(int itt=1;itt<=niter;itt++) S1;
if (serial) {

forall (point [p]: THREADS) {
for (int itt=1; itt<=niter; itt++){

S2;
next S3; }

for(int itt=1;itt<=niter;itt++) S4;}}

(h)

Fig. 18: Applying the forall coarsening described in Fig. 16. (a) the input program, (b)
simple forall-coarsening: serial loop distribution, (c) simple forall-coarsening: loop
unswitching, (d) simple forall-coarsening: serial loop distribution, (e) simple forall-
coarsening: serial-parallel loop interchange, (f) forall-coarsening with synchroniza-
tion: loop unpeeling, (g) forall-coarsening with synchronization: serial-parallel loop
interchange. (h) cleanup optimization: loop fusion. The changes are shown in bold
face font.

4.3. Loop-Chunking
In this section we present our chunking phase to enable chunking of foreach loops
containing synchronization operations. The synchronization operation that we will fo-
cus on in this description is the next statement for clocks and phasers; as mentioned
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1. delta=epsilon+1; iters=0;
2. forall (point[j] : [1:n]) {
3. while (delta > epsilon) {
4. newA[j]=(oldA[j-1]+oldA[j+1])/2.0;
5. diff[j]=Math.abs(newA[j]-oldA[j]);
6. next {
7. delta=diff.sum(); iters++;
8. temp=newA; newA=oldA; oldA=temp; }}}

Fig. 19: Semantically equivalent translation of the code shown in Fig. 3.
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Fig. 20: Block diagram for the loop-chunking pass
1. finish {
2. ph = new phaser(); // SIG_WAIT mode by default
3. foreach (point i: R) phased(ph) {
4. for (int j = 0; j < m; j++) {
5. S1;
6. next;
7. if (array[j] != 0) {
8. for (int k = 0; k < l; k++) {
9. S2;
10. next; } } } } }

Fig. 21: Example foreach loop containing next statements

in Section 2, the phaser next statement can be used to support both barrier and point-
to-point synchronizations.

Fig. 20 shows a block diagram for our chunking phase. The general strategy to chunk
parallel loops containing synchronization operations is as follows. The foreach loop is
first strip mined into two nested parallel loops. If the loop body contains no next state-
ments, then the inner loop can be serialized, and a chunked version can be obtained af-
ter performing some clean-up transformations (the “NO” case in the flow chart). If the
loop body contains next statements, then a combination of three transformations —
parallel loop distribution, parallel-serial loop interchange, and parallel loop unswitch-
ing (presented in Fig. 9) — is applied repeatedly until a) no next statements occur
inside any instance of an inner foreach loop, or b) no further change is possible. In
case a), we can proceed to the serialization and clean-up transformations as before to
obtain a chunked parallel loop. In case b), the compiler is unable to chunk the paral-
lel loop and the foreach statement is left unchanged. The motivation for selecting the
above three transformations to iterate on is to attempt to isolate the next statements
by moving the inner parallel loop as far inward as possible. The three transformations
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Chunking Policy Iteration Sets
Block {0, 1, · · · N

P
− 1}, {N

P
, N
P

+ 1, · · · 2× N
P
− 1}, · · · , {(P − 1)× N

P
, · · ·N − 1}

Cyclic {0, P, · · · , }, {1, P + 1, · · · , }, · · · , {P − 1, 2× P − 1, · · · , }

Fig. 22: Iteration sets for Block and Cyclic chunking policies for region R = [0 : N − 1]
and P chunks.

foreach (point p: R) phased(〈args〉)
S =⇒

foreach (point g: Ig(R)) phased(〈args〉)
i-forall (point p: i.e.,Rg)

S

Fig. 23: foreach Strip mining transformation rule

used in this framework are monotonic — though they may be applied in any order, the
resulting transformed code is guaranteed to be deterministic. Of these three transfor-
mations, the parallel loop distribution is the basic transformation needed for chunking
by isolating next operations. Interchange and unswitching increase the opportunities
for isolation. Next contraction (described below) and choice of chunking policy are used
to improve the efficiency of the chunked version.

Next Contraction:
i-forall (point p : R1)

next
// Region R1 is non-empty.

=⇒

{
next

Next Contraction is a new transformation that is specific to X10 clocks and HJ
phasers. If we have an i-forall loop that contains only a next statement, then we
can replace it by a single next statement provided that its region is non-empty. This is
because the only visible effect of an “i-forall next” statement is synchronization with
other activities, which can be achieved just as well by a single next statement.

In this work, we assume that all programmer-specified conditions guarding a next
statement are invariant in the initial foreach loop, i.e., the conditions are single-
valued [Yelick et al. 2007]. However, as we will see in Section 5.3, our transformation
framework can handle cases in which a next statement is guarded by implicit excep-
tion conditions.

Fig. 21 contains an example foreach loop with next statements. In this example, all
iterations of the foreach loop are registered in signal-wait mode on phaser ph, which
means that the next statements serve as barrier operations. However, the transforma-
tion framework is also applicable to other phaser registration modes for which a next
statement may result in point-to-point synchronizations instead of a barrier operation.
It is obvious that a standard chunking of the foreach loop in Fig. 21 will not be legal.
The following sections describe the transformations performed by a framework that
can lead to a legal chunking.

4.3.1. Strip Mining. The classical strip mining transformation results in chunks of con-
tiguous iterations. However, for generality, we will define strip mining of a region (iter-
ation space) R to be an ordered pair (Ig, Ie), where Ig(R) is an iterator over multiple
chunks and for each chunk g, Ie(R, g) returns an iterator over the different indices
in the chunk. In addition to the ability to specify chunks of noncontiguous iterations,
this formulation allows us to specify chunking of multidimensional loops since regions
can be multidimensional in HJ. Fig. 22 shows the iteration spaces for Block and Cyclic
chunking policies for region R = [0 : N − 1] with P chunks.
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finish {
ph = new phaser();
foreach (point i: R) phased(ph) {

for (int j = 0; j < m; j++) {
S1;
next;
if (array[j] != 0) {
for (int k = 0; k < l; k++) {
S2;
next; } } } } }

(a)

finish {
ph = new phaser();
foreach (point g: Ig(R)) phased(ph) {

i-forall (point i : Ie(R, g)) {
for (int j = 0; j < m; j++) {
S1;
next;
if (array[j] != 0) {

for (int k = 0; k < l; k++) {
S2;
next; } } } } } }

(b)

Fig. 24: Strip mining of foreach loop: (a) original code, (b) transformed code.

Our rule for strip mining foreach loops is shown in Fig. 23. The i-forall is a spe-
cial “inner forall” construct that is defined only for our transformation framework.
It is not available to the programmer, and it will not be present in the final output
code. This new construct carries forward the dependence information and the excep-
tion semantics until we do the actual transformation. If chunking is successful, then
all instances of i-forall are replaced by sequential for loops; otherwise the original
foreach loop remains unchanged. This all-or-nothing approach is proposed for sim-
plicity; extensions to support partial chunking is a topic for future work. Also, the
real benefit of chunking in practice will only be realized when it is performed across
all statements in the original foreach, since even a single unchunked statement will
result in the creation of a large number of fine-grained activities.

The i-forall loop is very similar to the standard forall loop, except that it has no
phased clause, thereby registering on all the parent’s phasers with the same modes as
the parent activity i.e., the outer foreach. Also, though transmission of clocks and
phasers is not permitted through explicit finish operations in HJ, it is permitted
through the implicit finish in an i-forall because we know that all i-foralls will
eventually be replaced by sequential loops if a chunking transformation is performed.
Considering the similarities between the i-forall and forall loop, all the transfor-
mation listed in Fig. 9 are applicable for i-forall as well.

The strip mining transformation (shown in Fig. 23) is always legal, since the inner
i-forall loop is still parallel. The fact that the inner i-forall has an implicit finish
does not limit the parallelism in the original loop. Fig. 24 shows the result of the strip
mining transformation when applied to the code example in Fig. 21 (the changes are
shown in bold face).

Our serialization mechanism (described in Section 4.3.2) requires that no next op-
erations appear in any i-forall construct. In this section, we describe an iterative
approach to either move all next operations out of the i-forall loops targeted for se-
rialization or declare the original foreach loop to be non-chunkable. This approach is
based on repeated applications of the transformations shown in Fig. 20 and described
in Fig. 9 and Fig. 10.

Fig. 25(a-d) shows the results of applying our transformations on the strip mined
code in Fig. 24. First, Fig. 25(a) shows the result of interchanging the i-forall loop
with the sequential for-j loop. Next, Fig. 25(b) shows the result of distributing the
i-forall into three new i-forall loops. Then, Fig. 25(c) shows the result of applying
the rules next contraction and loop unswitching to move the third i-forall further
inwards. Finally, Fig. 25(d) shows the result of applying loop interchange, loop distri-
bution, and next contraction transformations; it achieves our desired goal of isolating
all next statements.
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// After parallel-serial loop Xchange
finish {
ph = new phaser();
foreach (point g: Ig(R)) phased(ph){

for (int j = 0; j < m; j++) {
i-forall (point i : Ie(R, g)) {
S1;
next;
if (array[j] != 0) {
for (int k = 0; k < l; k++){
S2;
next; } } } } } }

(a)

// After parallel loop distribution
finish {
ph = new phaser();
foreach (point g: Ig(R)) phased(ph) {
for (int j = 0; j < m; j++) {

i-forall (point i : Ie(R, g)) {
S1; }

i-forall (point i : Ie(R, g)) {
next; }

i-forall (point i : Ie(R, g)) {
if (array[j] != 0) {
for (int k = 0; k < l; k++) {
S2;
next; } } } } } }

(b)
// After next contraction and
// parallel loop unswitching
finish {
ph = new phaser();
foreach (point g: Ig(R)) phased(ph){
for (int j = 0; j < m; j++){
i-forall (point i : Ie(R, g)){
S1; }

next; // Contracted
if (array[j] != 0) {

i-forall (point i : Ie(R, g)) {
for (int k = 0; k < l; k++){
S2;
next; } } } } } }

(c)

// After parallel-serial loop Xchange,
// serial loop distribution,
// and next contraction
finish {
ph = new phaser();
foreach (point g: Ig(R)) phased(ph) {
for (int j = 0; j < m; j++){
i-forall (point i : Ie(R, g)){
S1; }

next;
if (array[j] != 0) {

for (int k = 0; k ¡ l; k++) {
i-forall (point i : Ie(R, g)){
S2; }

next; // contracted
} } } } }

(d)

Fig. 25: Applying our iterative transformation framework on the strip mined code in
Fig. 24. The changes in each step are shown in bold face.

4.3.2. Serialization. The job of Serialization is to confirm that no i-forall statement
contains a next and (if so) to serialize all the i-forall constructs. If such an i-forall
loop contains only a for loop nest and they are perfectly nested, we have the flexi-
bility to apply additional parallel-serial loop interchanges. As a preprocessing of se-
rialization, we readjust the position of th ei-forall loop so as to improve spatial
data locality. This loop readjustment pass brings performance improvements espe-
cially when the loop index of he i-forall loop is used in the innermost dimension
of arrays, e.g., i-forall(i:[...]) { for(j:[...]) { A[j][i] ...}}. Fig. 26 shows
the generated code after the serialization pass is performed on the transformed code
in Fig. 25(d). The last next operation in Fig. 26 is necessary because it is performed
dynamically in each iteration of its immediately enclosing for–k loop. For example, if
S2 is chosen to be “A[k][i+C] = A[k+1][i] + 1;” and offset C is chosen to be larger
than the chunk size, there can be a data race among the foreach iterations if the next
statement is removed. A quick comparison with the original code in Fig. 21 confirms
that loop-chunking of parallel loops is not a straightforward transformation.
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1. finish {
2. ph = new phaser(); // SIG_WAIT mode by default
3. foreach (point g: Ig(R)) phased(ph) {
4. for (int j = 0; j < m; j++) {
5. for (point i : Ie(R, g)) {
6. S1; }
7. next;
8. if (array[j] != 0) {
9. for (int k = 0; k < l; k++) {
10. for (point i : Ie(R, g)) {
11. S2; }
12. next; } } } } }

Fig. 26: The chunked code for the running example shown in Fig. 21.

5. EXTENSIONS FOR EXCEPTIONS
In this section, we discuss the impact of exception semantics on the three optimiza-
tion techniques discussed in Section 3 by extending the rules presented in Fig. 9 and
Fig. 10. The rules in this section are presented in the context of the HJ and X10 v1.5
exception model (which in turn builds on the Java exception model), but the overall ap-
proach should be relevant to other languages with exception semantics (such as C++).

As discussed in Section 2, an uncaught exception thrown inside an async state-
ment terminates the async but not its parent activity. It is caught by the surround-
ing (explicit or implicit) finish. This finish bundles all the caught exceptions into a
MultiException data structure and throws this collection instead of a single excep-
tion – which unless handled will in turn terminate the activity invoking the finish.
Exceptions thrown in the iterations of a foreach loop are handled similarly (they do
not impact the execution of other iterations), as each iteration of the foreach state-
ment can be viewed as an independent async statement. Thus, an uncaught exception
thrown inside the iterations of a forall are only caught by the surrounding implicit
finish, after all the activities forked in the forall have terminated.

Thus, for the rules described in Fig. 9 and Fig. 10 that involve modifying the scope
of any possible exception throwing statement, the semantics have to be maintained
explicitly. Considering the complexity of these rules, we present separate discussions
to explain the impact of exceptions on each of the three optimizations presented in this
paper.

5.1. Finish-elimination in the presence of exceptions
In this section, we discuss the impact of exception semantics on the finish-elimination
techniques discussed in Section 4.1.1 by extending the used transformation rules. We
follow the same overall approach as shown in Fig. 12 even in the presence of exceptions.
Fig. 27 presents the rules that need to be modified to handle exceptions, which are
briefly discussed below. Similar to rules presented in earlier sections, each rule has
preconditions presented as comments under each rule. The preconditions on each rule
fall into two categories: (i) required for semantically correct translations (indexed by
numerals), and (ii) profitability constraints that are employed for efficient compilation
(indexed by letters). As can be seen, the rules have now become more complicated
than the ones in Fig. 9 and Fig. 10, thereby underscoring the importance of compiler
transformation.

When the scope of a finish statement is reduced by taking a statement outside the
scope of the finish node, any exception that is thrown in the body of that statement
has to be handled in accordance with the exception semantics. As shown in the rule
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Finish distribution:

finish { S1; S2; }
// (1) S1 has no e-asyncs.
// (a) S2 has e-asyncs.

=⇒


try {S1;}
catch(Exception e){
MultiException me tt=new · · ·;
me.pushEx(e1); throw me; }

finish { S2; }
Finish unswitching:
finish

if(cond) S1; else S2;
// (1) cond has no e-async
// (2) cond is exception free.
// (a) S1 or S2 has e-asyncs

=⇒
{

if (cond) finish S1;
else finish S2;

Loop/Finish interchange:
for (S1;cond;S2)

finish S3;
// Say Es = set of e-asyncs in S3
// (1) ¬∃e ∈ Es: cond has dependence on e
// (2) ¬∀e ∈ Es:body of e has loop

carried dependence on S2 or S3
// (3) cond is exception free.
// (4) S2 is exception free.
// (a) Es 6= null

=⇒



S1;
finish {

for(;cond;S2){
S3;

}
}

Redundant finish elimination:

finish S;
// (1) S has no e-async. =⇒


try {S;}
catch(Exception e){

MultiException me=new · · ·;
me.pushEx(e1); throw me; }

Tail finish elimination:

finish {
S1;
finish S2; }

// (a) S1 and S2 have e-asyncs

=⇒



finish {
S1;
try {S2;}
catch(Exception e){
MultiException me=new · · ·;
me.pushEx(e1); throw me;}}

Finish fusion
finish S1;
finish S2;
//Say Es = set of e-asyncs in S1
//(1) ¬∃e ∈ Es: S2 has dependence on e
//(2) S1 throws no exceptions
//(a) S1 and S2 have e-async.

=⇒


finish{

S1;
S2;

}

Fig. 27: Transformation rules for finish-elimination in the presence of exceptions

for finish distribution, we catch any exception caught in the statement S1, bundle it
in a MultiException, and throw it again. Similar translation can be seen in the rules
given for redundant finish elimination and tail finish elimination. The rules for fin-
ish unswitching, loop/finish interchange, and inter-procedural finish unswitching are
applied only when the predicate cond does not throw any exception.
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5.2. Forall-coarsening in the presence of exceptions
In this section, we discuss the impact of exception semantics on the forall-coarsening
phase discussed in Section 4.2. We follow the same overall approach as shown in Fig. 16
even in the presence of exceptions. Fig. 28 presents the rules to handle exceptions, and
are briefly discussed below. Besides presenting a new rule (loop switching (try-catch)),
we modify the existing rules for some of the transformations.

The serial loop distribution rule is applied only if S2 does not throw any exceptions.
It first evaluates S1, and any exception thrown in a certain iteration (maxItr) is remem-
bered and is thrown after maxItr−1 number of iterations of S2 have been executed.

The serial-parallel loop interchange rule generates code to check for any thrown
exceptions after each evaluation of the statement S. In the generated code, each outer
parallel iteration waits for other parallel iterations to finish executing one sequential
iteration of S, then each parallel iteration checks if an exception was thrown in any of
the iterations (by checking the flag excp) and breaks out of the inner for loop if the
flag is set. If an exception is thrown by an iteration, then it is communicated to all the
other threads, which in turn terminate their execution.

The loop unpeeling and loop fusion rules generate code to evaluate the statement S2
under the condition that no instance of S1 has thrown an exception. The loop unpeeling
rule ensures that only one instance of S2 is executed. This execution happens in a try-
catch block. We save any thrown exception in the variable ex, which is checked outside
the forall loop; if ex is set, then it is thrown upward. The loop fusion rule does not
evaluate S2 inside a try-catch block. Since in the original code S2 is inside the forall,
the semantics are preserved.

The loop unswitching (try-catch) is a new rule that is relevant only in the presence of
exceptions. It generates code to execute each iteration of S1 inside a try-catch block and
saves the thrown exception in a MultiException data structure. The pushException
method avoids dataraces by using appropriate synchronization mechanisms. After the
forall loop has terminated, we check if any exception was thrown and invoke S2 ac-
cordingly.

5.3. Loop-chunking in the presence of exceptions
In this section, we discuss rules to perform loop-chunking transformations in the pres-
ence of exceptions. We first discuss the exception semantics of the i-forall statement.
Since the i-forall loop is generated from a foreach statement, we must execute each
iteration of the i-forall regardless of exceptions thrown in other iterations. Thus, we
define the exception semantics of the i-forall as follows: all the exceptions thrown
by different iterations of the i-forall are thrown as independent asynchronous ex-
ceptions, i.e., they are inserted into the MultiException collection gathered at the ex-
plicit IEF (Immediately Enclosing Finish) instance for the i-forall (ignoring implicit
finish operations in i-forall statements).

We follow the same overall approach as shown in Fig. 20, even in the presence of
exceptions. However, we modify the rules for some of the transformations to handle
exceptions and present the new rules in Fig. 29; these are briefly discussed below.

Strip mining: We re-use the strip mining rule presented in Fig. 23; the exception
semantics of the i-forall statement guarantees correct translation, keeping in mind
that the implicit finish in an i-forall does not collect exceptions like an explicit
finish.

Loop interchange: Loop interchange (rule 1) requires special handling in the pres-
ence of exceptions since an exception thrown in the original inner for loop terminates
the rest of the iterations of the for loop, but does not impact other iterations of the
i-forall loop. Thus, in the transformed program, for any iteration of the outer se-
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Serial loop distribution:

for (i: [1..n])
// No dependence cycle between
// S1 and S2.
// S2 does not throw exceptions
{ S1; S2; }

=⇒



int maxItr = n+1;
Exception ex = null;
for (i: [1..n])

try {S1;}
catch (Exception e){

ex=e; maxItr=i; break;}
for (i: [1..maxItr-1]) S2;
if (ex 6= null) throw ex;

Serial-parallel loop interchange:

for (i: [1..n])
// Different iterations of the for loop
// are independent.

forall (point p : R)
// R does not depend on i
S;

=⇒



boolean excp = false;
forall (point p : R)

for (i: [1..n]) {
try {S;}
catch (Exception e)
{excp = true; throw e;}

next;
if (excp==true) break; }

Loop Unpeeling:

forall (point p: R)
S1;

S2;
=⇒



boolean excp = false;
Exception ex = null;
forall (point p: R) {

try {S1;}
catch (Exception e)
{excp = true; throw e;}

next;
if (excp == false){

next {try {S2;}
catch(Exception e){ex=e;}}}}

if (ex 6= null) throw ex;
Loop Fusion:

forall (point p: R1)
S1;

forall (point p: R2)
S2;

// Say Es = set of e-asyncs in S1
// ¬∃e ∈ Es: S2 has dependence on e

=⇒



boolean excp = false;
forall (point p: R) {

try {if (R1.contains(p)) S1;}
catch (Exception e)
{excp = true; throw e;}

next;
if (excp == false)

if (R2.contains(p)) S2;}
Loop Switching (try-catch):

try {
forall (point p: R)
S1

}catch(MultiException e) {S2 }
=⇒



MultiException e = new ...;
boolean excp = false;
forall (point p: R) {

try { S1 }
catch(Exception e1) {
excp = true;
e.pushException(e1);
} }

if (excp) S2;

Fig. 28: Transformation rules for forall-coarsening in the presence of exceptions.
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Parallel-serial loop interchange:

i-forall (p: Ie(R, g)) phased
for (s1;e;s2)

S
// s1, e, s2 don’t depend on p

=⇒



boolean c; Exception EX = null;
try {s1; c = e;}

catch (Exception ex) {EX = ex; c = false;}
if (EX6=null) foreach (p: Ie(R, g)) throw EX;
Region newR = new Region(Ie(R, g));
Exception[]exArr = new Exception[newR.size()];
for (;c;) {
for (q: newR)

if (exArr[q]6=null) newR.remove(q);
i-forall (p: newR) phased{

try {// body may need renaming
S; s2; c = false; c = e;
}catch (Exception e){exArr[p] = e;}

} }
foreach (p: Ie(R, g))

if (exArr[p] 6=null) throw exArr[p];
Parallel loop unswitching:
i-forall (p: Ie(R, g)) phased

if (e)
S

// e doesn’t depend on p and
// is side effect free

=⇒



boolean c; Exception EX = null;
try {c = e;}

catch(Exception ex){EX = ex; c = false;}
if (EX6=null) foreach(p: Ie(R, g)) throw EX;
if (c) i-forall (p: Ie(R, g)) phased

S
Loop unswitching (try-catch):

i-forall (p: Ie(R, g)) phased
try {

S1
} catch (E e) S2

=⇒



try {
finish i-forall (p: Ie(R, g)) phased

S1
} catch (MultiException e) {

Region newR = new Region();
for (p: Ie(R, g)) {
ex = e.exceptions[p];
if (ex 6= null && ex instanceof E)
newR.add(p); }

i-forall (p: newR) phased {
Exception e = e.exceptions[p];
S2 }

foreach (Exception ex: e.exceptions())
if (ex 6= null && !(ex instanceof E))
{throw ex;}

}
Parallel loop distribution:

i-forall (p: Ie(R, g)) phased
{

S1;
S2

}

=⇒



Exception exArr[] = new Exception [R.size()];
boolean exFlag[] = new boolean [R.size()];
i-forall (p: Ie(R, g)) phased

try {S1} catch (Exception e)
{exFlag[p] = true; throw e;}

Region newR = new Region();
for (p: Ie(R, g)) if (!exFlag[p]) newR.add(p);
i-forall (p: newR) phased S2;

Fig. 29: Transformation rules for loop-chunking in the presence of exceptions.

quential for loop, the inner i-forall should be invoked at program point Q only if no
exception was thrown by any of the previous sequential iterations while executing the
activity at point Q. We capture this behavior by maintaining a region of points (newR)
for which no exception has been thrown. For any exception thrown, it is stored in an
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Table I: Classfication of transformations
Class Optimizations Dependencee analysis

High-level finish-elimination yes (execution order can be changed)
(group A) Simple forall-coarsening
Low-level forall-coarsening with synchronization no (execution order is preserved)
(Group B) parallel loop-chunking

array and after the whole loop is executed, the contents of the array are individually
thrown in an asynchronous manner.

Loop unswitching: If the predicate of the if statement is loop invariant and is side
effect free, then we can compute the predicate outside the loop as shown in rule 2.

Loop unswitching (try-catch): A try-block within a foreach statement can be lifted
out of the loop, by treating the try block and the catch block as two computations in
sequence (the catch-block is executed conditionally). We have to catch all the excep-
tions that might be thrown in the try-block. We do so by first unswitching and then
enclosing the inner i-forall with a finish statement. Any exception thrown in S1 is
caught by the finish and is thrown as a MultiException. In the catch statement, we
analyze the MultiException and execute S2 inside a i-forall loop over all the points
for which we have caught an exception while executing S1 (newR). All the exceptions
that are not caught by the catch-clause (exception not of type E) are thrown to the next
level.

Parallel loop distribution: Given the body of a foreach loop to be {S1; S2}, after
the loop distribution, S2 is executed only by those iterations where S1 did not throw
any exception. We create a new region newR to represent the collection of points that
executes S1 normally (did not throw an exception outside) and use it to iterate over S2.

Serialization of i-forall statements must respect their exception semantics. We
present below the rule for serialization in the presence of exceptions.

i-forall (p: Ie(R, g)) phased
S

=⇒


for(p:Ie(R, g))
try {S}
catch (Exception e)
{async throw e;}

In each iteration, we catch any exception that is thrown and throw it asynchronously.
This guarantees that we throw all the caught exceptions with the same semantics as
the original foreach loop.

6. INTEGRATION OF INDIVIDUAL OPTIMIZATIONS
In this section, we describe how the optimizations introduced in Section 4 and Sec-
tion 5 can be integrated and organized in a compiler framework. We classify the op-
timizations proposed in this paper into two groups: A) one that requires data depen-
dence analysis (as the listed optimizations may alter sequential execution order), and
B) one that does not require data dependence analysis (although the listed optimiza-
tion may replace pairs of task creation and termination by barrier operations, the
original execution order is preserved). Another interesting facet of the first group of
transformations is that they increase the sizes of parallel activities. A natural way of
organizing all transformations is to first apply the optimizations of Group-A so as to in-
crease the ideal parallelism in a given program and then apply optimizations listed in
Group-B to help derive required useful parallelism, which may take into consideration
different target machine-specific information. Such a division fits well into a compiler
framework, where the machine dependent (low-level) optimizations follow the machine
independent (high-level) ones.
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// After high-level optimization
1: for (i:[1..n]) {
2: forall (j:[1..1024]) {
3: A[i][j] = (A[i-1][j-1] + A[i-1][j]
4: + A[i-1][j+1]) / 3;
5: }}
6: if (!aggregate) {
7: finish {
8: foreach (j: [1..1024]) {
9: for (i:[1..n]) {
10: double tmp=processSingle(A[i][j]);
11: atomic sum+=tmp;
12: }}}
13:}else {
14: for (i:[1..n])

sum += processAgg (A[i]);
15: }

(a)

// After low-level optimization
1: Region R = [1..1024];
2: forall (point g: Ig(R)) {
3: for (i:[1..n]) {
4: for (j: Ie(R,g)) {
5: A[i][j] = (A[i-1][j-1] + A[i-1][j]
6: + A[i-1][j+1]) / 3;
7: }
8: next;
9: }}
10:if (!aggregate) {
11: finish {
12: foreach (point g: Ig(R)) {
13: for (i: [1..n]) {
14: for (j: Ie(R,g)) {
15: double tmp=processSingle(A[i][j]);
16: atomic sum+= tmp;
17: }}}}
18:}else {
19: for (i:[1..n])

sum += processAgg (A[i]);
20: }

(b)

Fig. 30: (a) Effect of invoking high-level optimizer and (b) Effect of invoking low-level
optimizer for the input code of Fig 5a.

6.1. High-level optimizer
The high-level optimizer includes finish-elimination and simple forall-coarsening
optimizations. In Fig. 30(a), we show the transformation resulting from the application
of the high-level optimizations on the HJ example discussed in Fig. 5. After the high-
level optimization, the task termination overhead due to finish (line 5 of Fig. 5) is
reduced by the factor of n, which is the loop iteration count of for-i loop, and the
granularity of foreach loop (line 7 of Fig. 30) increases by a factor of n.

6.2. Low-level optimizer
The low-level optimization phase applies forall-coarsening with synchronization fol-
lowed by loop-chunking. Note that the loop-chunking framework discussed in Sec-
tion 4.3 can handle arbitrary parallel loops with barrier synchronizations created by
the coarsening pass.

In Fig. 30(b), we show the transformation resulting from the application of the low
level optimizations on the HJ code shown in Fig. 30(a). The forall-coarsening with
synchronization is applied to the first loop nest (line 1-5 of Fig. 30(a)), and the barrier in
the inner forall loop is compensated with a lightweight next operation. Furthermore,
parallel loop-chunking is applied to both forall loops to reduce excessive task creation.
The details of the actual distribution used for the chunking is abstracted out by means
of two symbolic iterators Ig and Ie that iterate on the groups and the elements of
individual groups respectively.

7. IMPLEMENTATION
The transformation framework discussed in this paper was implemented in the context
of the Habanero-Java Compiler framework (HJC) [Habanero 2009], which translates
Habanero-Java (HJ) (see Section 2) source code to Java bytecode, along with calls to
some relevant runtime APIs (RT APIs). Fig. 31 presents the overall structure of the
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HJ source

Parallel Intermediate 
Representation

HJ Frontend 
(Polyglot)

PIR 
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RT APIs & 
Bytecode 
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Transformation

Soot PIR Framework

Class Hierarchy Analysis + 
Call Graph Construction

Points-to Analysis + 
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PSG Construction

Finish-Elimination

Forall-Coarsening +
Redundant Barrier Elimination +

Post-Optimizations

Loop-Chunking +
Post-Optimizations

Pre-Optimizations

Fig. 31: Habanero-Java Compiler Framework

HJC compiler. The Polyglot [Nystrom et al. 2003] based front-end for HJ was modified
to emit a new Parallel Intermediate Representation (PIR) extension [Zhao and Sarkar
2011] to the Jimple intermediate representation used in the SOOT bytecode analysis
and transformation framework [Vallée-Rai et al. 1999]. In addition to standard Java
operators, the PIR includes explicit constructs for parallel operations, such as async,
finish, and isolated.

The analysis and transformations described in Section 4 and Section 5 are imple-
mented in the HJC as additional optimization passes over the PIR. All the analyses
and the transformations presented in this paper are inter-procedural in nature.

Some of the applied analysis and optimizations are shown on the right side of
Fig. 31. To help in the following phases of optimizations, we employed some pre-
optimization passes, such as constant propagation, loop invariant code motion, copy
propagation [Muchnick 1997], and method inlining within our compilation framework
as the initial stage. After the pre-optimization passes, we invoked several analysis
passes to assist the following passes of alias analysis and dependence analysis, in-
cluding class-hierarchy analysis [Dean et al. 1995], call graph construction [Much-
nick 1997], and points-to analysis [Lhoták and Hendren 2003]. Our proposed data de-
pendence analysis uses some of the following analysis: region level (e.g. finish, HJ
method) escape analysis, inter-procedural side-effect, and purity analysis, which is
similar to the analysis presented in Salcianu and Rinard [Salcianu and Rinard 2005].
For dependence analysis in loops, we used the GCD test [Muchnick 1997] adapted to
Java with value numbering of array references [Sarkar and Fink 2001].

We start with building a Program Structure Graph (PSG), then proceed with our
proposed three optimizations that may use the discussed dependence analysis: finish-
elimination, forall-coarsening, and loop-chunking. After the coarsening phase, we ap-
ply redundant barrier elimination to remove the redundant lightweight barriers [Nico-
lau et al. 2009] and several post optimizations passes to clean up the code, including
copy propagation, and dead assignment elimination. Finally, the loop-chunking phase
chunks fine-grained parallel loops into coarse-grained parallel tasks.
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8. EMPIRICAL EVALUATION
In this section, we present experimental results for evaluating the transformation
framework described in this paper using the HJ compiler and runtime system [Ha-
banero 2009; Zhao et al. 2010]. All transformations were performed using the rules in
Section 5, which assume the possibility of exceptions. We discuss the details of the ex-
perimental setup in Section 8.1 and present the overall improvement of the optimiza-
tion framework compared with unoptimized parallelism in Section 8.2. To understand
the impact of each of the optimizations, we present a discussion on the incremental
gains resulting from each of the three optimizations in the reverse order in which they
are applied: effect of only loop-chunking (in Section 8.3), effect of forall-coarsening
on top of loop-chunking (in Section 8.4), and the effect of finish-elimination on top of
forall-coarsening and loop-chunking (in Section 8.5).

8.1. Experimental Setup
We used three multicore platforms for our experimental evaluation: (a) a 128-thread
(dual-socket, 8 cores per socket, 8 threads per core) 1.2 GHz UltraSPARC T2 (Nia-
gara 2) with 32 GB main memory, running Solaris 10 and Sun JDK 1.5 (32-bit ver-
sion); (b) a 16-core (quad-socket, quad-core per socket) Intel Xeon 2.4GHz system with
30GB of memory, running Red Hat Linux (RHEL 5) and Sun JDK 1.6 (64-bit version);
and (c) a 32-core (quad-socket, 8 cores per socket) 3.55GHz Power7 with 256 GB main
memory, running Red Hat Linux (RHEL 5.4) with SMT=1 and IBM JDK 1.6 (64-bit ver-
sion). This variation in platforms enables us to study the impact of different hardware
on the performance improvements. For all the runs, the main program was extended
with a 30-iteration loop within the same Java process, and the best of the 30 times
was reported in each case so as to reduce the impact of JIT compilation overhead in
the performance results, in accordance with the methodology reported by Georges et
al. [Georges et al. 2007]. The HJ runtime option, “-places 1:W”, was used to set up an
HJ execution for all runs with 1 place and W worker threads per place.

To evaluate our transformation framework, we use the following benchmarks
ported to HJ by using the parallel constructs of HJ such as finish, async, foreach,
forall, isolated, and phasers: four BOTS benchmarks7 [Duran et al. 2009] (health,
floorplan, strassen and fft); two NAS Parallel Benchmarks [Bailey et al. 1991] (cg,
mg); one Cilk Benchmark [Feng and Leiserson 1997] (lud); and three Java Grande
Benchmarks [JGF ] (lufact, sor, and moldyn). We chose those benchmarks that can
get benefit from more than one of the three transformations discussed in this paper.
Table II gives some details of the benchmarks, including the source code size, number
of PSG nodes, and the transformations applied. The last column depicts the incurred
overhead in terms of the percent increase in the compilation time because of our opti-
mization passes.

8.2. Overall Improvement
Fig. 32 shows the comparison of the speedups between the unoptimized parallel bench-
marks and the optimized versions that were generated by the transformation frame-
work discussed in this paper. This shows the overall improvement by applying the
three stages of optimizations. The last column shows the geometric mean average im-
provement of the optimized and the unoptimized versions, each compared to the Java
serial version. In the charts, we show the comparison with respect to the Java serial
version to show the reader that the ported benchmarks do not perform worse than the

7The HJ versions of the BOTS benchmarks were obtained by porting the OpenMP versions to HJ. The
OpenMP 3.0 task, taskwait and critical directives were replaced by async, finish and isolated state-
ments in HJ, respectively.
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Bench. Prog. code PSG Transformations % incr in
Suite Name size nodes finish forall loop comp time

elimination coarsening chunking
Cilk lud 1121 531 × × 15.3

BOTS

fft 4480 290 × × 17.4
floorplan 327 110 × × 9.35
health 470 188 × × 7.85
strassen 655 117 × 8.22

NPB cg 1160 821 × × 15.5
mg 1810 847 × × 20.2

JGF
sor 175 72 × × 18.7
lufact 467 118 × × 15.2
moldyn 741 168 × × 12.3

Table II: Benchmarks

serial benchmarks (an indication to the goodness of the ported benchmarks). Compared
to the unoptimized version, the minimum, maximum, and geometric mean average im-
provements of our optimized version are as follows: on T2 Niagara 1.09×, 2049.04×,
and 9.68×, respectively; on Xeon 1.05×, 1103.90×, and 6.28×, respectively; on Power7
1.03×, 3935.88×, and 10.3×, respectively.

We now present the impact of the individual optimizations introduced in this paper.
We follow a practice similar to that of optimizing compiler evaluations where back-end
optimizations are used to establish a baseline for evaluating the impact of higher-
level optimizations. In our evaluation, the results for the lower level optimizations are
presented first, and higher level optimizations are then added incrementally to study
their impact.

8.3. Impact due to Foreach loop chunking
Chunking the fine-grain parallel loops into coarse-grained parallel tasks eliminates
the significant overhead for task spawning and scheduling. This section presents the
effect of loop chunking on nine benchmarks; lud and strassen were not included in
this discussion since there are no parallel loops in these two benchmarks to show any
gains from chunking. Fig. 33 shows the speedups on the three SMP platforms. The bar
charts show the comparison of the speedups (HJ parallel program vs. Java sequential
program and Chunked HJ parallel program vs. Java sequential program). Compared
to the unoptimized version, the geometric mean average improvements of the version
optimized using loop-chunking are 6.56×, 6.28×, and 9.77× on T2, Xeon, and Power7,
respectively.

8.4. Impact due to Forall-coarsening
The benefits of forall-coarsening can be categorized into two heads: (a) direct im-
provements: reduced task creation, termination, synchronization, and scheduling over-
heads; and (b) indirect improvements: transformations like loop interchange and loop
fusion may improve locality. Regarding the scope of impact, not all of the benchmarks
can benefit from this optimization; only those that contain SPMDizable forall loops
can be transformed by coarsening. Fig. 34 gives the performance comparison between
the programs optimized with forall-coarsening + loop-chunking (tagged as “opt”) and
programs optimized with only loop-chunking (tagged as “unopt”). An shown in these
charts, forall-coarsening leads to significant improvements. The amount of gains in
the coarsened version (compared to the Non-coarsened version) depends on the granu-
larity of the parallel tasks in the input programs. Benchmarks with finer-grain tasks
(i.e. CG, SOR and LUFact) report higher gains. Compared to the “unopt” version the ge-
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Fig. 32: Performance improvement by overall transformations. “unopt”: Compilation
with the base HJ compiler, with none of the optimizations discussed in this paper;
“opt”: Compilation with the base HJ compiler, extended with all the three optimiza-
tions passes discussed in the paper.

ometric mean average improvements of the “opt” version are 3.19×, 1.93×, and 1.17×
on T2, Xeon, and Power7, respectively.

In these charts we have an additional evaluation point, namely that of the “opt”
version further optimized with the Redundant Next/Next-Single Elimination (RNSE)
phase (see Section 4.2. Compared to the “unopt” version the geometric mean average
improvements of the “opt+RNSE” version are 3.35×, 1.99×, and 2.81× on T2, Xeon,
and Power7, respectively.

One interesting aspect of this study was that the behavior of these benchmarks var-
ied between Xeon, Niagara, and Power7 systems. For instance, RNSE is effective on
MG and SOR on Niagara, on CG on Xeon, and MG and SOR on Power7. We attribute
it to the significantly varying system architecture (Niagara and Power7 are multi-
threaded, Xeon is not; in Niagara all cores on a chip share the same L2 cache, Xeon
contains two L2 caches each shared by two cores, and in POWER7 each core has 32KB
L1 and 256KB L2 cache, and 32MB L3 cache is shared by 8 cores on a chip).

8.4.1. Coarsening and data locality. The improvements shown in Fig. 34 result from two
factors, and the data locality plays an important role for performance improvement,
especially for those loop parallelism benchmarks. We now present a study to under-
stand the contribution of these factors in the improvements cited in Section 8.4. To
understand the impact of these two underlying factors, we conducted a simple exper-
iment: for each of the benchmarks presented in Fig. 34, we compared the following
three versions:
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Fig. 33: Performance improvement by loop-chunking. “unopt”: Compilation with the
base HJ compiler, with none of the optimizations discussed in this paper; “opt”: Com-
pilation with the base HJ compiler, extended with loop-chunking.

— “unopt”: parallel version of the benchmark with no coarsening.
— “opt”: manually apply the forall-coarsening.
— “locality”: we counted the reduction in the number of activities and barriers in the

“opt” version, and manually inserted code to create an equal number of dummy ac-
tivities and the corresponding barriers to achieve comparable task overheads to the
“unopt” version while preserving the locality of the “opt” version.

The locality version, gives a rough estimate of the impact due to improvements in
data locality only (by comparing it to the “opt” version). For instance, the locality ver-
sion for the code shown in Fig. 15(b) is generated by adding the following compensation
code:

for(i=0;i<n-1;++i){forall(j:[1..m]){/* empty */}}

Table III presents the execution time numbers for each of the three versions of the
benchmarks shown in Table II. We only present the numbers on Niagara T2 system,
by setting the number of parallel threads to 8 (when all the 8 threads are scheduled
on one socket and share L2 cache), and 64 (the 64 threads could be schedule on both
two sockets). In the numbers shown for 8 threads, we see that most of the gains are
coming mainly from the improvements to locality (similar behavior was observed for 1,
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Fig. 34: Performance improvement by forall-coarsening. “unopt”: Compilation with
the base HJ compiler, extended with loop-chunking; “opt”: Compilation with the base
HJ compiler, extended with loop-chunking and forall-coarsening; “opt-rnse”: opt +
redundant next/next-single elimination.

2, and 4 number of threads), reduction in activities further improves the code. For the
case with 64 threads, it can be seen that the locality version may improve the perfor-
mance depending on the underlying computation (for instance, in MG, and MolDyn).
The gains in the “opt” version here are significant enough to show improvements, irre-
spective of the impact due to locality. For benchmarks like CG, SOR, and LUFact most
of the benefits are coming mainly from reduction in the number of tasks and barriers.
We have observed similar behavior for 16, 32, and 128 number of hardware threads,
thus emphasizing the importance of reducing task creation overhead in the context of
systems with higher number of cores/hardware threads.

Benchmark 8 hardware threads 64 hardware threads
unopt locality opt unopt locality opt

cg 16.40 10.87 9.37 11.67 12.07 1.40
mg 19.03 12.28 12.07 4.11 4.00 2.81
sor 11.37 6.89 6.56 2.72 2.79 1.01
lufact 32.34 19.53 18.39 13.28 14.28 3.19
moldyn 65.51 33.19 32.69 10.45 7.97 5.58

Table III: Execution time (in seconds) numbers to identify the impact of locality
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lud floorplan health strassen fft
no finish-elim 17,082 3,613,785 2,124,789 400 6,959
with finish-elim 13,176 622 6,588 8 4,634

Table IV: Dynamic counts of finish operations for unoptimized and optimized code

We conclude that the direct impact from the reduction in activities and barriers is
significant, and the forall-coarsening may also aid in improving the data locality (may
be significant when all the threads share the L1 cache).

8.5. Impact due to Finish Elimination
This section demonstrates the impact of our finish-elimination by discussing both
the static and dynamic results. We present two metrics: the number of eliminated
finish operations (static and dynamic) and the performance improvement. Similar
to the behavior of the previous two optimizations, even the finish-elimination opti-
mization may not be universally effective; finish-elimination has been typically found
effective in programs where parallel tasks are spawned conditionally, such as some
system specific threshold. Such instances are common in programs written using the
divide-conquer pattern; the recursive nature of the parallel program makes it other-
wise tricky to optimize using an automated tool like a compiler. Table IV shows the
dynamic count of the finish operations before and after finish-elimination among the
selected benchmarks. As the table shows, the finish-elimination pass can significantly
reduce the dynamic number of finish statements in many cases.

Fig. 35 gives the performance comparison between the programs optimized with
finish-elimination + forall-coarsening + loop-chunking (tagged as “opt”) and pro-
grams optimized with only forall-coarsening + loop-chunking (tagged as “unopt”). The
actual performance improvement depends on (a) the number of dynamic finish opera-
tions eliminated and the cost of finish operation on that architecture for the underlying
runtime system8 and (b) the number of tasks spawned within a finish region. Com-
pared to the “unopt” version the geometric mean average improvements of the “opt”
version are 1.10×, 1.09×, and 1.10× on T2, Xeon, and Power7, respectively. Item (a) im-
pacted all benchmarks, especially health. Item (b) impacted lud, strassen, health and
fft; elimination of redundant finish operations enlarged the parallel tasks and re-
sulted in better load balance for these benchmarks. The floorplan benchmark showed
the smallest speedups and the least improvement due to optimization because it con-
tains isolated constructs that limit the available parallelism.

Across all the benchmarks, our proposed transformations have not resulted in any
performance degradation on any of the platforms. Further, it can be seen that all the
three proposed optimizations work in a synergistic way to derive significant perfor-
mance benefits.

9. RELATED WORK
We divide the related work into four different subsections, one for each of the main
contributions of this paper.

9.1. Analysis of task-parallel programs
Happens-Before Analysis. The happens-before relationship was first studied by Lam-
port [Lamport 1978] in the context of distributed systems. It has been widely used for

8We measured the overhead of an empty finish statement as 6 microseconds, 35 microseconds and 6 mi-
croseconds on the Xeon, Niagara and Power7 platforms respectively, for the same runtime systems as those
used to obtain the experimental results shown in Fig. 35.
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Fig. 35: Performance improvement by finish-elimination. “unopt”: enables forall-
coarsening and loop-chunking but disables finish-elimination, “opt”: enables all three
optimizations.

parallel computing, especially in the areas related to concurrency analysis and data
race detection. Duesterwald and Soffa [Duesterwald and Soffa 1991] applied happens-
before/happens-after information to the context of data-flow analysis for concurrent
programs. Their framework expresses a partial execution ordering for program re-
gions that have happens-before/happens-after relation. In our work, we generalized
the happens-before relation to define happens-before dependency, which is used to
build legal program transformations.

Data Dependence Analysis. Data dependence analysis for sequential programs has been
extensively studied [Kennedy and Allen 2002; Wolfe and Banerjee 1987], and those
techniques have been widely applied. We extend the traditional notions of data depen-
dence to happens-before dependence by taking into account features in task-parallel
programs.We present a set of constraints (which depend on not only the happens-before
dependence information, but also the program structure) to ensure the legality of our
proposed compiler transformation.
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9.2. Barrier Synchronization and Task Creation optimization
Many previous studies have optimized parallel loops to reduce task spawning and
synchronization overheads [Heinz and Philippsen 1993; Tseng 1995; Yonezawa et al.
2006]. Compared to these works that optimize only parallel loops, we have built a
general compiler framework that focuses on eliminating arbitrary redundant finish
barrier operations by applying sophisticated analysis and transformations. The use of
global split barriers [Bikshandi et al. 2009] as an efficient translation of outer-most
finish operations can be used to further improve the performance.

Nicolau et al. [Nicolau et al. 2009] presented an approach to optimize point-to-point
synchronization by eliminating redundant wait operations and relocating post/wait
operations to minimize barrier overhead. Compared to their approach, we present
an inter-procedural transformation that optimizes arbitrary finish barriers in task-
parallel languages. Further, we present a transformation scheme that preserves ex-
ception semantics.

Bikshandi et al. [Bikshandi et al. 2009] present the notion of inlinable async state-
ments for which they avoid the activity creation overhead. They make a static compile
time decision to serialize an async based on the structure of the body of async. Com-
pared to that, our proposed seq clause helps make dynamic decisions on serializing an
async based on programmer decided constraint or runtime resources.

9.3. Forall-coarsening
There has been a lot of past work on reducing thread creation and synchronization
overheads. These include SPMDization [Cytron et al. 1990; Amarasinghe and Lam
1993; Tseng 1995; Bikshandi et al. 2009], synchronization optimizations [Diniz and
Rinard 1997], and barrier elimination [Tseng 1995]. Cytron et al. [Cytron et al. 1990]
present an approach for transforming code written in fork-join style to SPMD code.
Tseng [Tseng 1995] furthers the work of Cytron et al. by translating fork-join parallel
loops into (merged) SPMD regions. Once SPMD regions have been formed, the bar-
rier communications among them are targeted for optimization using communication
analysis. Our forall-coarsening has similarities to the traditional SPMDization tech-
niques. Some of the rules like parallel loop fusion, and serial-parallel loop interchange
used in Section 4.2 are similar to the translation scheme suggested by Tseng [Tseng
1995]. However, there are three main differences: (a) While their target is to reduce
the number of synchronization operations, our main goal is to reduce the number
of dynamic activities created - thus our rules are more aggressive; (b) the result of
our transformation is a task-parallel program that can contain fork (async) and join
(finish) operations, and is not necessarily an SPMD program; (c) we handle programs
with exceptions and perform further cleanup optimizations to gain performance.

Recently, Bikshandi et al. applied SPMDization to task-parallel languages [Bik-
shandi et al. 2009], where they identify a subset of X10 (called Flat X10) and use it to
derive output programs in SPMD form. In our work, we preserve the task-parallelism
language features and perform the translation implicitly in compiler backend. Further,
we handle programs with arbitrary async operations, forall loops, and exceptions.

Nicolau et al. [Nicolau et al. 2009] present an approach to optimize point-to-point
synchronization by eliminating redundant wait operations. Their approach has simi-
larities only to our post-optimization pass, where we eliminate some redundant barri-
ers.

Ferrero et al. [Ferrer et al. 2009] present techniques to unroll sequential loops that
contain parallel loops. They aggregate the multiple generated loops in the body of the
sequential unrolled loop to reduce the number of activity creation tasks. Our forall-
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coarsening phase can be invoked as a postpass to their phase to further increase the
gains.

9.4. Chunking of parallel loops
There has been a lot of past work on reducing synchronization and thread creation
overheads. These include SPMDization [Bikshandi et al. 2009], synchronization opti-
mizations [Diniz and Rinard 1997], and barrier elimination [Tseng 1995]. Researchers
have studied the impact of loop chunking on different parameters of interest. Hari et
al. [Narayanan et al. 2005] use loop chunking as a means of efficient scheduling of
temperature-aware code. OpenMP 3.0 [OpenMP ] supports different loop scheduling
policies, as specified by the programmer, in parallel loops. However, the OpenMP lan-
guage framework is restrictive in its support for synchronization operations inside
parallel loops.

There has also been significant interest in loop scheduling [Kennedy and Allen
2002]. Akin to chunking, loop scheduling has been directed at reducing the number
of overall barriers and thread creation overheads. The loop scheduling techniques
also use different loop transformation techniques (for example, loop interchange and
loop coarsening) to identify chunks of iterations that can be scheduled together. Loop
chunking can be seen as a special version of loop scheduling where all the iterations
scheduled to be executed on the same processor are executed sequentially.

We are not aware of any past work that supports chunking of parallel loops in the
presence of synchronization, as in this paper, for languages that support dynamic par-
allelism with fine grain synchronization.

10. CONCLUSION
In this paper, we present a transformation framework for optimizing task-parallel
programs. Our framework includes (a) finish-elimination: an iterative algorithm to
eliminate the redundant termination operations and increase parallelism, (b) forall-
coarsening: a scheme to replace task creation/termination optimizations by lighter-
weight barrier synchronizations, and (c) loop-chunking: an iterative algorithm to real-
ize useful parallelism from given specifications of ideal parallelism by chunking par-
allel loops. All of these transformations preserve the exception semantics. To ensure
the legality of transformation, we presented a definition of data dependence in task-
parallel programs and a happens-before dependence analysis algorithm.

Experimental results were obtained for a collection of task-parallel benchmarks on
three platforms: a dual-socket 128-thread (16-core) Niagara T2 system, a quad-socket
16-core Intel Xeon SMP, and a quad-socket 32-core Power7 SMP. These results show
geometric average performance improvements of 6.56×, 6.28×, and 9.77× on the three
platforms respectively, due to the optimizations introduced in this paper. For certain
benchmarks for which the original versions were highly inefficient, the maximum
improvements on these three platforms ranged from 1103.90× to 3935.88×. Though
these results were obtained in the context of HJ, we are confident of deriving simi-
lar improvements in other task-parallel programming languages such as X10, Chapel,
OpenMP, among others.
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LHOTÁK, O. AND HENDREN, L. 2003. Scaling Java points-to analysis using SPARK. In Proceedings of

the 12th international conference on Compiler construction. CC’03. Springer-Verlag, Berlin, Heidelberg,
153–169.

METCALFE, M. AND REID, J. 1990. Fortran 90 Explained. Oxford Science Publishers.
MUCHNICK, S. S. 1997. Advanced Compiler Design & Implementation. Morgan Kaufmann Publishers, Inc.,

San Francisco, California.
NARAYANAN, S. H. K., CHEN, G., MAHMUT KANDEMIR, M. X., AND XIE, Y. 2005. Temperature-sensitive

loop parallelization for chip multiprocessors. In Proceedings of the 2005 International Conference on
Computer Design. ICCD ’05. IEEE Computer Society, Washington, DC, USA, 677–682.

NICOLAU, A., LI, G., VEIDENBAUM, A. V., AND KEJARIWAL, A. 2009. Synchronization optimizations for ef-
ficient execution on multi-cores. In Proceedings of the 23rd international conference on Supercomputing.
ICS ’09. ACM, New York, NY, USA, 169–180.

NYSTROM, N., CLARKSON, M. R., AND MYERS, A. C. 2003. Polyglot: an extensible compiler framework for
Java. In Proceedings of the 12th international conference on Compiler construction. CC’03. Springer-
Verlag, Berlin, Heidelberg, 138–152.

OpenMP. OpenMP Application Program Interface, version 3.0, May 2008. http://www.openmp.org/mp-
documents/spec30.pdf.

PEIERLS, T., GOETZ, B., BLOCH, J., BOWBEER, J., LEA, D., AND HOLMES, D. 2005. Java concurrency in
practice. Addison-Wesley Professional.

POLYCHRONOPOULOS, C. D. AND KUCK, D. J. 1987. Guided Self-Scheduling: A Practical Scheduling
Scheme for Parallel Supercomputers. IEEE Transactions on Computers C-36, 12.

SALCIANU, R. D. AND RINARD, M. C. 2005. Purity and side effect analysis for Java programs. In VMCAI.
199–215.

SARKAR, V. 1988. Synchronization using counting semaphores. In Proceedings of the 2nd international con-
ference on Supercomputing. ICS ’88. ACM, New York, NY, USA, 627–637.

SARKAR, V. AND FINK, S. J. 2001. Efficient dependence analysis for Java arrays. In Proceedings of the 7th
International Euro-Par Conference Manchester on Parallel Processing. Euro-Par ’01. Springer-Verlag,
London, UK, 273–277.

SHIRAKO, J., PEIXOTTO, D. M., SARKAR, V., AND SCHERER, W. N. 2008. Phasers: a unified deadlock-free
construct for collective and point-to-point synchronization. In Proceedings of the 22nd annual interna-
tional conference on Supercomputing. ICS ’08. ACM, New York, NY, USA, 277–288.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



A:50 V.Krishna Nandivada et al.

SHIRAKO, J., ZHAO, J. M., NANDIVADA, V. K., AND SARKAR, V. N. 2009. Chunking parallel loops in the
presence of synchronization. In Proceedings of the 23rd international conference on Supercomputing.
ICS ’09. ACM, New York, NY, USA, 181–192.

TSENG, C.-W. 1995. Compiler optimizations for eliminating barrier synchronization. In Proceedings of the
fifth ACM SIGPLAN symposium on Principles and practice of parallel programming. PPOPP ’95. ACM,
New York, NY, USA, 144–155.
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