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PYE: A Framework for Precise-Yet-E�icient Just-In-Time
Analyses for Java Programs
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Languages like Java and C# follow a two-step process of compilation: static compilation and just-in-time (JIT)

compilation. As the time spent in JIT compilation gets added to the execution-time of the application, JIT

compilers typically sacri�ce the precision of program analyses for e�ciency. �e alternative of performing

the analysis for the whole program statically, ignores the analysis of libraries (available only at runtime), and

thereby generates imprecise results. To address these issues, in this paper, we propose a two-step (static+JIT)

analysis framework called PYE that helps generate precise analysis-results at runtime, at a very low cost.

PYE achieves the twin objectives of precision and performance during JIT compilation, by using a two-

pronged approach: (i) It performs expensive analyses during static compilation, while accounting for the

unavailability of the runtime libraries by generating partial results, in terms of conditional values, for the input

application. (ii) During JIT compilation, PYE resolves the conditions associated with these values, using the

pre-computed conditional values for the libraries, to generate the �nal results. We have implemented the

static and the runtime components of PYE in the Soot optimization framework and the OpenJDK HotSpot

Server Compiler (C2), respectively. We demonstrate the usability of PYE by instantiating it to perform two

context-, �ow-, and �eld-sensitive heap-based analyses: (i) points-to analysis for null-dereference-check

elimination; and (ii) escape analysis for synchronization elimination. We evaluate these instantiations against

their corresponding state-of-the-art implementations in C2 over a wide range of benchmarks. �e extensive

evaluation results show that our strategy works quite well and ful�lls both the promises it makes: enhanced

precision while maintaining e�ciency during JIT compilation.

CCS Concepts: • �eory of computation → Program analysis; • So�ware and its engineering →
Compilers; Just-in-time compilers; Dynamic analysis; Object oriented languages;
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1 INTRODUCTION
Modern languages like Java and C# follow a two-step process for compilation and execution: the

input program is statically compiled to an intermediate language (for example, Bytecode for Java

and CIL for C#), which is then executed on a possibly remote virtual machine (for example, JVM and

.NET). Many virtual machines (Alpern et al. 2005; Paleczny et al. 2001) use inbuilt just-in-time (JIT)

compiler(s) to generate optimized assembly code that can be directly executed on the hardware.
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1 class B {

2 X f;

3 B() {

4 f = new X();

5 f.g = new Y();

6 f.g.h = new Z();

7 }

8 void bar() {

9 B r1 = new B();

10 List r2 = new AList();

11 r2.add(r1);

12 X x = r1.f;

13 Y y = x.g;

14 Z z = y.h;

15 ...

16 }

17 }

(a)

1 class AList<E> extends List<E> {

2 // AList is a fixed size list.

3 // 1. arr is a final field

4 // allocated in the constructor.

5 // 2. size is a private field

6 // initialized in the constructor.

7

8 void add(E elem) {

9 arr[size++] = elem;

10 }

11 }

(b)

Figure 1. (a) A snippet of a synthetic Java program. (b) Simplified code for the library method AList.add.
While analyzing the method bar, the code for AList.add is not available, and vice-versa.

While this can lead to signi�cant performance gains compared to the “interpreter only” mode, it

also brings in some interesting challenges.

One of the main challenges in JIT compilation arises from the fact that the time spent in

compilation, which includes program-analysis time, gets added to the execution-time of the program.

Hence, it is important that the time spent in JIT compilation is not prohibitively high. Consequently,

typical JIT compilers in popular virtual machines (such as the HotSpot JVM (Paleczny et al. 2001) and

the Jikes RVM (Alpern et al. 2005)) perform imprecise analyses in place of precise whole-program

analyses and end up sacri�cing precision for e�ciency.

An alternative to performing imprecise analyses during JIT compilation is to perform expensive

whole-program analyses during static compilation, and use the results during JIT compilation.

However, the runtime libraries (such as the JDK) on the machine where the program is executed

may di�er from those available statically on the machine where the program is compiled. As a result,

though this alternative does not impact the JIT compilation time much, the static analyses have to

handle calls to library methods in a conservative manner, which may again lead to imprecision.

�us, both the practical alternatives – (i) whole-program analysis at compile-time and (ii) fast

analysis during JIT compilation – may lead to imprecise results. We illustrate these issues in the

context of a points-to analysis that is used to remove unnecessary “null-dereference-checks” in

Java programs.

In Java, before executing each statement that dereferences an object, the JVM needs to check

whether the object being dereferenced is null; and if so, a NullPointerException must be thrown.

Consider the Java code snippet shown in Figure 1. In the method bar, the statements 11, 12, 13

and 14 dereference objects. As the variables r1 and r2 point-to concrete objects allocated at lines 9

and 10, respectively, the null-dereference checks at lines 11 and 12 can be safely skipped. Further,

the null-dereference checks at lines 13 and 14 can also be skipped, if (i) r2 is known to point to
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an object of type AList, and (ii) the method AList.add does not modify the object pointed-to

via the �elds of its parameter. �us, the number of null-dereference checks that can be skipped

(or eliminated) depends directly on the precision of the underlying points-to analysis used. We

now discuss the impact of the two above discussed analysis alternatives on null-dereference-check

elimination, in the context of the example in Figure 1.

Alternative A1: Analysis during static compilation. A statically performed whole-program �ow-

and �eld-sensitive points-to analysis must assume the code of the method AList.add as un-

available (else risk the results being unsound). �us using the alternative A1, we can elide the

null-checks at lines 11 and 12, but not the ones at lines 13 and 14.

Alternative A2: Analysis during JIT compilation. Typical JIT compilers restrict themselves to very

imprecise analyses. For example, the points-to analysis used by the HotSpot Server Compiler (C2)

is only intraprocedural. �us C2 can again elide the null-checks only at lines 11 and 12.

In this paper, we propose a two-step analysis framework called PYE (“Precise-Yet-E�cient”

framework) that addresses all the issues discussed above. PYE helps generate highly precise analysis-

results for application programs during JIT compilation, at a very low cost. We achieve this using

a two-pronged approach in PYE: (i) We o�oad expensive analyses to the static Java compiler,

where, in contrast to traditional summaries for each method, we generate “partial summaries”.

To avoid the imprecision arising out of the unavailable runtime libraries, we propose the novel

notion of “conditional values”, as a way to store the dependences between the application and the

libraries. For example, in the context of null-dereference-check elimination, using traditional simple

values, we say that a variable x may point to either a concrete-object or a null-object (concrete- and

null-objects are the simple values). In contrast, our proposed conditional values allow us to reach

conclusions of the following form: variable x may point to a concrete object, if another variable y
points to a concrete object, and null otherwise. �e partial summaries consist of a set of conditional

values for each program element in the method being analyzed. (ii) We pass the output of the

static compiler (class �les + partial summaries) to the JVM, where the JIT compiler evaluates the

conditional values in the partial summaries, a�er merging the partial summaries of the libraries

(pre-computed, once for each library installation), and generates �nal analysis-results.

PYE addresses the three challenges that can be envisaged in such a multi-step analysis framework:

(i) It handles the possible imprecision arising out of the unavailable parts of a program while

performing precise whole-program analyses. (ii) It makes sure that the generated partial summaries

are succinct and do not lead to any signi�cant storage overhead. (iii) It loads and resolves the

partial summaries e�ciently without increasing the time spent during JIT compilation.

We have used PYE to design two context-, �ow-, and �eld-sensitive heap-based analyses. �e �rst

one is a Points-to Analysis to perform null-Check Elimination (PACE, in short), which elides unnec-

essary null-dereference checks in Java programs. For the code shown in Figure 1, PACE generates

partial summaries which indicate that while the null-dereference checks at lines 11 and 12 can be

unconditionally elided, the same at lines 13 and 14 can be elided only if the method AList.add
does not assign null to the �elds of its �rst parameter. During JIT compilation, a�er loading

the library-partial-summary (which indicates that the method AList.add does not modify any

�eld of the �rst parameter), PACE resolves the partial summary for bar and elides all the null-

dereference checks in bar. Importantly, PACE achieves high precision without incurring any

signi�cant overhead during JIT compilation. We have also used PYE to design an Escape Analy-

sis (Blanchet 2003) and demonstrate its e�ects on Synchronization Elimination (EASE, in short).

Escape analysis �nds objects that are local to a thread, and is widely used for eliminating useless

synchronization (Blanchet 2003; Choi et al. 1999; Ruf 2000); see Section 2.2 for a brief background

on escape analysis. We chose these two analyses because though both are based on pointer analysis,
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they have di�erent types of la�ices, and are quite pedagogical and illustrative of the intricacies

involved in their design.

We have implemented the core of the PYE framework as well as the two analyses PACE and

EASE in two parts: (i) the components associated with the static compiler – implemented in the

Soot optimization framework (Vallée-Rai et al. 1999); and (ii) the components associated with

the JIT compiler – implemented in the HotSpot Server Compiler (C2) of the OpenJDK HotSpot

JVM (Paleczny et al. 2001).

We have evaluated PYE using PACE and EASE on a series of benchmarks from the SPECjvm

(2008), DaCapo (Blackburn et al. 2006) and JGF (Daly et al. 2001) suites, and SPECjbb (2005). �e

evaluation shows that the strategy adopted by PYE works quite well: (i) PACE inserts 17.36%

fewer null-checks during JIT compilation, on average, than the existing technique employed

by C2. (ii) Compared to the existing escape-analyzer of C2 (which elides only 0.03 synchronization

operations, on average), EASE elides more synchronization operations (1.13, on average) during

JIT compilation. Importantly, compared to the existing analyzers of C2, the improved precision

of PACE does not signi�cantly a�ect the JIT compilation time; and in case of EASE, it actually

improves the JIT compilation time by 1.9%, on average. Further, the storage overheads for partial

summaries are quite low: 6.41% and 3.96% over the class �les for PACE and EASE, respectively.

PYE can, in general, be used to perform any whole-program modular data�ow analysis having:

(i) a �nite-height la�ice of data�ow values; (ii) inter-dependent application and library analysis-

results; and (iii) dynamically-re�nable static-analysis results. Similarly, the discussed points-to

and escape analyses can be extended to other respective related JIT optimizations, such as method

inlining (Muchnick 1997), garbage collection (Domani et al. 2002), and so on. �ough we present

PYE in the context of Java, the techniques proposed in this paper are general enough to be extended

to other languages such as C# that deploy a two-step compilation process.

Contributions:
• We propose a new and e�cient strategy to obtain precise analysis-results during just-in-time (JIT)

compilation, and formalize it as the PYE framework.

• We introduce the novel notion of conditional values as a way to store the dependences between an

application and the libraries. �ese conditional values help us in maintaining partial summaries
for the application being analyzed statically, and generating �nal results during JIT compilation,

without losing precision.

• We instantiate PYE for performing two context-, �ow-, and �eld-sensitive heap-based analyses

(PACE and EASE), coupled with optimizations to store the generated partial summaries in a

succinct manner, and to e�ciently process the partial summaries at runtime.

• We demonstrate the e�cacy of PYE by performing an extensive evaluation of PACE and EASE

in a production Java Virtual Machine (OpenJDK HotSpot JVM), and comparing the results with

those generated by the existing implementations in the JVM. �e evaluation shows that PYE

ful�lls both the promises it makes – enhanced precision of analysis-results while maintaining the

e�ciency of the JIT compiler.

�e rest of the paper is organized as follows. We �rst give an overview of some relevant concepts

required for further reading in Section 2. We describe our proposed framework PYE along with

the novel notion of conditional values in Section 3. We discuss the design of PACE and EASE

in Sections 4 and 5, respectively. We highlight some subtle aspects and prove the correctness of

PYE in Section 6. We perform a detailed evaluation of PACE and EASE in Section 7. Next, we

discuss various related works in Section 8. Finally, we conclude the paper and highlight some

future directions in Section 9.
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1 static B global;

2 void foo() {
3 B r1 = new B();

4 B r2 = new B();

5 synchronized(r2) {...}
6 global = r2;

7 r1.f = new B();

8 List lst = new AList();

9 lst.add(r1);

10 B x = r1.f;

11 synchronized(x) {...}
12 }

(a)

O3 O4

O7

f

r1 r2

global

(b)

Figure 2. (a) The method foo of class B shown in Figure 1. (b) The corresponding points-to graph a�er line 7.

2 BACKGROUND
In this section, we give a brief description of points-to analysis, thread-escape analysis, and some

related data structures that we will be using throughout the paper.

2.1 Points-to analysis
Points-to analysis is a program-analysis technique that establishes which pointers, or reference

variables, can point to which objects, or storage locations. �e results obtained by a points-to

analysis are key to several other heap analyses and related optimizations; for example, alias analysis,

shape analysis, call-graph construction, method inlining, and so on.

We represent objects with the line number at which they are allocated. We say a variable var
may point-to a set S , if the elements of the set S represent the objects that may be pointed-to

by the variable during program execution. For example, in the code shown in Figure 2(a), the

may-points-to sets of the reference variables r1 and r2 are {O3} and {O4}, respectively.

2.2 Thread-escape analysis
�read-escape analysis (Blanchet 2003), herea�er called escape analysis, partitions the objects

allocated in a thread t into two categories: (i) those that are local to t (that is, do-not-escape);

and (ii) those that can be accessed by threads other than t (that is, escape). An object may escape

to other threads if it is reachable (possibly via a sequence of �eld dereferences) from a static

(global) variable, or from a thread object. Escape analysis has many applications: synchronization

elimination (Blanchet 2003; Choi et al. 1999; Ruf 2000), data-race detection (Choi et al. 2002), e�cient

garbage-collection (Domani et al. 2002), and so on. For example, the synchronization operation in

the Java synchronization statement ‘L: synchronized(v) S’ can be elided if the escape analysis

�nds that the object(s) pointed to by v do not escape before L.

Consider the Java code snippet shown in Figure 2(a). Assume that the code shown by ‘. . .’ does not

a�ect the heap. In Figure 2(a), the objectsO3, O7 andO8 do not escape (as the method AList.add
in Figure 1 does not make the objects reachable from its parameters escape). Further, O4 does not

escape till line 6. �us, the synchronization operations at lines 5 and 11 can be safely elided.
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2.3 Points-to graphs
Points-to graphs and their variations are widely used (Dietrich et al. 2015; Sălcianu and Rinard

2005; Tan et al. 2017; Whaley and Rinard 1999) for representing the points-to relations in Java

programs. A points-to graph G (N ,E) comprises of (i) a set N of nodes that represent variables

and abstract objects in the program; and (ii) a set E of edges that represent points-to relationships

among the nodes in the program. An edge can optionally have a label representing the �eld in the

corresponding points-to relationship. An edge (a,Ox ) from a reference variable a to a node Ox in a

points-to graph implies that the variable a may point to the objectOx . Similarly, an edge (Ox ,f,Oy )
from node Ox to Oy with a label f implies that Ox .f may point to Oy .

In this paper, while analyzing a method m, we use the points-to graph Gm as a map that returns

the current points-to information as follows: (i) Gm (a) returns the points-to set of the variable a;

and (ii) Gm (Ox , f) returns the points-to set of Ox .f. Figure 2(b) shows the points-to graph a�er

line 7 for the code shown in Figure 2(a). �e points-to sets represented by the graph are: Gfoo (r1)
= O3, Gfoo (r2) = O4, Gfoo (global) = O4, and Gfoo (O3, f) = O7.

Points-to graphs can also be used to perform escape analysis by checking whether a node is

reachable from static variables or nodes representing thread objects. Given a points-to graph Gm ,

we use a function Gm .reachables (a) to get the nodes reachable from a in Gm . In Figure 2(b),

O4 ∈ Gfoo.reachables (global), and hence, O4 in method foo escapes its allocating thread.

3 THE PYE FRAMEWORK
In this section, we �rst brie�y discuss some of the challenges in typical modular data�ow-analysis

techniques, and then describe PYE in the context of analyzing Java applications.

3.1 Typical modular analyses
To maintain scalability, typical modular analyses (Choi et al. 1999; Whaley and Rinard 1999) process

one method at a time and maintain its summary. For a given data�ow analysis Ψ, the summary of

a method m can be seen as a map fm from the domain D of Ψ to the set of data�ow values Val
of Ψ. �at is:

fm : D → Val (1)

We assume that Val forms a la�ice with a meet operation u, a supremum > (the most precise

element), and an in�mum⊥ (the most conservative element). For example, in typical escape analysis

algorithms (Blanchet 2003; Bogda and Hölzle 1999; Ruf 2000), (i) D includes object-allocation sites,

function parameters and return values; and (ii) the la�ice Val has elements from the set {>,⊥},
organized as a chain, indicating the escape-status (> = DoesNotEscape, and ⊥ = Escapes).

For a methodm, its summary fm may depend on the summaries of a set of other methods. �us

to compute fm precisely, all the dependent summaries must be available. In the context of JIT

compilation (for example, in the HotSpot JVM (Paleczny et al. 2001)), the summaries dependent on

the runtime-libraries can only be computed at runtime. �is can usually be achieved using one of the

two approaches shown in Figure 3(a). A JIT compiler can perform either very precise analyses and

incur the large overheads caused by the compilation time; or it can target fast compilation time, and

perform imprecise analyses. Note that there could be several other con�gurations that explore the

trade-o�s between these two approaches, such as k-limited context-sensitivity (Sharir and Pnueli

1981), �ow-insensitivity (Hardekopf and Lin 2007), cuto�-based approaches (Vivien and Rinard

2001), and so on. However, for simplicity and e�ciency, typical JIT compilers (such as the ones in

the HotSpot (Paleczny et al. 2001) and Jikes (Alpern et al. 2005) virtual machines) limit themselves

to mostly intraprocedural analyses. Even though many JIT compilers may perform early-inlining,
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JIT compiler

Slow, precise
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Highly optimized code

Very slow compilation

JVM

Program
output

JIT compiler
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Java
compiler
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files

.java
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(a)

JIT compiler
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files
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files
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files

(b)

Figure 3. Java program analysis: (a) Two traditional approaches. (b) Approach adopted by PYE.

its impact on the precision of the analysis is limited, due to the standard restrictions (Paleczny et al.

2001) on inlining (such as the iCache size, deep nesting of methods, recursion, pro�ling, and so on).

An alternative to costly analyses during JIT compilation is to perform the analysis statically at

compile time and export the results to the JVM. However, as the JDK installation on the source

machine (where the analysis is performed) may be di�erent from the target machine (on which the

analysis-results will be used), using such results may lead to unsound optimizations. Examples

of such changes include removal/addition of methods (for example, compared to Java 8, LogMan-
ager.addPropertyChangeListener was removed in Java 9), changes in method signatures, newer

implementations overriding parent-class methods, and so on. As a result, all the referred library

methods are considered unavailable at compile time, and the summary of each library method is

conservatively approximated to the special “bo�om” function λx .⊥. Such a scheme can lead to

overly imprecise results.

3.2 PYE: A practical alternative
To overcome the issues of both (i) fully static analysis (too imprecise), and (ii) whole-program

analysis at runtime (prohibitively expensive), we propose PYE: a framework for precise-yet-e�cient

just-in-time analyses for Java programs. Figure 3(b) shows the block diagram of PYE. Compared

to the traditional scheme of analysis in the JIT compiler, PYE analyzes an application using two
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inter-related components: the partial-analyzer (added to the static Java compiler), and the fast-
precise-analyzer (added to the JIT compiler of the JVM).

For each method in the application being analyzed, the partial-analyzer skips the calls to the

unavailable library methods, and generates partial summaries. Compared to a traditional method-

summary fm (a map from the domain D to one of the data�ow values in Val), a partial summary

maps each element in the domain of the analysis to a set of conditional values. We propose the

novel notion of conditional values as a way to encode the dependence of the analysis-results for

the associated program element on other unavailable program element(s). For each application,

the partial summaries generated by the partial-analyzer are stored as a “.res �le”. Similarly, an-

other instance of the partial-analyzer analyzes the library methods of the target machine o�ine,

independent of the application, and generates a partial summary for each library method. As the

static-compilation time does not get added to the execution-time of the program, an analysis-writer

using PYE is free to pick highly precise variants of analyses to be performed by the partial-analyzer.

As shown in Figure 3(b), when a program is executed, along with the .class �les (of the application

and the libraries), the corresponding partial summaries in the form of .res �les are made available

to the JVM on the target machine. In the JIT compiler, the fast-precise-analyzer reads the required

partial summaries (partial-results-accumulator), resolves the dependences between the application

and the library summaries to generate �nal results (summary-simpli�er), and then populates the

appropriate JVM data structures to perform the related optimizations (results-adapter).
We �rst describe the notion of conditional values as a way to encode the dependences between

various parts of a program, and de�ne partial summaries. Later, we describe how these partial

summaries are simpli�ed to obtain precise results during JIT compilation.

3.3 Partial summaries
For a given data�ow analysis Ψ, to compute the summary fm for each method m, the partial-

analyzer of PYE �rst computes the partial summary дm , which is a map from the domain D of Ψ to

the power set of conditional values (CVal):

дm : D → P (CVal) (2)

Definition 1. A conditional value is a three-tuple of the form

T = 〈Θ,val ,val ′〉

where:
- Θ is a pair of the form 〈u,x〉, in which:

- u is a method
- x is a program element in u

- val and val ′ are elements from the set Val of Ψ

A conditional value T = 〈〈u,x〉,val ,val ′〉 in дm (e ) encodes a condition on the �nal analysis-

result fu (x ) for the element x in method u. �at is, if fu (x ) = val , then T evaluates to val ′. If u is

a library method, fu (x ) is not available statically while analyzing the application, and hence it is

not possible to resolve the dependence till run-time.

Example. Consider the code snippet in Figure 4. Suppose the goal is to perform a �ow-analysis

that maps each reference variable (such as p and q in the example) to the set of classes whose

objects could be pointed-to by the variable. �e parameter p could either point to an object of

class D1 or of class D2. Considering the �ow-analysis starting from the method foo, the set of

conditional values generated by the partial-analyzer for q would be:

дfoo (q) = {〈〈foo, p〉, {D1}, {A1}〉, 〈〈foo, p〉, {D2}, {A2}〉}
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1 class C {
2 void foo(D p) {
3 A q = p.bar();

4 }
5 }

1 interface D { A bar(); }
2 class D1 implements D {
3 A bar() {
4 return new A1();

5 }
6 }
7 class D2 implements D {
8 A bar() {
9 return new A2();

10 }
11 }

Figure 4. A synthetic Java code snippet.

Here, the conditional values indicate that the �ow-set of q would include A1 if the �ow-set of p is

{D1}, and the �ow-set of q would include A2 if the �ow-set of p is {D2}. In Section 3.4, we explain

how such conditional values are simpli�ed in a systematic manner.

Notation. If the analysis-result of an element e does not depend on any other element, thenдm (e )
is a singleton with a lone conditional value, whose condition is a tautology. We denote the set of

such simple (“vacuously true”) conditional values as SCVal, which can be seen as the conditional

representation of the set Val. We represent each v ∈ Val as a conditional value 〈Θv ,v,v〉 ∈ SCVal,

where Θv can be seen as a special global element for which fm (Θv ) is set to v for all methodsm.

We refer to the rest of the conditional values, that is the ones in the set CVal − SCVal, as dependent
conditional values, DCVal.

Say x and y are program elements in methods u and m, respectively. In analyses like PACE (Sec-

tion 4) and EASE (Section 5), in each conditional value, the respective third and the fourth compo-

nents match, and if∃v ∈ Val, such that 〈〈u,x〉,v,v〉 ∈ дm (y) ⇒

Λ-

v ′ ∈ Val, 〈〈u,x〉,v ′,v ′〉 ∈ дm (y).
For such analyses, for brevity, we abbreviate the set of all the conditional values dependent on 〈u,x〉,
by only 〈u,x〉. For uniformity, a simple conditional value 〈Θv ,v,v〉 ∈ SCVal in those analyses is

abbreviated to Θv .

Example. We now illustrate the above discussed concepts using another analysis that performs a

points-to analysis to elide the null-dereference-checks for which the dereference is guaranteed to be

performed on a concrete object. Say the set Val for this analysis is {C (for Concrete), N (for Null)}.
�e simple conditional values corresponding to C and N are ΘC and ΘN , respectively. We use

the code shown in Figure 1 as the input for this analysis. �e conditional values generated by the

partial-analyzer for each dereference Ol (denoting the dereference at line l ) in the method bar are:

дbar(O11) = дbar(O12) = {ΘC }

дbar(O13) = {〈AList.add,Op1
.f〉}

дbar(O14) = {〈AList.add,Op1
.f.g〉}

Here, as the variables r1 and r2 point to concrete objects allocated at lines 9 and 10 respectively,

the set of conditional values for the dereferences at lines 11 and 12 is the singleton ΘC . �e

conditional value for the dereference at line 13 indicates that the dereferenced object would be

null if the object pointed-to by Op1
.f, where Op1

is the object pointed-to by the �rst parameter of

AList.add, is null, and concrete otherwise. Similarly, the conditional value for the dereference

at line 14 indicates that the dereferenced object would be null (or concrete) if the object pointed-to

by Op1
.f.g is null (or concrete).
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3.4 Simplifying partial summaries
�e partial-analyzer generates a partial summary дm for each method m statically available for

analysis. Say, the set of all such summaries for an application A is FA . On the target machine,

another instance of the partial-analyzer computes a similar summary for each library method o�ine;

say the combined set for a library installation L is FL . At run-time, the summaries generated by

the partial-analyzer for all the methods (application as well as library) are available. When the

application is executed by the JVM on the target machine, the fast-precise-analyzer of PYE takes

FA and FL , and computes the �nal analysis-results (in the summary-simpli�er; see Figure 3(b))

for all the elements of a methodm that is compiled just-in-time by the JVM.

For each element e in the analysis-domain for the method m being compiled by the JIT com-

piler, the summary-simpli�er of the fast-precise-analyzer evaluates each conditional value T =

〈〈u,x〉,val ,val ′〉 ∈ дm (e ), by looking up the value of fu (x ), and returns the evaluated value

JT K ∈ Val. If the condition speci�ed in T evaluates to true (that is, fu (x ) = val ), then JT K is val ′;
else JT K is > (the top value of the la�ice Val):

J〈〈u,x〉,val ,val ′〉K = ( fu (x ) == val ) ? val ′ : > (3)

For analyses where val is always equal to val ′, we use the shorthand notation introduced in

Section 3.3, and simplify equation 3 as:

J〈u,x〉K = fu (x ) (4)

Finally, given the set of evaluated conditional values S = {JT K | T ∈ дm (e )}, the analysis-result

fm (e ) is computed as the meet over all the elements in S . �e semantics of the meet operation is

speci�c to the individual analysis under consideration. �us, if the meet operation of an analysis is

denoted by u, then:

fm (e ) = u Λ-

T ∈дm (e )
JT K (5)

Given a set of program elements and their conditional values, evaluating all the conditional

values may require repeated solving of equations 3 (or 4) and 5 till a �xed-point. Such a �xed-point

computation is necessary to take into consideration the dependence of the conditional values of one

program element on those of other program elements. We do so by using a standard worklist-based

algorithm in the summary-simpli�er of the fast-precise-analyzer. As Val is a �nite-height la�ice,

the evaluation is guaranteed to terminate and give us the most precise solution for the conditional

values generated by the partial-analyzer. Presence of un-evaluated conditional values even a�er

a�aining a �xed-point indicates mutually cyclic dependences. In such cases, we use fm (e ) = > for

each element involved in the cycle (as we have already achieved a �xed-point, it is safe to do so).

�e cost of performing this �xed-point computation mostly depends on the number of dependent

conditional values (usually a small percentage compared to the total number of program elements)

generated for a particular analysis. Further, the amortized cost required to resolve a dependence

(one lookup per dependence) isO (1). As we show in Section 7, for the analyses under consideration,

the time spent in summary-simpli�cation is very small (order of milliseconds).

Example. For the code shown in Figure 1, the partial summary generated by the partial-analyzer

for the method AList.add, a�er analyzing the library o�ine, would be:

дAList.add(O9) = {ΘC }

which indicates that the dereference performed at line 9 in AList.add is done on a concrete

object, and the absence of any information about its parameters implies that none of them are

modi�ed in the method. Note: �e meet (u) operation for this analysis is de�ned as: u(C,C ) = C
and u(C,N ) = u(N ,C ) = u(N ,N ) = N . While compiling the method bar, the fast-precise-

analyzer looks up the partial summary of the method AList.add to resolve the conditions for
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the elements of bar, and generates the following �nal analysis-results for the dereferences in bar
(a�er solving the equations 4 and 5):

fbar (O11) = fbar (O12) = u{JΘCK} = u{C} = C
fbar (O13) = u{J〈AList.add,Op1

.f〉K} = u{C} = C
fbar (O14) = u{J〈AList.add,Op1

.f.g〉K} = u{C} = C
// 〈AList.add,Op1

.f〉 and 〈AList.add,Op1
.f.g〉 cannot be simpli�ed further,

// and hence evaluate to > = C .

�e results indicate that all the dereferences in the method bar are done on concrete objects,

and hence, the corresponding null-pointer-dereference checks can be safely elided. Compared to

the results generated by the analysis alternatives A1 and A2 in Section 1, it is evident that PYE is

able to achieve a higher precision by combining the partial summaries for the application and the

library at run-time. We show in Section 7 that this precision comes at a very low cost; that is, the

associated overheads are very small.

3.5 E�icient storage of partial summaries
�e partial summaries generated by the partial-analyzer of PYE for each application are stored in

a .res �le on the machine where the analysis is performed. �is .res �le needs to be transferred

to the target machine, along with the .class �les for the application. On the target machine, the

.res �les for the application and the libraries are read by the JVM during execution. �e speed

of performing all the above operations depends a lot on the size of these .res �les. �us, smaller

the .res �les, fewer will be the storage, transfer, and �le-reading overheads. For each analysis

implemented in PYE, in order to e�ciently maintain and store the partial summaries, we perform

an optimization to pre-apply the meet operation in the partial-analyzer: For each methodm, for

each дm (x ), we pre-apply the meet operation on the conditional values and store either only a

single simple conditional value, or one or more dependent conditional values along with at most

one simple conditional value. For example, consider the null-check removal analysis discussed in

Section 3.3. Say for an object O in the methodm, a dependent conditional value 〈u,x〉 gets added to

дm (O ). If дm (O ) previously consisted of a simple conditional value ΘC , we remove ΘC from дm (O )
and only keep 〈u,x〉. �is optimization reduces the number of conditional values we carry while

performing the static analysis.

3.6 Writing an analysis in PYE
PYE can, in general, be used to perform any whole-program modular data�ow analysis (for lan-

guages like Java/C#) having: (i) a �nite-height la�ice of data�ow values, (ii) inter-dependent appli-

cation and library analysis-results, and (iii) dynamically-re�nable static-analysis results. Examples

include the inclusion-based points-to analysis (Andersen 1994), uni�cation-based analysis (Steens-

gaard 1996), partial escape analysis (Stadler et al. 2014), MHP analysis (Naumovich et al. 1999), and

so on. In this section, we give an overview of how to implement an existing analysis Ψ in PYE.

First, the analysis writer needs to specify the domainD of Ψ, and the la�ice formed by the data�ow

values Val of Ψ. In the modi�ed analysis, each value v ∈ Val is converted to a special condi-

tional value of the form Θv . As part of the partial-analyzer, the modi�ed analysis then processes

each statement similar to Ψ, except for the following three scenarios, which need to take into

consideration the generation of conditional values:

(i) Unavailable callee. Say while analyzing a method, we encounter a call to an unavailable

method (say from a library). Here, the analysis writer needs to encode the dependence of the

actual arguments on the method u, using conditional values.
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(ii) Unavailable caller. Say we start analyzing a method in an unknown calling-context; for

example, starting the analysis of a library methodu. Here, the analysis writer needs to encode

the dependence of the formal parameters on the actual arguments that may be passed to the

method u, using conditional values.

(iii) Unavailable object-dereference. Say we encounter a load statement of the form a = b . f , and b
depends on another element from an unavailable method; for example, b holds the return

value of a library method u. Here, the analysis writer needs to encode the dependence of b . f
on the method u, using conditional values.

As an example of how the dependences need to be encoded, consider the call to the unavailable

method AList.add at line 9 in Figure 2(a). For the object O3 pointed-to by r1, at this call, a

traditional static escape analysis would record the escape-status of O3 to be the value E (or Escapes).
Whereas the same analysis implemented in PYE would record the fact that the escape-status of O3

depends on the �rst parameter of AList.add, using the conditional value 〈AList.add,Op1
〉.

In addition to the above changes in the partial-analyzer, the analysis writer needs to provide the

implementation of the results-adapter in the fast-precise-analyzer. �is simply involves populating

the appropriate data structures in the JVM from the results generated by the summary-simpli�er,

such that they can be accessed directly by the optimizers of the JIT compiler. Note that an otherwise

fully just-in-time analysis, in addition to writing the analysis, also needs to appropriately populate

the data structures for any dependent optimization passes, and hence the e�ort required to do the

same in PYE is arguably never more.

Overall, PYE achieves the precision of a whole-program analysis with very low analysis overheads

at runtime. As it can be seen, PYE replaces complex program-analysis phases of the JIT compiler

with basic operations like reading the pre-computed summaries and simplifying the summaries

based on the summaries of other methods. �is strategy pays o� quite well by improving the

precision of analysis-results without signi�cantly a�ecting the time required for JIT compilation

(see Section 7).

4 POINTS-TO ANALYSIS FOR NULL-CHECK ELIMINATION IN PYE
In this section, we illustrate the usage and e�ectiveness of PYE, by using it to e�ciently perform a

top-down context-, �ow-, and �eld-sensitive points-to analysis for null-pointer-dereference check

elimination (or PACE, in short) in Java programs. �e analysis is based on points-to graphs (see

Section 2 for an overview), and is used to remove the implicit null-dereference checks in translated

Java programs for the dereferences that are guaranteed to be made on concrete objects (as discussed

in Section 1).

As mentioned in Section 3.6, in order to perform an analysis using PYE, we need to specify the

set D, the la�ice formed by Val, the processing of each relevant statement by the partial-analyzer,

and the results-adapter. We now describe the same for PACE.

4.1 Partial-analyzer for PACE
Figure 5 shows the domain Dpace of relevant program elements and the la�ice of data�ow val-

ues Valpace for PACE. For each methodm,Dpace consists of six sets of abstract objects: (i) ALCm : one

object Ol per allocation statement labeled l ; (ii) PARm : one object Opi representing the objects

pointed-to by the parameter pi ; (iii) RETm : all the objects returned bym; (iv) OUTm : one object Od@l
for an unavailable dereference at a statement labeled l ; (v) UCSm : one object Ou@l per unavailable

method u at a call-statement labeled l , indicating the return-value of u at l ; and (vi) DRFm : one

object Ol per object-dereferencing statement labeled l .
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Set Description
ALCm = {Ol | l is an allocation statement in methodm}

PARm = {Opi | pi is the ith parameter of methodm}

RETm = {Ox | Ox is returned bym}

OUTm = {Od@l | Od@l represents an unavailable object dereference at line l inm}

UCSm = {Ou@l | l is a call-statement in methodm and the callee u is unavailable}

DRFm = {Ol | l is an object-dereferencing statement in methodm} // speci�c to PACE
SYNm = {Ol | l is a synchronization statement in methodm} // speci�c to EASE

Domain of program elements
Dpace =

Λ-

m ALCm ∪ PARm ∪ RETm ∪ OUTm ∪ UCSm ∪ DRFm

Dease =

Λ-

m ALCm ∪ PARm ∪ RETm ∪ OUTm ∪ UCSm ∪ SYNm

Lattice of data�ow values
Valpace = {Concrete (C or >), Null (N or ⊥)}

Valease = {DoesNotEscape (D or >), Escapes (E or ⊥)}

Meet : > u > = >; > u ⊥ = ⊥ u > = ⊥ u ⊥ = ⊥

Figure 5. The definitions of D and Val for the analyses PACE and EASE.

�e set Valpace forms a la�ice with two elements: Concrete (C or >) and Null (N or ⊥). �e

corresponding conditional values are ΘC and ΘN , respectively. �e de�nition of the meet (u)

operation is standard (see Figure 5).

Our static analysis is a standard top-down, forward, context-, �ow-, and �eld-sensitive iterative

data�ow analysis. �e analysis of an application begins at the entry of the main method of the

application. For analyzing the libraries (on the target machine), we start the analysis afresh at the

entry of each public method of the library. For simplicity, we assume that each intraprocedural

Java statement is in a “three address” representation, and that a �eld-dereference occurs to the

right hand side of an assignment only in a load statement of the form a = b.f. Further, we skip

a detailed discussion of statements involving array references, and brie�y highlight the changes

required to process them, if any, while discussing the statements of a similar form. For the ease of

analysis, we assume that each method has two special statements entry and exit, denoting the

single point of entry and exit, respectively. We also assume that each statement has a unique label

associated with it.

For each method m, we maintain two data structures before and a�er each statement: (i) a

points-to graphGm (see Section 2 for an overview); and (ii) the partial summary дm , which is a map

from abstract objects to a set of conditional values. We use a worklist-based algorithm and analyze

the statements of a method repeatedly till a �xed-point. A�er analyzing a method m, instead of

storing the analysis information at each program point, we store the points-to graph (standard rules)

and the partial summary as observed at the exit ofm. Even then, we realize �ow-sensitivity as we

separately track each of the object dereferences (the set DRFm ). While this increases the number of

objects in the points-to graph by O (N ), where N is the program size, overall this scheme reduces

the amount of stored information, as we avoid storing the points-to graph at each instruction.

We now describe the processing of each statement that could a�ect either the points-to graph or

the set of conditional values for any element. Figure 6 shows the inference rules for updating the

points-to graph Gm and the partial summary дm while analyzing the statements of a methodm.
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[allocation] l : a = new B ();

{
дm[Ol ← {ΘC }]
Gm[a ← {Ol }]

[null-assignment] a = null ;
{
Gm[a ← {Onull }]

[copy] a = b;

{
Gm[a ← Gm (b)]

[store] l : a. f = b;




Λ-

Oa ∈ Gm (a)
Gm[(Oa , f ) ∪← Gm (b)]

updateDeref(Ol ,a)

[load] l : a = b . f ;




Gm[a ← ∪ Λ-

Ob ∈Gm (b )Gm (Ob , f )]

updateDeref(Ol ,b)
if (∃Ob ∈ Gm (b), s .t . Gm (Ob , f ) = ∅) then

Λ-

〈u,x〉 ∈ дm (Ob ) ∩ DCVal
дm[Od@l ∪← 〈u,x . f 〉]
Gm[(Ob , f ) ∪← {Od@l }]

Gm[a ∪← Od@l ]

[throw] l : throw a;

{
updateDeref(Ol ,a)

[synch] l : synchronized (a)
{
updateDeref(Ol ,a)

[array-length] l : k = a.lenдth;

{
updateDeref(Ol ,a)

[return] return a;

{
RETm ← RETm ∪Gm (a)

[unavailable-callee] l : b = a0.u (a1, ...,an );




Λ-

Oai ∈ Gm (ai ),

Λ-

Ox ∈ Gm (Oai , f )
extendCVals(Ox , 〈u,Opi . f 〉)

дm[Ou@l ← {〈u,Ou 〉}]

Gm[b ← {Ou@l }]

updateDeref(Ol ,a0)

[unavailable-caller] m(B p1, ...,B pn )

{
дm[Opi ← {〈m,Oai 〉]}

Gm[pi ← {Opi }]

Figure 6. Partial-analysis rules for PACE. Notation: (i) β[Ox ← Y ] means β is extended with β (Ox ) set to Y .
(ii) β[Ox ∪← Y ] is an abbreviation for β[Ox ← β (Ox ) ∪ Y ].

• Allocation, l : a = new B (). We use the abstract object Ol ∈ ALCm to represent the object(s)

allocated at line l ; the conditional value associated with Ol is set to ΘC , denoting that Ol is a

concrete object. We then set the points-to set of a to {Ol }.

• Null-assignment, a = null . In case of an explicit assignment of null to a variable a, we set the

points-to set of a to a set containing the special object Onull (for which дm (Onull ) is set to {ΘN }),

implying that a points to null.

• Copy, a = b. Here we set the points-to set of a to that of b.

• Store, l : a. f = b. First, for each object Oa in Gm (a), we add the objects in the points-to

set of b to the points-to set of Oa . f . Next, to denote the dereference done at l , we call a macro

updateDeref(Ol ,a) (see Figure 7(a)), where Ol ∈ DRFm represents the object(s) being dereferenced

at l . For each object Oa in the points-to set of a, the macro updateDeref(Ol ,a) adds all the

conditional values in дm (Oa ) to дm (Ol ).
• Load, l : a = b . f . Here, for each object Ob pointed-to by b, we �rst add the objects in the

points-to set of Ob . f to the points-to set of a, and then handle the dereference done at l by calling

the macro updateDeref(Ol ,b). In case for a certain Ob ∈ Gm (b) the set Gm (Ob . f ) is empty (for

example, whenOb is an object returned by an unavailable method), then each dependent conditional
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1 Macro updateDeref(Ol , a)

2 дm (Ol ) ← ∅;

3 foreach Oa ∈ Gm (a) do
4 дm (Ol ) ∪← дm (Oa );

(a)

1 Macro extendCVals(Ox , 〈u, e〉)
2 дm (Ox ) ∪← {〈u, e〉};

3 foreach edge (Ox , f ,Oy ) in Gm do
4 if ¬Oy .visited then
5 Oy .visited ← true;

6 extendCVals(Oy , 〈u, e . f 〉);

(b)

Figure 7. Macros used in Section 4. (a) updateDeref. (b) extendCVals. Gm is the current points-to graph
and дm is the current partial summary.

value 〈u,x〉 in дm (Ob ) indicates that Ob depends on the element x of an unavailable method u. In

such a case, Ob . f might be modi�ed in u. To denote this dependence, we add the abstract object

Od@l ∈ OUTm to Gm (Ob , f ), and add 〈u,x . f 〉 to дm (Od@l ). Finally, we add Od@l to the points-to

set of a.

If a store or load is made to/from an array (that is, a[i] = b or a = b[i], respectively), we repeat

the same steps as done for a normal store or load statement, except that instead of f , we use the

special array �eld “[]”. See Section 6 for a discussion on our choice of heap abstraction.

• Other dereference statements. For Java statements that involve an implicit null-dereference,

such as l : throw a, l : k = a.lenдth and l : synchronized (a) {...}, we use the object Ol ∈ DRFm to

denote the dereference, and call the macro updateDeref(Ol ,a) to update дm (Ol ).
• Return, return a. For each methodm, we maintain a set RETm containing the objects that could

be returned bym. At a return statement return a in methodm, we add all the objects in Gm (a) to

the set RETm .

• Method call, l : b = a0.u (a1, ...,an ). �e processing of a method-call statement depends on

whether the callee (method u) is available for analysis or not. For example, when analyzing a Java

application, the methods from the JDK library are considered unavailable for analysis. In case of

multiple possible callees at a method-call statement (due to virtual dispatch), we take a union of

the conditional values generated due to each callee.

(i) Available-callee (standard, rule not shown). In this case, we �rst merge the points-to graphGu
at the exit of the called method u into the points-to graph Gm for the caller, using the standard

mapping algorithm presented by Whaley and Rinard (1999). For each object Ok added from Gu
to Gm while merging, we add the conditional values in дu (Ok ) to дm (Ok ).

(ii) Unavailable-callee. In this case, for each objectOai pointed-to by the argument ai , the object(s)

reachable from any �eld of Oai might change in the method u. Say the object pointed-to by the

formal parameter pi at the entry of u is represented by Opi . For each �eld f of Oai , we denote

the dependence of each object Ox ∈ Gm (Oai , f ) on u by adding a conditional value 〈u,Opi . f 〉
to дm (Ox ). Note that such conditional values need to be added to all the nodes in the subgraph

reachable from Ox as well. We use a macro extendCVals(Ox , 〈u,Opi . f 〉) that extends the set of

conditional values transitively for all the objects reachable from Ox ; see Figure 7(b).

Next, say the object Ou represents the objects returned by the method u. A�er the assignment,

to store the dependence of the object pointed-to by b onOu , we add the conditional value 〈u,Ou 〉 to

дm (Ou@l ), where Ou@l ∈ UCSm . We also set the points-to set of b to a singleton containing Ou@l .

Irrespective of whether the callee is available or not, we handle the dereference performed by

the receiver object a0 by calling the macro updateDeref(Ol ,a0), where Ol ∈ DRFm .
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O9 O10r1

r2

Od@12

g

{〈AList.add, Op1.f〉}

{〈AList.add, Op1.f.g〉}

{ΘC}

Od@13

{ΘC}

f

x

y

h

{〈AList.add, Op1.f.g.h〉}Od@14
z

ALCbar = {O9,O10}

OUTbar = {Od@12
,Od@13

,Od@14
}

DRFbar = {O11,O12,O13,O14}

дbar (O11) = {ΘC }
дbar (O12) = {ΘC }
дbar (O13) = {〈AList.add,Op1

.f〉}
дbar (O14) = {〈AList.add,Op1

.f.g〉}

Figure 8. Gbar and дbar at the exit of the method bar shown in Figure 1. For the nodes in ALCbar,
UCSbar and OUTbar, the conditional values are shown next to the node. Redundant conditional values are
not shown.

Note that at a call statement, we need not analyze the calleem if the context c at the call-site is

same as another context c ′ in whichm has already been analyzed. We de�ne a context by applying

the idea of level-summarized value contexts (�akur and Nandivada 2019), which is an extension

of the idea of value contexts (Khedker and Karkare 2008); we consider the set {Gm ,дm } as the

context at the call-site. We terminate recursion in the standard way, that is by iterating over the

strongly-connected components of the call-graph till a �xed-point.

• Method entry,m(B p1, ...,B pn ). �e initialization of Gm and дm at the entry of a method m
depends on whether the points-to graph and the partial summary at the call-site c are available or

not. We discuss both the cases below.

(i) Available-caller (standard, rule not shown). To construct the points-to graph Gm at the entry

of m, for each formal parameter pi , we add each object Oai pointed-to by the corresponding actual

argument ai in the points-to graph Gc of the caller c , to Gm (pi ). Next, we copy the subgraph

reachable from Oai in Gc , to Gm . For each object Ox added to Gm in the previous steps, we

set дm (Ox ) to дc (Ox ).
(ii) Unavailable-caller. In PACE, the callers of the entry method(s) are not available. For each

such methodm, we usem to denote all its callers at runtime. For each formal parameter pi ofm, we

associate an abstract object Opi ∈ PARm , with дm (Opi ) containing the conditional value 〈m,Oai 〉,

and add Opi to the points-to set of pi . �is conditional value indicates the dependence of Opi on

the actual argument Oai passed tom.

Example. Figure 8 shows the points-to graph Gbar and the partial summary дbar at the

exit of the method bar shown in Figure 1. O9 and O10 are objects allocated at lines 9 and 10,

respectively. �e statement at line 12 is a load where the object dereferenced via the �eld f is

unavailable. We use the abstract object Od@12 ∈ OUTbar to denote the dereferenced object and

add an edge from x to Od@12 to denote that x points to Od@12. Similarly, the objects Od@13 and

Od@14 are added to Gbar at lines 13 and 14, respectively. For each abstract object, Figure 8 also

shows the corresponding conditional values in the map дbar. �e conditional values for O11 and

O12 imply that the corresponding dereferences are guaranteed to be made on concrete objects. �e

conditional values for O13 and O14 imply that the objects dereferenced at lines 13 and 14 would be

null (or concrete) if the objects pointed-to via Op1
.f and Op1

.f.g, where Op1
is the object pointed-to

by the �rst parameter of AList.add, are null (or concrete), respectively.
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4.2 E�icient storage of partial summaries
In addition to the pre-apply-meet optimization discussed in Section 3.5, we apply the following

three additional optimizations in PACE.

(i) Store only what is needed. As discussed in Section 4.1, the domain of program elements for

PACE consists of six sets of abstract objects. However, we do not need the analysis information

about all the abstract objects for performing null-dereference-check elimination, and hence we

store only a subset of these sets. For example, for an application methodm, it is su�cient to store

the conditional values only for the objects in the set DRFm . Similarly, for each library method u,

apart from the objects in the set DRFu , we store the conditional values for the elements reachable

from the objects in PARu and RETu , which may be needed for simplifying the partial summaries of

the application methods.

(ii) Do not store what can be interpreted. For an element e of a method m, if the set of conditional

values дm (e ) is a singleton of the form {ΘC }, we avoid storing the information about e in the .res

�le. During JIT compilation, if the information about a dereference done at a statement labeled l
is missing, we interpret that the dereference is guaranteed to be done on a concrete object. �is

greatly reduces the number of program elements whose information needs to be printed in the

.res �les. We could have done the same for elements whose set of conditional values consisted

only of ΘN (in place of ΘC ); however, the space-saving we get would be much lower in practice,

considering the small number of dereferenced objects that are guaranteed to be null.

(iii) Implication. Say we have a sequence of statements x = p.f1; y = p.f2. At runtime, p
either points to null and an exception will be thrown at the �rst dereference (the second statement

will not be executed), or p points to a concrete object. In either case, we can elide the null-

dereference check at the second statement. We use this observation to further reduce the number

of abstract objects created to denote the dereferences in PACE. For example, in the sequence of

statements shown above, we do not generate any conditional values for the dereference in the

statement y = p.f2. �is further reduces the size of the stored .res �les.

4.3 Results-adapter for PACE
During the JIT compilation of a method m, the summary-simpli�er of the fast-precise-analyzer

�rst simpli�es the partial summary дm and generates fm . �en for each Bytecode instruction at

o�set l inm, if the instruction makes a dereference, the results-adapter for PACE checks the value of

fm (Ol ). If fm (Ol ) is found to beC (for Concrete), the corresponding null-dereference check is elided;

else the existing JVM mechanism is used to proceed with the insertion of the null-dereference

check. In Section 7, we show that for a multitude of benchmarks, PACE is able to elide a substantial

number of null-dereference checks during JIT compilation, without impacting the JIT compilation

time negatively.

5 ESCAPE ANALYSIS FOR SYNCHRONIZATION ELIMINATION IN PYE
We now give an overview of the second analysis that we have implemented in PYE: a top-down

context-, �ow-, and �eld-sensitive thread-escape analysis for Java programs (a variation of the

approach of Whaley and Rinard (1999); its brief summary can be found in Section 2). We use the

results of this analysis to elide the acquire/release synchronization operations associated with

objects that do not escape their allocating thread. We call this instantiation the Escape Analysis for

Synchronization Elimination (or EASE, in short).

As discussed in Section 3.6, in order to perform an analysis using PYE, we need to specify the

domain D, the la�ice formed by Val, the processing of each relevant statement by the partial-

analyzer, and the results-adapter. We now describe the same for EASE.
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[allocation] l : a = new B ();




if (isMultiThreaded (B)) then

дm[Ol ← {ΘE }]

else

дm[Ol ← {ΘD }]

[store] a. f = b;




if (isStatic ( f )) then

Λ-

Ox ∈ Gm .reachables (b)
дm[Ox ← {ΘE }]

else

Λ-

Ox ∈ Gm .reachables (b)
дm[Ox ∪← дm (Oa )]

[load] l : a = b . f ;




if (∃Ob ∈ Gm (b), s .t . Gm (Ob , f ) = ∅) then

Λ-

〈u,x〉 ∈ дm (Ob ) ∩ DCVal
дm[Od@l ∪← {〈u,x〉, 〈u,x . f 〉}]

[synchronization] l : synchronized (a)
{
дm[Ol ← ∪

Λ-

Oa ∈Gm (a)дm (Oa )]

[unavailable-callee] l : b = a0.u (a1, ...,an );



Λ-

Oai ∈ Gm (ai )
extendCVals(Oai , 〈u,Opi 〉)

дm[Ou@l ← {〈u,Ou 〉}]

Figure 9. Partial-analysis rules for EASE. The updates to the points-to graph Gm , and the rules
[unavailable-caller] and [return], are similar to those for PACE (see Figure 6), and hence skipped.

5.1 Partial-analyzer for EASE
Figure 5 shows the domain Dease and the la�ice Valease for EASE. For each method m, Dease
consists of six sets of abstract objects: (i) ALCm : one object Ol per allocation statement labeled l ;
(ii) PARm : one object Opi representing the objects pointed-to by the parameter pi ; (iii) RETm : all the

objects returned by m; (iv) OUTm : one object Od@l for an unavailable dereference at a statement

labeled l ; (v) UCSm : one object Ou@l per unavailable method u at a call-statement labeled l ; and

(vi) SYNm : one object Ol per synchronization statement labeled l . �e set Valease forms a la�ice

with two elements: DoesNotEscape (D or >) and Escapes (E or ⊥). �e corresponding conditional

values are ΘD and ΘE , respectively. �e de�nition of the meet (u) operation is standard. At runtime,

for each methodm, the goal of EASE is to compute the escape-status (D or E) of each object in SYNm .

Figure 9 shows how the proposed partial-analyzer of EASE processes each statement that may

a�ect the partial summary дm for the methodm being analyzed. As the rules for maintaining the

points-to graph Gm and the processing of method entry and return statements are similar to those

for PACE (see Section 4.1), we skip showing/discussing the same. Similar to PACE, we assume that

each statement has a unique label associated with it.

• Allocation, l : a = new B (). At an allocation statement a = new B () at line l , we use the

abstract object Ol ∈ ALCm to represent the object(s) allocated at l . �e conditional value associated

with Ol is either ΘE or ΘD , depending on whether B is a multi-threaded class or not. We term

a class as multi-threaded, if it is a subclass (immediate or otherwise) of java.lang.Thread or

implements java.lang.Runnable.

• Store, a. f = b. At a statement of the form a. f = b, if f is a static �eld, for each object Ox
reachable from b, we set дm (Ox ) to the singleton ΘE , indicating that Ox now escapes; else we

indicate the dependence of the escape-status of Ox on that of Oa by adding the conditional values

in дm (Oa ) to дm (Ox ).
• Load, l : a = b . f . Similar to PACE, for an object Ob ∈ Gm (b), if дm (Ob ) consists of a dependent

conditional value 〈u,x〉, it implies that the escape-status of Ob depends on the program element x
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дfoo (O3) = {〈AList.add,Op1
〉}

дfoo (O4) = {ΘE }

дfoo (O7) = {〈AList.add,Op1
〉, 〈AList.add,Op1

.f〉}
дfoo (O8) = {〈AList.add,Op0

〉}

дfoo (O5) = {ΘD }

дfoo (Od@10
) = дfoo (O11) = {〈AList.add,Op1

〉, 〈AList.add,Op1
.f〉}

ALCfoo = {O3,O4,O7,O8}

SYNfoo = {O5,O11}

OUTfoo = {Od@10
}

Figure 10. The conditional values in дfoo for the method foo in Figure 2(a). Redundant conditional values
are not shown.

in method u. In such a case, the object(s) pointed-to by Ob . f might change/escape in u. To denote

this dependence, we add the abstract object Od@l ∈ OUTm to Gm (Ob , f ), and add the conditional

values 〈u,x〉 and 〈u,x . f 〉 to дm (Od@l ). �ese conditional values indicate thatOd@l escapes if either

of the program elements x or x . f , in the method u, escape.

• Synchronization, l : synchronized (a). Here we use the abstract object Ol ∈ SYNm to represent

the synchronization statement labeled l . For each object Oa in the points-to set of a, we add the

conditional values in дm (Oa ) to дm (Ol ). �is indicates that the synchronization operation at l can

be elided if none of the objects in the points-to set of a at l escape.

• Unavailable-callee, l : b = a0.u (a1, ...,an ). �e handling of a method call where the callee u is

unavailable is similar to that for PACE except for a minor di�erence. Here, for each argument ai ,
even the top-level object Oai ∈ Gm (ai ) may escape in u (if it is assigned to a static �eld in u,

for example). We indicate the dependence by adding the conditional value 〈u,Opi 〉 to дm (Oai ),
indicating that Oai might escape if the object Opi , representing the object pointed-to by the formal

parameter pi at the entry of u, escapes. Similarly, all the objects reachable from Oai in Gm also

depend on u. We call the macro extendCVals(Oai , 〈u,Opi 〉) to add the corresponding conditional

values (see Figure 7(b)).

Example. Figure 10 shows the conditional values generated by the partial-analyzer of EASE

as seen at the exit of the method foo shown in Figure 2(a). As the object O3 pointed-to by the

variable r1 is passed to the unavailable method AList.add, the conditional value in дfoo (O3)
indicates that the escape-status of O3 depends on the escape-status of the object Op1

pointed-to by

the �rst formal parameter at the entry of AList.add. Similar is the case for the object O8. As the

object O4 becomes reachable from the static variable global at line 6, дfoo (O4) consists of the

conditional value ΘE , implying that O4 escapes. However, as we separately keep track of abstract

objects in the set SYNfoo, we are able to capture the fact that O4 does not escape at line 5, and

henceдfoo (O5) consists of the conditional valueΘD . �is enables the elision of the synchronization

at line 5 (at runtime). �e conditional values for the synchronization statement at line 11 indicate

that the corresponding synchronization operation can be elided if the object Op1
pointed-to by the

formal parameter p1 and the object pointed-to by Op1
.f do not escape in AList.add.

Synchronized methods. In Java, apart from synchronized statements, methods can also be declared

as synchronized to indicate that any code in those methods cannot be executed by concurrent threads.

If an instance method is declared as synchronized, it is equivalent to a synchronized statement on

the receiver object, enclosing the body of the method. If the synchronized method is static, the

synchronization operation is performed on the global object associated with its declaring class.

Similar to the approach used by Lee and Midki� (2006), we elide the synchronization operation

associated with such a method, if the method is never called in a sequence of calls originating from

a run method of a multithreaded class. For both these cases, we store the conditional values in a

special abstract object associated with the corresponding method.
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5.2 E�icient storage of partial summaries
In addition to the pre-apply-meet optimization discussed in Section 3.5, we apply the following

two additional optimizations in EASE.

(i) Store only what is needed. For an application methodm, we store the conditional values only

for the objects in the set SYNm . For each library method u, apart from the objects in the set SYNu ,

we also store the conditional values for the elements reachable from the objects in PARu and RETu .

(ii) Do not store what can be interpreted. For an element e of a method m, if the set дm (e ) of

conditional values is a singleton of the form {ΘD }, we avoid storing the information about e in the

.res �le. During JIT compilation, if the information about an abstract object (∈ SYNm) is missing,

we interpret that the associated synchronization operation can be safely elided.

5.3 Results-adapter for EASE
To perform synchronization elimination in the HotSpot JVM, the optimizer needs to know whether

the object associated with a synchronization statement does-not-escape and consequently if the syn-

chronization operation can be eliminated. Our results-adapter reads the escape-status of the abstract

object corresponding to each of the synchronization statement and sets a �eld isEliminatable in

the synchronization statement accordingly.

Example. �e conditional values generated by the partial-analyzer for the method AList.add
(see Figure 1) include the dependences listed below; recall that for each methodm with unavailable-

caller, we usem to denote its callers at runtime.

дAList.add(Op0
) = {〈AList.add,Oa0

〉}

дAList.add(Op1
) = {〈AList.add,Oa0

〉, 〈AList.add,Oa1
〉}

�e conditional values 〈AList.add,Oa0
〉 and 〈AList.add,Oa1

〉 are added to the mapдAList.add
for Op0

and Op1
respectively, at the entry of the method AList.add. When the object Op1

is

stored into the array pointed-to by Op0
.f (at line 9), the conditional values in дAList.add (Op0

) are

added to дAList.add (Op1
).

During JIT compilation of the application method foo, the summary-simpli�er evaluates the

conditional values (see Figure 10) for the synchronization objects of lines 5 and 11 (O5 and O11,

respectively). For O5, the conditional value ΘD simply evaluates to the value D ∈ Valease . To

simplify the conditional values for O11, our algorithm starts with a list L of conditional values

{〈AList.add,Op1
〉, 〈AList.add,Op1

.f〉} (given by дfoo (O11) shown in Figure 10). Simplifying

these conditional values adds the elements of the set дAList.add (Op1
) to L. As O8 and O3 are

the actual arguments Oa0
and Oa1

respectively, our algorithm adds the elements of дfoo (O8)

and дfoo (O3) to L to obtain: L = {〈AList.add,Op1
〉, 〈AList.add,Op1

.f〉, 〈AList.add,Oa0
〉,

〈AList.add,Oa1
〉, 〈AList.add,Op0

〉}.

At this stage, no further simpli�cation is possible and we reach a �xed-point. As mentioned

in Section 3.4, a�er a�aining the �xed-point, for each conditional value Ti in the worklist, we

set JTiK to D (the top of the la�ice). �us, the summary-simpli�er generates the escape-status:

ffoo (O5) = ffoo (O11) = D. �ereby the results-adapter sets the isEliminatable �eld for the

synchronization statements at lines 5 and 11 to true. �is �eld is used by the following pass of

synchronization elimination to perform the necessary optimization.

Note that a fully static (�ow-sensitive) analysis would be able to elide the synchronization

operation only at line 5. On the other hand, the C2 compiler of the HotSpot JVM performs a

connection-graph (Choi et al. 1999) based partially-interprocedural escape analysis during JIT

compilation, which can elide the synchronization operation at line 11, but not at line 5. Using PYE,

and by maintaining abstract objects separately in SYNfoo, EASE is able to elide the synchronization
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operations both at lines 5 and 11. We show in Section 7 that the overheads involved for achieving this

precision during JIT compilation are quite small; in fact, less than the existing analysis performed

by C2.

6 DISCUSSION
In this section, we �rst discuss some subtle aspects in the current design of PYE, followed by its

correctness argument.

1. Deoptimization. PYE handles deoptimization scenarios (for example, because of dynamic

classloading, failed speculative type-checks, and so on) in a natural manner: the set of new and

old methods to be re-compiled are obtained by analyzing the call graph and optimized using their

partial summaries (new or existing). �is set can be made further precise using a scheme similar to

that of Cooper et al. (1986).

2. Callbacks. PYE analyzes each library installation independent of the application. Consequently,

if a library method m has a callback to a method in the application program, the called method

cannot be analyzed in this context. In such a scenario, we compilem (and the dependent methods)

with the existing analyses built in the JVM, and not with the analysis-results generated by PYE.

Since callbacks are used infrequently in practice (during our evaluation over real world benchmarks,

we have not found any case where we lose precision because of this design choice), we believe

it to be an acceptable limitation of PYE. �ere could be multiple ways to handle callbacks more

precisely. For example, we could perform a fast (perhaps imprecise) analysis to �nd out whether

the called-back method may indeed a�ect the results for the given analysis and fall-back only if

it does. Another way to handle callbacks is to statically create gaps (Arzt and Bodden 2016) at

call-sites that may be involved in a callback, and �ll these gaps with more precise information

during JIT compilation. We leave the integration of the techniques of Arzt and Bodden into PYE as

a future work.

3. Veri�cation. �e summaries (generated by the partial-analyzer) transferred along with the

class �les to the target machine may get corrupted (intentionally, or otherwise). Consequently,

the fast-precise-analyzer may derive wrong analysis-results. Currently, we resolve this issue

by using public-key cryptography (Stinson 1995). However, keeping in mind its limitations (for

example, trusting the partial-analyzer), we are working on a fast veri�er (similar to Java Bytecode

type-checking) to validate the results in the JVM itself.

4. Heap abstraction. We abstract all the elements of an array in a �eld-insensitive manner, which

leads to well understood imprecision. Consider the methods baz of class B and first of class

AList, as shown in Figure 11, in the context of PACE. For the dereference at line 8, the set of

conditional values generated by the partial-analyzer would be: {〈AList.add,OAList.add〉}.
However, as the array arr does not distinguish among its various elements (it is standard to treat

arrays �eld-insensitively for scalability), the method first would conservatively generate the

value {ΘN } for its return-value, and hence the dereference during JIT compilation would not be

elided. Similarly, the abstraction of objects by their allocation site (that is, no heap-cloning (Nystrom

et al. 2004)) leads to understandable imprecision. For example, in Figure 11(b), the partial-analyzer

�nds that at line 6, r2 may point to null and hence cannot elide the null-check. We believe

it would be an interesting future work to extend PYE to support more precise forms of heap

abstractions.

5. Conditional values. �e conditions used in the conditional values depend on the speci�c analysis

being performed. For example, for EASE the conditions are based on the escape-information, leading

to conditional values such as x escapes if y escapes. In contrast, for implementing the taint analysis

by Arzt and Bodden (2016), each ‘source’ of the taint may be treated as a tainted object, and the
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1 class B { ... // from Figure 1

2 void baz() {

3 B r1 = new B();

4 List l = new AList();

5 l.add(r1);

6 l.add(null);

7 X x = l.first();

8 Y y = x.g;

9 }

10 }

1 class AList<E> { ... // from Figure 1

2 E first() {

3 return arr[0];

4 }

5 }

(a)

1 class C {

2 void foo() {

3 X r1 = new X();

4 bar(null);

5 X r2 = bar(r1);

6 ... = r2.g;

7 }

8 void bar(X rx) {

9 Y y1 = new Y();

10 y1.f = rx;

11 return y1.f;

12 }

13 }

(b)

Figure 11. Methods to illustrate some issues in heap abstraction.

conditions may be based on points-to/alias relationships, leading to conditional values such as x
points to a tainted object z ′, if y points to z. �ese points-to conditions can be on the argument-

objects passed, and the return values of the unavailable methods. Importantly, note that such

variations (naturally, analysis-dependent) still �t into the general two-pronged approach presented

as part of PYE.

6. Levels of granularity. �ough we discuss PYE at method-level granularity, these ideas can also

be extended to other levels of granularity (for example, storing/simplifying summaries per class,

package, and so on) without impacting the precision. �e choice of the appropriate granularity

levels can lead to interesting trade-o�s: while storing/reading/simplifying summaries at higher

levels of granularity can amortize (and speedup) the overall disk reads, it could also lead to increased

overheads from reading/simplifying summaries of even those methods that may not be compiled.

6.1 PYE: Correctness
It may be noted that the precision of an analysis implemented in PYE depends upon the algorithm

used in the partial-analyzer to generate the partial summaries. �us, PYE can be thought to be

parametric on the analysis algorithm. If we represent the analysis being performed as Ψ, then

the PYE variation of Ψ can be denoted as PYE(Ψ). We now state the correctness theorem for our

proposed approach for programs that may call library methods which in turn invoke no callbacks.

Later, we extend the argument to library methods that may invoke callbacks.

De�nition 6.1. �e set {〈y1,v
1

1
,v1

2
〉, 〈y2,v

2

1
,v2

2
〉, · · · } of conditional values generated by PYE(Ψ)

for a variable x , for any program P at a program point L, is considered to be “correct”, if during the

whole-program analysis, the following conditions hold: (i) ∃ a set S of integers, such that

Λ-

i ∈ S , Ψ
computes the value of yi to be vi

1
at L; and (ii) Ψ computes the data�ow value of x to be u Λ-

i ∈Sv
i
2
.

�at is, a correct set of conditional values includes all the dependencies and nothing more.

Theorem 6.2. Given a whole-program analysis algorithm Ψ, for any program P , the analysis-results
obtained using PYE(Ψ) for the program elements of P will match those obtained using Ψ. �at is,

ACM Transactions on Programming Languages and Systems, Vol. 1, No. 1, Article 1. Publication date: January 2019.



PYE: A Framework for Precise-Yet-E�icient Just-In-Time Analyses for Java Programs 1:23

if D is the set of program elements of P , then a�er simpli�cation of partial summaries,

Λ-

x ∈ D,
PYE(Ψ) (x ) = Ψ(x ).

Proof. (Proof Sketch)
We prove the theorem by contradiction. Say there exists a whole-program analysis Ψ and a

program element x in methodm, such that at some program point L, PYE(Ψ) (x ) = s1 and Ψ(x ) = s2,

and s1 , s2.

�is implies that while Ψ has found the data�ow value of x at L (the most precise solution) to

be s2, the summary-simpli�er has found the data�ow value of x at L to be s1. �ere can be two

cases under which the summary-simpli�er can �nd the data�ow value of x at L to be s1 (, s2):

(i) In the set of summaries provided by the partial-results-accumulator, at program point L, дm (x )
was a singleton containing s1 (a simple conditional value). �is implies that the partial-results-

accumulator has incorrectly obtained the data�ow value as s1, from the partial-analyzer. But as

the partial-analyzer implements Ψ for performing the static analysis and gives a singleton with a

simple conditional value only for objects that do not depend on any library calls, Ψ would also �nd

the data�ow value of x as s1 (and hence s1 = s2). A contradiction.

(ii) In the set of summaries provided by the partial-results-accumulator, at program point L,

дm (x ) consists of a set of dependent conditional values, and дm (x ) was simpli�ed as s1 by the

summary-simpli�er. �ere are two sub-cases:

(a) the partial-analyzer generated a correct set of conditional values for x , but the summary-

simpli�er generated an imprecise solution. As discussed in Section 3.4, the summary-simpli�er

iteratively solves the dependent conditional values till no more of them can be simpli�ed further,

which generates the most precise solution for the given set of conditional values. A contradiction.

(b) the partial-analyzer generated an incorrect set of conditional values for x . Note that the

partial-analyzer is an implementation of Ψ with the only di�erence being in the output for the ones

related to the conditional values, such that

Λ-

x ∈ D, at each program point L, if PYE(Ψ) (x ) is a not

a simple conditional value, then the partial-analyzer adds all the required dependent conditional

values (and only those) that denote a dependence of Ψ(x ) on the unavailable parts of P . �at is, PYE

marks all the required dependences and nothing more. �at is, as per De�nition 6.1, the summary

generated by the partial-analyzer (PYE(Ψ(x )) is correct. A contradiction. �

�eorem 6.2 guarantees that during JIT compilation, a whole program analysis Ψ can be equiva-

lently replaced by PYE(Ψ), when the called library methods do not in turn invoke callbacks. Even

in cases where the library methods may invoke callbacks, extending PYE with techniques proposed

by Arzt and Bodden (2016) can lead to similar precision. However, when using our above discussed

conservative scheme to handle callbacks, the �eorem 6.2 statement can be modi�ed to state that

a�er the simpli�cation of partial summaries,

Λ-

x ∈ D, PYE(Ψ) (x ) v Ψ(x ), where the relation

x v y ⇒ x u y = x .

Corollary 6.3. In a JIT compiler, a semantics-preserving optimization based on a whole program
analysis Ψ can use PYE(Ψ) instead and still remain semantics-preserving.

Proof. Proof follows directly from �eorem 6.2 and the above discussion thereof. �

7 IMPLEMENTATION AND EVALUATION
We implemented the PYE framework (see Figure 3(b)) in two parts: (i) interfacing of the partial-

analyzer in the Soot optimization framework (Vallée-Rai et al. 1999) version 2.5.0 – approximately

2000 lines of code; (ii) di�erent components of the fast-precise-analyzer in the HotSpot Server

Compiler (C2) of the OpenJDK HotSpot JVM (Paleczny et al. 2001) version 7 – approximately

1000 lines of code. To understand the usability of PYE, we used PYE to instantiate PACE (Section 4)
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S.No. Benchmark Number of .class size .res size (MB) Overhead (%) DCVal (%)

class �les (MB) PACE EASE PACE EASE PACE EASE
1. aes 297 2.1 0.24 0.16 11.33 7.38 42.97 10.0

2. compiler 306 2.1 0.24 0.15 11.29 7.33 42.96 10.0

3. compress 308 2.1 0.24 0.16 11.19 7.48 42.59 10.0

4. � 301 2.1 0.24 0.16 11.29 7.38 43.72 9.09

5. lu 300 2.1 0.24 0.16 11.33 7.38 43.38 9.09

6. montecarlo 300 2.1 0.23 0.16 11.14 7.38 43.50 9.09

7. rsa 297 2.1 0.30 0.16 11.05 7.38 43.30 10.0

8. signverify 297 2.1 0.24 0.16 11.29 7.38 43.39 10.0

9. sor 301 2.1 0.24 0.16 11.19 7.38 42.51 9.09

10. sparse 300 2.1 0.24 0.16 11.19 7.38 42.68 9.09

11. sun�ow 406 2.7 0.32 0.22 11.85 8.26 35.55 4.76

12. avrora 527 2.6 0.04 0.02 1.54 0.85 62.55 0.0

13. eclipse 1344 10 1.50 0.84 15.0 8.42 18.17 5.05

14. fop 1027 5.8 0.36 0.20 6.21 3.38 35.51 11.11

15. h2 324 2.2 0.04 0.02 1.91 1.05 62.78 0.0

16. luindex 200 1.3 0.04 0.03 2.92 1.85 61.00 100.0

17. lusearch 198 1.2 0.04 0.03 3.33 2.08 59.54 100.0

18. pmd 688 3.7 0.04 0.03 1.19 0.68 56.16 0.0

19. xalan 638 3.7 0.04 0.03 1.19 0.78 49.74 100.0

20. moldyn 14 0.06 0.003 0.002 5.33 2.67 52.2 0.0

21. raytracer 22 0.09 0.005 0.004 5.76 3.91 88.8 0.0

22. specjbb 82 0.51 0.07 0.03 12.99 6.69 73.96 12.27

GeoMean 268 1.7 0.11 0.07 6.41 3.96 47.27 7.1

Figure 12. Details of the benchmarks used, storage overhead for .res files, and the percentage of elements
with dependent conditional values (DCVal) in the generated .res files.

and EASE (Section 5). �e associated respective partial-analyzers consist of about 4100 and 4000 lines

of Java code (in Soot), and the respective results-adapters consist of about 550 and 250 lines of

C++ code (in C2). In addition, we use the extremely helpful tool TamiFlex (Bodden et al. 2011)

version 2.0.3 to eliminate the re�ection-based code from the original benchmarks, so that they can

be analyzed by Soot.

7.1 Evaluation setup
We evaluated PYE and its two instantiations on twenty-two benchmarks from four benchmark

suites: (i) aes, compiler, compress, fft, lu, montecarlo, rsa, signverify, sor, sparse and

sunflow from SPECjvm (2008) – using the ‘default’ input; (ii) avrora, eclipse, fop, h2, luindex,

lusearch, pmd and xalan from the DaCapo suite (Blackburn et al. 2006) version 9.12 – using the

‘default’ input; (iii) moldyn and raytracer from Section C of the JGF suite (Daly et al. 2001) – using

‘SizeB’ inputs; and (iv) SPECjbb (2005) – using the default 30 seconds ramp-up time and 240 seconds

measurement window. In case of batik (from DaCapo), we could not run the original program

on our system for the ‘default’ input (threw TruncatedFileException). �e rest of the benchmarks

excluded from the original DaCapo and SPECjvm suites could not be analyzed – either by Soot or

by TamiFlex. Our experiments have been performed on a 2.3 GHz AMD Abu Dhabi system (DVFS

disabled) with 64 cores and 512 GB of memory, running CentOS 6.4.

Figure 12 lists some static characteristics about the benchmarks included in the study. �e

sizes of the benchmarks listed in Figure 12 varied from 60 KB (small programs) to 10 MB (large
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applications), and the number of class �les varied from 14 to 1344. In the SPECjvm suite, it can

be seen that the benchmarks from the same group have similar sizes; for example, aes, rsa and

signverify from the crypto group, and fft, lu, montecarlo, sor and sparse from the scimark

group. �is similarity occurs because most of the code among the benchmarks in the same group is

shared (for example, the harness and the utilities).

We now present an evaluation to study the impact of our proposed framework PYE. We divide the

evaluation into two parts: (i) evaluation related to the static-compilation time analysis (involves the

partial-analyzer of PYE); and (ii) evaluation related to the JIT-compilation time analysis (involves

the fast-precise-analyzer of PYE).

7.2 Evaluation of the partial-analyzer
In this section, we evaluate the partial-analyzers for PACE and EASE by focusing on the time taken

to compute the partial summaries, the storage overhead of the generated .res �les, and the precision

of the conditional values in the .res �les.

7.2.1 Time taken by the partial-analyzer. Figure 13 shows the time taken by the partial-analyzer

for all the benchmarks. On average, the partial-analyzer for PACE took 4.13 seconds across all the

benchmarks, and that for EASE took 3.92 seconds across all the benchmarks. We observe that the

time required is mainly dependent on the size of the individual benchmark: less time for smaller

benchmarks (for example, JGF), and more time for larger DaCapo benchmarks (for example, eclipse

and fop). Considering that the analyses performed by PACE and EASE are very precise (context,

�ow, and �eld-sensitive), we argue that the analysis time is quite reasonable. Further, this analysis

time (once per static-compilation) does not get added to the time for �nal execution (may happen

many times).

7.2.2 Storage overhead. �e summaries generated by the partial-analyzer for each benchmark are

stored in plain text as a �le <benchName>.<analysis>.res. �ese summaries are piggybacked

with the class-�les of the benchmark and transferred to the JVM in which the benchmark is executed.

Figure 12 lists the sizes of the .res �les (in MB) for each benchmark, for both PACE and EASE. It is

evident that these �les are very small (110 KB and 70 KB on average, respectively, for PACE and

EASE). As compared to the sizes of the corresponding benchmarks, the average storage overheads

for PACE and EASE are 6.41% and 3.96% respectively – arguably quite low.

Lee and Midki� (2006) had proposed a two-phase escape analysis for the Jikes RVM (Alpern et al.

2005). �ey compute connection graphs (a representation similar to points-to graphs) for di�erent

methods o�ine, and merge the connection graphs to complete an interprocedural analysis during

JIT compilation. Compared to the overhead reported by Lee and Midki� for storing the connection

graphs – 68% over the class �les, the storage overhead for partial summaries in EASE is quite low –

only 3.96% over the class �les.

7.2.3 Precision of conditional values. For a program element e in method m, the conditional

values in дm (e ) may be either simple or dependent (see Section 3.3). If all the conditional values

in дm (e ) are simple, it implies that the analysis-result fm (e ) for e does not depend on any other

element. For the rest of the elements, the dependent conditional values need to be evaluated

in the fast-precise-analyzer (at runtime). �e last column of Figure 12 shows the percentage of

stored elements for which the partial summary consists of at least one dependent value. On

average, the analysis-results for 47.27% and 7.1% of the elements for PACE and EASE, respectively,

consist of dependent conditional values, and hence cannot be computed precisely using any static

whole-program analysis that handles library calls conservatively (alternative A1 in Section 1).
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Figure 13. Time taken (in seconds) by the partial analyzers of (a) PACE and (b) EASE.

�ese numbers show that the potentially achievable precision for PACE and EASE over a static

whole-program analysis is signi�cant.

7.3 Evaluation of the fast-precise-analyzer
In this section, we evaluate the fast-precise-analyzers for PACE and EASE by focusing on the

precision of the generated analysis-results and the time taken during JIT compilation, compared to

the existing state-of-the-art analyses in the C2 compiler of the HotSpot JVM version 7. �e goal of

this comparison is to demonstrate that PYE leads to the generation of more precise analysis-results,

while spending time similar to (and in some cases lower than) the existing imprecise analyzers

of C2. For each of the analyses, we evaluate the fast-precise-analyzer in the default se�ing of the
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Figure 14. Number of explicit null-checks inserted by the existing analyzer of the C2 compiler and PACE;
smaller the be�er.

HotSpot JVM (called the mixed mode) that uses an interpreter, the client C1 compiler, and the

server C2 compiler. In this mode, the C2 compiler is invoked only for those methods/loops that are

invoked/iterated more than a threshold number of times (usually 10000-15000).

7.3.1 Precision of generated results. For statements that dereference an object, the JVM needs to

perform a null-dereference check – if the dereferenced object is null, then the check fails and a

NullPointerException is thrown. �e C2 compiler applies the implication optimization discussed

in Section 4.2 to avoid inserting several checks; however, the rest of the checks remain explicit

and need to be performed during program execution. Figure 14 compares the number of explicit

null-dereference checks inserted by PACE, with that by the existing analyzer of C2. As evident, the

number of null-dereference checks inserted by PACE is signi�cantly lower than that by the existing

analyzer of C2 – 17.36% on average. �is clearly demonstrates the enhanced precision achieved by

PACE. In Section 7.3.2, we show that the cost to achieve this precision is negligibly low.

In Java programs, the synchronization statement synchronized(a) {S} can be used to

execute the statement S in a mutually exclusive manner. �e JVM implements mutual exclusion

by acquiring the lock associated with the object pointed-to by the variable a. Based on the work

of Choi et al. (1999), the C2 compiler performs a partially interprocedural escape analysis: the

connection-graphs are intraprocedural, but a Bytecode-level �ow-insensitive analysis is performed

at method call-sites. �is analysis is used to identify and elide the synchronization operations for

which the associated object is guaranteed to be accessed by a single thread. Figure 15(a) compares

the number of synchronization operations elided by EASE with that by the existing escape analyzer

of C2. We can see that during JIT compilation, while the existing analyzer of C2 does not elide

any synchronization operation across most of the benchmarks (except montecarlo), the precise

nature of EASE leads to the elision of a signi�cant number of synchronization operations in many

benchmarks (up to 28 elisions, in case of specjbb). In Section 7.3.2, we show that the time to obtain

this precision is much less compared to the time spent in performing escape analysis in the existing

C2 compiler.

Note that the low number of elisions is due to two reasons: (i) In most of the programs, the

synchronization constructs are indeed necessary. (ii) �e methods containing the synchronization
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Figure 15. Number of synchronization operations elided by the existing analyzer of the C2 compiler and that
by EASE: (a) in mixed mode, and (b) in only-C2 mode; larger the be�er.

statements are not compiled by C2, because of the high threshold limit. As a side study, to get an

estimate on the upper limit on the number of synchronization operations that could be elided for

long running programs, where more methods may get compiled by C2, we evaluated EASE and the

existing analyzer of C2 in an only-C2 mode. Here, we disabled the interpreter and the C1 compiler,

and compiled every method using C2. Figure 15(b) compares the number of synchronization

operations elided by EASE with that by the existing analyzer in the only-C2 mode. It can be

seen that compared to Figure 15(a), the existing analyzer of C2 �nds opportunities (albeit small in

number) for synchronization elimination in more benchmarks. In contrast, EASE is able to �nd
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Figure 16. Time taken (in milliseconds) to insert explicit null-dereference checks by the existing analyzer of
C2 and by PACE during JIT compilation.

many more opportunities (up to 107). �is shows that for long running programs, EASE may lead

to the elision of more synchronization operations than the existing analyzer of C2.

7.3.2 Time taken during JIT compilation. We now evaluate the time taken by the fast-precise-

analyzers of PACE and EASE during JIT compilation. For reading the .res �les, we spawn a separate

thread for the partial-results-accumulator during the initialization of the JVM, and wait for the

thread to terminate before using the results in the C2 compiler. �e time to read the .res �les

varies with the size of the .res �les, and on average, it is 13 and 8 milliseconds for PACE and EASE,

respectively. However, we found that the spawned thread �nished long before the results were

needed for all the benchmarks in both the modes, for both the analyses. �us, the e�ective time

required by the partial-results-accumulator for both PACE and EASE is zero.

Figure 16 compares the time taken by PACE with that by the existing analyzer of C2 to insert

explicit null-dereference checks during JIT compilation, in milliseconds. As evident, the execution

times of both the analyzers are very small (less than a millisecond, on average) and comparable.

�e time spent by the existing analyzer is quite small because the corresponding analysis is

only intraprocedural. �e important point to observe is that the time spent by PACE to obtain

signi�cantly more precise results is also very small and does not cause any noticeable overhead.

Figure 17 compares the time taken by EASE with that by the existing analyzer of C2 to perform

synchronization elimination during JIT compilation, in milliseconds. As evident, the escape-analysis

time in EASE is clearly lower (on average, 99.91% less) compared to the existing analyzer. �is

is because EASE completely alleviates the need to construct connection graphs and propagate

escape-analysis information therein, as is done by the existing analyzer of C2 during JIT compilation.

Note that these savings also imply a drop in the overall JIT compilation time. For the benchmarks

under consideration, we found the mean saving in the JIT compilation time due to EASE was

about 1.9% (see Figure 18). Note that these improvements may also include the e�ects on the

JIT compilation time, by any additional optimizations enabled by EASE (for example, in the IR

simpli�cation passes).
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Figure 17. Time taken (in milliseconds) to perform synchronization elimination by the existing analyzer of
C2 and by EASE during JIT compilation.
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Figure 18. Improvement in JIT compilation time for EASE.

7.3.3 Impact of null-check elimination and synchronization elimination. Figure 19 shows the

performance improvements obtained using PACE and EASE over the respective existing analyzers

of C2, in the presence of all other optimizations of the HotSpot JVM. It is well known (Georges et al.

2007) that the performance of Java programs varies signi�cantly across multiple iterations and

even across JVM invocations, due to several non-deterministic factors. To measure the steady-state

performance, we ran each benchmark as follows. For the SPECjvm and the DaCapo benchmarks, we

executed K (=11) warmup iterations and used the following iteration to measure the performance

metric: operations-per-second for SPECjvm and time taken for DaCapo. For SPECjbb, we used the

score (in operations-per-second) reported by the benchmark harness (a�er warming up) in each

run. For the JGF benchmarks, we use the time for each run as calculated using the time command.

Finally, in order to account for systemic bias and the variations across JVM invocations, we ran the
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Figure 19. Performance improvement of (a) PACE and (b) EASE, over the respective existing analyzers of C2.
Benchmarks with < 0.5% improvement are not shown.

three analyses in alternating order twenty times, and show the variations as box plots (in Figure 19),

normalized over the mean of the twenty runs of the corresponding base version (labeled Existing

in the plots). We report only those benchmarks where the mean performance di�erence was more

than 0.5% (thereby accounting for possible noise).

For PACE, we �nd that the geomean performance improvements for most benchmarks are

modest: about 1%, except for sparse (3.5%), luindex (3.4%), and specjbb (3.6%). Note that though

the improvements for xalan (geomean 5.7%) look comparatively high, we also observe high

variance in its execution times across both the versions (Existing and PACE in Figure 19(a)); this

makes it di�cult to conclude much about this benchmark. As most null-checks in the HotSpot

JVM are actually handled using hardware traps (whose cost is not very high), the improvements

obtained by PACE are along the expected lines.

For EASE (see Figure 19(b)), the mean performance improvements go up to 4.4% (for fft), the

geomean being 1.79% (for the shown benchmarks). For the benchmarks where EASE elided some

synchronization operations but the improvements were negligible (e.g., sunflow), we found that

most elided synchronization operations were associated with static synchronized methods that

were called infrequently.

Considering that the above performance improvements are observed in the presence of a host

of other optimizations performed by the HotSpot JVM, we believe that these gains are important.

Note that PACE and EASE may improve the performance of an application in two ways: (i) by

saving time during JIT compilation (Section 7.3.2); and (ii) by enabling additional optimizations

due to the enhanced precision (Section 7.3.1). �e actual performance gains depend on multiple

runtime factors, such as the number of times the statements containing the elided null-checks

and synchronization operations are actually executed (post-compilation) at runtime, the overall

execution time, and so on.

7.3.4 Comparison with whole-program analysis during JIT compilation. An alternative approach

to performing precise analyses in JIT compilers could be to create separate “analysis-threads” that

analyze the methods being compiled in the background. However, such an approach is impractical as:

(i) the time taken to perform precise analyses can be prohibitively high; and (ii) the analysis-threads

may reduce the amount of parallelism available to the application. To establish this argument, we

tried to perform a whole-program context-, �ow- and �eld-sensitive analysis including the libraries
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statically in Soot. We set the cuto� to perform such an analysis as twice the actual execution-time

of the benchmarks under consideration. Let alone the larger SPECjvm and DaCapo benchmarks,

we found that the analysis for even our smallest benchmark moldyn did not terminate within the

set cuto�. �us, performing such expensive analyses during JIT compilation would take more time

than the actual program-execution time itself, and is fundamentally impractical.

Overall, we see that PYE can be used to perform highly precise program analyses without

incurring any signi�cant overheads during JIT compilation. �e evaluation of PACE and EASE

establishes them as practical alternatives for the existing analyzers of C2. We also note that as

the overheads involved are quite small, the partial summaries generated using PYE can be used to

enable sophisticated optimizations, which are currently performed only by complex JIT compilers

such as C2, in faster compilers such as C1 and possibly in the interpreter as well. Even though we

have implemented PYE and its instantiations in Soot and the HotSpot JVM, the proposed techniques

can as well be implemented in other static analyzers such as WALA (2018), and other Java runtime

environments such as the Jikes RVM (Alpern et al. 2005).

8 RELATEDWORK
We divide the discussion on the related work into four parts: (i) staged analysis; (ii) modular analysis;

(iii) points-to analysis for null-check elimination; and (iv) escape analysis for synchronization

elimination.

8.1 Staged analysis
�ere have been prior works (Ali 2014; Serrano et al. 2000) that help perform costly whole-program

analyses/optimizations statically for Java. Serrano et al. (2000) propose an interesting compilation

scheme, in which the application (considered along with the statically available libraries) is statically

compiled to a platform-speci�c optimized binary. �is may involve dynamic compilation to support

dynamic Java features (such as di�erent runtime libraries). Averroes (Ali 2014) helps perform whole-

program analyses statically, by generating “placeholder” libraries that conservatively approximate

the behavior of the actual runtime libraries.

Many prior works have tried to reduce the overheads at runtime (but not during JIT compilation)

by taking advantage of the multi-stage nature of Java compilation/execution model. For example,

Sreedhar et al. (2000) use code specialization to generate multiple versions of code statically, where

each version may be optimized di�erently (not all may be “semantics preserving”, or valid). Based

on the runtime conditions, one of the valid versions of the code is invoked during execution.

Similarly, Guyer et al. (2006) annotate the input code with explicit “free” instructions (executed at

runtime) based on the liveness information of the heap objects. In contrast, we perform expensive

analyses on applications statically to obtain results that are conditional on the speci�c libraries on

the target machine; these partial results are combined with the partial results of the libraries, at

runtime, to achieve precision and performance.

Chambers (2002) and Philipose et al. (2002) propose a staged compilation scheme in which the

generation of native code for di�erent platforms is spread across the di�erent stages of compilation

and linking, for C programs. In contrast, PYE is designed for analyzing programs wri�en in

languages like Java/C# that follow a two-step process of compilation (static + just-in-time), where

the libraries can only be obtained at runtime.

Sharma et al. (1998) propose deferred data-�ow analysis (DDFA) to address the problem of the

conservative nature of static analyses. DDFA performs most of the analysis at compile-time and

uses control-�ow information at runtime to improve the precision of the analysis. In PYE, our
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focus is on handling the dependence between the application and the library methods. It would be

interesting to perform DDFA analyses in the PYE framework.

Our idea of conditional values is partially inspired from the idea of three-valued logic analysis (Sa-

giv et al. 2002). We associate conditions with the indeterminate third values, which are resolved

during JIT compilation. �is helps us achieve precision without much overhead at runtime.

8.2 Modular analysis
Modular analysis, as proposed by Cousot and Cousot (2002), is a well-explored technique to scale

interprocedural analyses by analyzing di�erent modules (or methods, in Java context) separately,

and composing the modular results to obtain whole-program analysis results (Calcagno et al. 2011;

Choi et al. 1999; Sălcianu and Rinard 2005; Vivien and Rinard 2001; Whaley and Rinard 1999). �ere

is a recent survey by Madhavan et al. (2015) that evaluates several of these existing techniques in a

well-formalized framework.

In the context of Java programs, Whaley and Rinard (1999) compute summaries for methods in

the form of points-to escape graphs, and compose them at interprocedural boundaries. Later, Vivien

and Rinard (2001) incrementalize the analysis to analyze only those parts of a program that may

deliver useful results. �e analysis performed by our proposed framework PYE is also modular, but

we do not have the library methods while analyzing the application, and vice-versa. Consequently,

our generated summaries contain conditional values. In PACE and EASE, we have borrowed the

idea of creating outside nodes from Whaley and Rinard (1999), and added conditional values to the

outside nodes to represent the dependence of unavailable object-dereferences on the unanalyzed

parts of a program. Further, we use the mapping algorithm presented by Whaley and Rinard (1999)

to merge the points-to graphs of analyzed methods at interprocedural boundaries.

�ere have been prior works that model the dependences between the available and unavailable

methods while performing static analyses. WALA (2018) models native methods �ow-insensitively

and merges their summaries with those of their callers. StubDroid (Arzt and Bodden 2016) sum-

marizes Android libraries for taint analysis by storing conditions on the “taint value” of actual

arguments. In contrast, the conditional values proposed in PYE are bidirectional (that is, from

application to library methods and vice-versa), and the statically generated partial summaries are

resolved during JIT compilation to obtain precise analysis-results in the JVM.

8.3 Points-to analysis for null-check elimination
�ere have been works that perform points-to analysis to statically identify unnecessary null-

dereference checks (Loginov et al. 2008; Nanda and Sinha 2009). Loginov et al. (2008) perform a static

points-to analysis and annotate the statements that are guaranteed to dereference a concrete object.

�ey handle those library calls precisely whose speci�cations guarantee that the corresponding

methods return a non-null object, and treat others conservatively. Nanda and Sinha (2009) perform

a path-sensitive points-to analysis statically to mark the dereferences guaranteed to be made

on a concrete object. �ey treat the library methods as unavailable for analysis, and handle the

library calls conservatively. Contrary to both these works, PACE is a two-step analysis that neither

assumes the speci�cation of library methods, nor handles library calls conservatively. Instead,

PACE analyzes the application and the library methods separately, while encoding the dependence

between them in the generated partial summaries as conditional values. �ese dependences are

resolved during JIT compilation to obtain precise analysis-results.

In order to balance the time spent in JIT compilation, the HotSpot Server Compiler (C2) of

the HotSpot JVM (Paleczny et al. 2001) performs an intraprocedural points-to analysis to avoid

inserting null-checks that are not required. As shown in Section 7, PACE o�ers a much enhanced
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precision (on average 23.67% fewer checks than the existing analyzer) in almost the same amount

of time (as C2) during JIT compilation.

8.4 Escape analysis for synchronization elimination
�ere have been many prior research works (Choi et al. 1999; Salcianu and Rinard 2001; Whaley and

Rinard 1999) that perform precise escape analysis for Java programs. However, they are completely

performed either during static compilation (Choi et al. 1999) (make conservative assumptions

about libraries), or during JIT compilation (Salcianu and Rinard 2001; Whaley and Rinard 1999)

(not scalable). Kotzmann and Mössenböck (2005) present an imprecise but fast escape analysis

for the HotSpot Client Compiler (C1). In contrast, EASE generates precise escape-analysis results

during JIT compilation in the HotSpot Server Compiler, at speeds comparable to that of the baseline

partially interprocedural and partially �ow-sensitive analysis.

Lee and Midki� (2006) propose an insightful two-phase escape analysis for the Jikes RVM. �ey

compute connection graphs (a representation similar to points-to graphs) for di�erent methods

o�ine, and merge the connection graphs to complete an interprocedural analysis during JIT compi-

lation. On the contrary, EASE generates precise escape-analysis results at runtime, by resolving the

statically generated partial summaries, and has the following advantages: (i) By maintaining the

set SYN separately, EASE can preserve �ow-sensitivity for synchronization elimination (Lee and

Midki� store only per-method connection-graphs and lose �ow-sensitivity). (ii) �e overhead of

the fast-precise-analyzer of EASE at runtime is very less, as it does not perform any actual escape

analysis (Lee and Midki� may have to revisit/modify the connection-graph multiple times). (iii) �e

storage overheads of the result �les for EASE are quite less: average 3.96% over the class �les (Lee

and Midki� report 68% overhead).

�e recent proposal of partial escape analysis (Stadler et al. 2014) performs lock elision only

on those branches in which the associated object does not escape, in the Graal (2018) compiler.

For instance, before entering a synchronization statement, a data-structure is looked up to check

if the associated object has not escaped; and if so, the lock operation is not performed. �is is a

promising approach for doing escape analysis, and we believe that its e�ciency can be further

improved by implementing it in PYE.

9 CONCLUSION AND FUTUREWORK
In this paper, we propose a two-step analysis framework called PYE that helps generate highly

precise analysis-results during JIT compilation, at a low cost. PYE is based on the idea of generating

partial summaries at compile-time, which encode the dependence on the missing libraries in a

concise manner, in the form of conditional values. We show the e�ectiveness of PYE by using

it to design two precise analyses – points-to analysis for null-check elimination (PACE) and

escape analysis for synchronization elimination (EASE) – for Java programs. Over a wide range of

benchmarks, PACE and EASE generate more precise results compared to the existing analyzers of

the HotSpot Server Compiler (C2), with negligible overhead (in fact, saving time in case of EASE)

during JIT compilation. �e evaluation a�ests PYE to be an e�ective and practical framework for

implementing complicated whole-program analyses and their related optimizations. �e techniques

proposed in this paper are general enough to be extended to other languages such as C# that deploy

a two-step compilation process.

Future work
It would be quite interesting to implement precise versions of other popular analyses (such as,

points-to analysis for call-graph construction, may-happen-in-parallel analysis, and so on) in PYE,
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and study the impact on the precision of the results obtained, possibly for other static+JIT-compiled

languages (such as C#) as well.

It would also be interesting to make the partial-analyzer incremental, such that the partial

summaries could be updated as the program changes, on-the-�y, without performing the static

analysis from scratch. Such an extension can be useful in incremental compilation frameworks

such as the Eclipse Java Compiler (ECJ) used along with the Eclipse IDE (Eclipse 2018).
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