
1

Homeostasis: Design and Implementation of a Self-Stabilizing
Compiler
AMAN NOUGRAHIYA, Department of CSE, IIT Madras, India

V. KRISHNA NANDIVADA, Department of CSE, IIT Madras, India

Mainstream compilers perform a multitude of analyses and optimizations on the given input program. Each

analysis (such as points-to analysis) may generate a program-abstraction (such as points-to graph). Each

optimization is typically composed of multiple alternating phases of inspection of such program-abstractions

and transformations of the program. Upon transformation of a program, the program-abstractions generated

by various analyses may become inconsistent with the modified program. Consequently, the correctness of the

downstream inspection (and consequent transformation) phases cannot be ensured until the relevant program-

abstractions are stabilized; that is, the program-abstractions are either invalidated or made consistent with

the modified program. In general, the existing compiler frameworks do not perform automated stabilization

of the program-abstractions and instead leave it to the compiler pass writers to deal with the complex task

of identifying the relevant program-abstractions to be stabilized, the points where the stabilization is to be

performed, and the exact procedure of stabilization. In this paper, we address these challenges by providing

the design and implementation of a novel compiler-design framework called Homeostasis.

Homeostasis automatically captures all the program changes performed by each transformation phase, and

later, triggers the required stabilization using the captured information, if needed. We also provide a formal

description of Homeostasis and a correctness proof thereof. To assess the feasibility of using Homeostasis in

compilers of parallel programs, we have implemented our proposed idea in IMOP, a compiler framework for

OpenMP C programs. Further, to illustrate the benefits of using Homeostasis, we have implemented a set of

standard data-flow passes, and a set of involved optimizations that are used to remove redundant barriers

in OpenMP C programs. Implementations of none of these optimizations in IMOP required any additional

lines of code for stabilization of the program-abstractions. We present an evaluation in the context of these

optimizations and analyses, which demonstrates that Homeostasis is efficient and easy to use.

CCS Concepts: • Software and its engineering → Compilers; Frameworks; Development frameworks and

environments; Design patterns; Incremental compilers.

Additional Key Words and Phrases: compiler design, multi-pass compilation, self-stabilization

ACM Reference Format:

Aman Nougrahiya and V. Krishna Nandivada. 2024. Homeostasis: Design and Implementation of a Self-

Stabilizing Compiler. ACM Trans. Program. Lang. Syst. 1, 1, Article 1 (January 2024), 58 pages.

1 INTRODUCTION
Modern compilers often span millions of lines of code, and perform a multitude of analyses and

optimizations on the given input program. Each analysis (such as points-to analysis, call-graph

construction, and so on) derives some meaningful information about the program, in the form of

a program-abstraction (such as points-to graph, call-graph, and so on). An optimization typically

involves multiple alternating phases of inspections of such program-abstractions, and transforma-

tions of the program. In the inspection phase, the optimization invokes the required analyses, if

needed, and inspects various program-abstractions to discover opportunities of optimization in

the program. In the transformation phase, the optimization pass may use the results of the inspec-

tion phase to modify the program. Consequently, the transformation phase may render various

Authors’ addresses: Aman Nougrahiya, amannoug@cse.iitm.ac.in, Department of CSE, IIT Madras, India; V. Krishna

Nandivada, nvk@iitm.ac.in, Department of CSE, IIT Madras, India.

2024. 0164-0925/2024/1-ART1 $15.00

https://doi.org/

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

HTTPS://ORCID.ORG/0000-0002-2563-2480
HTTPS://ORCID.ORG/0000-0002-5949-0046
https://orcid.org/0000-0002-2563-2480
https://orcid.org/0000-0002-5949-0046
https://orcid.org/0000-0002-5949-0046
https://doi.org/

1:2 Nougrahiya and Nandivada

1 DeadBranchRemover()
2 begin

3 genPointsToIfNotAvailable();
4 foreach f ∈ IfStmts do
5 c:= f.getPredicate();
6 if isNeverZero(c) then

7 replace(f, f.thenBranch);

8 else if isAlwaysZero(c) then

9 replace(f, f.elseBranch);

(a) Optimization: Dead-branch remover
using points-to information.

int a, b, c, *p, *q;
p = &a; q = &c;
L1: if (q!=&c) {p = &b;}
L2: if (p==&a) S1 else S2

(b) Input program (𝑃1)

Node Points-to Map

L1: (q != &c) p:{a}, q:{c}
L2: (p == &a) p:{a, b}, q:{c}

.

(c) Program-abstraction: Points-tomap.

int a,b,c,*p,*q;
p=&a; q=&c;
L2: if (p==&a) S1

else S2

(d) Generated program (𝑃2).

int a,b,c,*p,*q;
p=&a; q=&c;
S1

(e) Expected program (𝑃3).

Fig. 1. An example optimizer pass, and a program-abstraction. After removing the if-statement at L1
from the input program 𝑃1 to obtain 𝑃2, the optimizer will not be able to remove the else-branch of L2,
thereby not producing the expected optimal code 𝑃3: In the absence of stabilization, the points-to map from
Fig. 1c does not get updated after removal of the statement at L1. Consequently, with the stale points-to
information, the optimizer cannot infer that pointer 𝑝 may point only to 𝑎 at the predicate at L2 in 𝑃2.

existing program-abstractions inconsistent with the modified program. As a result, the existing

program-abstractions must be stabilized before their next use; that is, the program-abstractions

must be regenerated or updated such that they correspond to the modified program. Otherwise, the

correctness of the future inspection phases of the current or downstream optimizations cannot be

ensured. This, in turn, can negatively impact the optimality and even the correctness of the overall

compilation. We illustrate these problems using an example.

Example 1.1. In Fig. 1a, we show the pseudocode of a standard compiler optimization that utilizes

points-to information to remove dead branches from a program. For simplicity, we assume that

the predicates do not contain any side-effects, and that there are no arbitrary goto-statements in

the input program. The isNeverZero method returns true when it can be statically determined

that the given expression can never evaluate to zero; similarly, the isAlwaysZero method returns

true only when the expression would always evaluate to zero. Further, assume that both these

methods use the points-to information to statically evaluate the given expression. Hence, in the

inspection phase, the optimization pass invokes a flow-sensitive points-to analysis pass to obtain

the required points-to map (a program-abstraction), if not already available. Further, in this phase,

the optimization utilizes the methods isNeverZero and isAlwaysZero to determine whether an

if-statement can be replaced with either of its branches. Accordingly, the transformation phase

may be triggered to perform the replacement using the replace method (Lines 7 and 9). Note that

these transformation and inspection phases may alternate in the presence of multiple if-statements

in the program.

This simple and intuitive code of dead-branch remover may not work as expected: Consider

a sample input program 𝑃1 shown in Fig. 1b, and a part of its points-to map in Fig. 1c. Say the

optimization processes the if-statement at label L1 first, and relying on the points-to map at

the predicate, replaces the if-statement with its else-branch (i.e., an empty body), transforming

program 𝑃1 to 𝑃2 (Fig. 1d). This transformation renders the points-to map stale: at the predicate (p
== &a), the pointer p continues to point to {a, b}, instead of {a}, the more precise points-to set. In

the absence of stabilization of the points-to map, the optimizer pass in its next iteration cannot

determine that the predicate at L2 will never be zero. As a result, the optimizer will not generate

the optimal program 𝑃3; instead, 𝑃2 will be the final output of the optimizer. Note that such issues

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:3

Upon adding a new optimization O𝑛 Upon adding a new program analysis A𝑛

Q
1
. Which existing program-abstractions need to

be stabilized by O𝑛?

Q
T

1
. Which existing optimizations need to stabilize the

program-abstraction of A𝑛?

Q
2
. Where to invoke the stabilization code in O𝑛 ,

for the existing program-abstractions?

Q
T

2
.Where to invoke the stabilization code for A𝑛 , in

each of the existing optimizations?

Q
3
. How to stabilize each of the existing program-

abstractions, in O𝑛?

Q
T

3
. How to stabilize the program-abstraction of A𝑛 ,

in each of the existing optimizations?

Fig. 2. Key stabilization-related question to be addressed while adding new compiler passes.

of sub-optimality (and even correctness) may also be observed in the downstream optimization

passes, until the points-to map is stabilized.

To perform the correct stabilization manually and efficiently, we need to identify all the places

in the dead-branch remover where the points-to map may require stabilization. Further, we also

need to be concerned about the stabilization of all the other program-abstractions as well: (i) We

need to identify the program-abstractions (for example, use-def information [Muchnick 1998]) that

may become stale because of the current optimization, and may be required by other downstream

optimizations and analyses. (ii) For each of these program-abstractions, we need to identify the

places in the dead-branch remover where the program-abstraction needs to be stabilized. In practice,

in the presence of multiple optimizations and analyses (hereafter, collectively referred to as compiler

passes), this problem compounds as we need to be concerned about stabilization of all the program-

abstractions in all the optimizations.

In summary, we observe that to avoid the generation of such sub-optimal and/or incorrect

programs upon compilation, three key stabilization-related questions shown in Fig. 2 need to be

addressed while adding/modifying an optimization or analysis. In conventional compilers, such as

LLVM [Lattner and Adve 2004], GCC [Stallman and GCC-Developer-Community 2009], Soot [Vallée-

Rai et al. 2010], Rose [Quinlan et al. 2013], JIT compilers (OpenJ9 [IBM 2017], HotSpot [Oracle

1999], V8 [Google 2001]), and so on, the onus of addressing these key questions lies mostly on the

compiler pass writers. Some such instances are shown in Fig. 3. This manual process often leads to

complex and error-prone codes. Further, as the number and complexity of compiler passes increase

(for example, LLVM has more than 347 passes), addressing these questions precisely and efficiently

becomes progressively more difficult. This may lead to correctness/efficiency bugs (see bug-fixing

commits on GitHub [LLVM-Developer-Community 2019a,b,c, 2020a,b,c,d,e,f,g,h,i, 2021a,b,c]). With

the compiler development effort spanning multiple decades involving (sometimes) hundreds of

developers, it becomes extremely challenging to manually solve these problems, as no developer of

a compiler pass might possess a clear understanding of the semantics of all the hundreds of other

passes already present in the compiler.

To mitigate these issues, the focus of this paper is to perform automatic stabilization of all the

relevant program-abstractions, when needed, in response to any program modification. We term a

compiler that provides this guarantee as a self-stabilizing compiler.

There have been various attempts [Blume et al. 1995; Brewster and Abdelrahman 2001; Carle

and Pollock 1989; Carroll and Polychronopoulos 2003; Nilsson-Nyman et al. 2009; Reps et al.

1983] towards enabling automated stabilization of specific program-abstractions, in response to

program transformations in serial programs. However, these works suffer from different drawbacks.

For example, Carle and Pollock [1989]; Nilsson-Nyman et al. [2009]; Reps et al. [1983] require

that program-abstractions have to be expressed as context-dependent attributes of the language

constructs; this is too restrictive. Similarly, besides the non-object-oriented nature of the approach

of Carroll and Polychronopoulos [2003], it is unclear how their restrictive techniques can (i) be

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:4 Nougrahiya and Nandivada

void getAnalysisUsage(AnalysisUsage &AU) const
override {

AU.setPreservesCFG ();
AU.addRequired <AAResultsWrapperPass >();
AU.addRequired <TargetLibraryInfoWrapperPass >();
AU.addPreserved <GlobalsAAWrapperPass >();
AU.addRequired <DominatorTreeWrapperPass >();
AU.addPreserved <DominatorTreeWrapperPass >();
AU.addRequired <PostDominatorTreeWrapperPass >();
...

(a) DeadStoreElimination.cpp:2068-2077 (LLVM)

/* We do not update postdominators ,
so free them unconditionally.*/

free_dominance_info(CDI_POST_DOMINATORS);
/* If we removed paths in the CFG , then
we need to update dominators as well.
I haven't investigated the possibility
of incrementally updating dominators.*/

if (cfg_altered)
free_dominance_info(CDI_DOMINATORS);

(b) tree-ssa-dce.c:1693-1700 (GCC)

_somethingChanged |= inlineCallSites ();
// Use/def and value number information must be recalculated for later optimization passes.
if (_somethingChanged || _invalidateUseDefInfo) {

optimizer ()->setUseDefInfo(NULL); _useDefInfo = NULL;}
if (_somethingChanged) {

optimizer ()->setValueNumberInfo(NULL);
requestOpt(OMR:: treeSimplification); requestOpt(OMR:: globalValuePropagation);

(c) EscapeAnalysis.java:1357-1371 (OpenJ9)

Fig. 3. Example snippets from LLVM, GCC, and OpenJ9 demonstrating manual stabilization. The comments
are written by the pass writers. Snippet (a) shows how pass writers manually specify pass dependencies
in LLVM. Snippet (b) shows how some selected program-abstractions are invalidated manually in GCC.
Snippet (c) depicts a case where the pass writer has manually written additional code for stabilization after
a transformation phase.

applied to compilers that use non-hierarchical IRs, which is a common practice in modern compilers

(such as LLVM, Soot, OpenJ9, IMOP [Nougrahiya and Nandivada 2019], and so on), (ii) be used for

data-flow analyses that are not based on structural analysis [Muchnick 1998], and (iii) automate

the resolution of pass dependencies, or handle manually-defined dependencies. Blume et al. [1995];

Brewster and Abdelrahman [2001] handle only a small set of specific program-abstractions (such

as symbol and scope information); this is insufficient. To the best of our knowledge, there are no

compiler designs or implementations
1
that address the challenges discussed above for any arbitrary

IR, optimization and analysis.

Proposed solution. In this paper, we propose a novel and efficient compiler-design framework

called Homeostasis that addresses the above discussed issues related to stabilization, in the context

of object-oriented compilers.Homeostasis efficiently captures a summary of all the program changes

performed by each transformation phase. Later, if/when an attempt is made to read the possibly

stale program-abstraction of a program analysis, Homeostasis triggers the required stabilization

using the captured information, before returning the correct value of the program-abstraction.

With Homeostasis, no additional coding effort is required by the optimization writers to guarantee

self-stabilization of the existing (or future) program-abstractions. For example, in an implementation

of the dead-branch remover (Fig. 1a) in a Homeostasis-enabled compiler, Homeostasis would ensure

self-stabilization of the points-to map, without requiring any additional code in the optimization;

this will lead to generation of the expected optimal program 𝑃3.

In Homeostasis, for ensuring self-stabilization, analysis writers need to spend minimal effort

to only conform to the design of Homeostasis, while being oblivious to all the (existing/future)

optimizations. As part of this conformance, if the analysis writer decides to use an incremental

update algorithm for stabilization (instead of full recomputation), the writer has to clearly demarcate

the code to incrementally update the program-abstraction. Note that such a code is needed even

1
Our observation is based on our manual inspection of more than 50 mainstream and experimental compilers [Nougrahiya

and Nandivada 2023].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:5

when the stabilization is performed manually; hence this is not an additional overhead. In essence,

while working with a Homeostasis-enabled compiler, a compiler pass writer need not manually

address any of the key questions listed in Fig. 2, and hence incurs no additional overhead.

For the ease of exposition, we have discussed Homeostasis using IMOP [Nougrahiya and Nandi-

vada 2019] a Java-based compiler in the context of a C-like language. We believe that the underlying

principles of the Homeostasis are quite generic in nature, and that they can be extended to any

object-oriented compilers for any serial/parallel languages.

Note that the goal of this paper is not to propose any new incremental analysis technique (or any

new analysis technique or optimization for that matter). The key goal of this paper is to present a

scheme which ensures that correct values of various program-abstractions are obtained efficiently

by all the compiler passes, without needing any additional manual effort in these passes.

Contributions:
• We present Homeostasis, a generalized compiler-design framework for self-stabilization, which

can be added to any object-oriented compiler infrastructure to ensure that all program-abstractions

are automatically kept consistent with the modified program during the compilation process. The

underlying concepts of Homeostasis can be used in any object-oriented compiler for serial/parallel

languages to realize self-stabilization.

• To overcome the possible overheads resulting from the naive tracking of the program changes,

we present a novel compression algorithm that reduces the memory requirements significantly.

• We give a formal description of Homeostasis and a correctness proof thereof, which guarantees

that in a Homeostasis-enabled compiler, any compiler pass attempting to access the program-

abstraction of an analysis will see only the stable value of that program-abstraction.

• We have implemented all the key components of Homeostasis in IMOP, a source-to-source Java-
based compiler infrastructure for OpenMP C programs, as a successful proof-of-concept. Further,

to demonstrate the benefits of using Homeostasis, we have implemented (i) HIDFA, a generic,

self-stable, inter-thread, flow-sensitive, context-insensitive iterative data-flow analysis (IDFA) and

six instantiations thereof, (ii) a set of optimization passes, collectively termed as BarrElim, that
removes redundant barriers from OpenMP C programs; BarrElim uses a set of nine optimization

passes, each of which may involve multiple alternating phases of inspection and transformation. As

expected, the implementation of the set of BarrElim optimization passes required zero additional

lines of code for stabilization, and the stabilization of the analyses required minimal effort.

• We present an evaluation over a set of twenty-four benchmarks from four benchmark suites

NPB [Van der Wijngaart and Wong 2002], SPEC OMP [Aslot et al. 2001], Sequoia [Seager, M

2008] and IMSuite [Gupta and Nandivada 2015], performed over two different platforms. We show

that Homeostasis makes it easy to write optimization and analysis passes, and it leads to faster

compilation times compared to the possible alternative of typical manual stabilization performed

by experts. We also show that our proposed optimizations lead to significant memory savings.

The rest of the manuscript is organized as follows: We give a brief background of the relevant

concepts used in the manuscript in Section 2. We present our design of Homeostasis in Section 3.

We give a formal description of Homeostasis, along with a correctness argument in Section 4. We

discuss some salient features of Homeostasis in Section 5. In Section 6, we discuss an instantiation

of Homeostasis in a real-world compiler. In Section 7, we briefly describe our implementation and

present a detailed evaluation of Homeostasis. In Section 8, we discuss some of the relevant prior

work, before concluding in Section 9.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:6 Nougrahiya and Nandivada

2 BACKGROUND AND TERMINOLOGY
We now give a brief description of certain relevant concepts and terminologies used in this paper.

Representation of program IR.Without loss of generality, in this paper we assume each pro-

gram’s intermediate representation (IR) is represented as a graph. For instance, when the control

flow graph (CFG) is the IR, nodes in the graph represent the basic-blocks, and the edges model

the flow of control. Similarly, if three-address code (TAC) is the IR, then the TAC instructions are

the nodes, and the edges may be of many types, such as control-flow edges, SSA edges [Muchnick

1998], and so on.

Analysis, Analysis-instances, and Program-abstractions. In the context of compilers written

in an object-oriented language, we assume that each analysis (for example, Andersen’s points-to

analysis [Andersen 1994]) is implemented as a class. During compilation, one or more of these

classes are instantiated to provide analysis-instances. Each such analysis-instance, say 𝐴𝑖 , can be

seen as a function from the set of programs to a set of program-abstractions. A program-abstraction

may refer to any data-structure that denotes some meaningful information generated by an analysis-

pass, about the input program at compile time. In this manuscript, we use 𝐴𝑖(𝑃) to denote the

program-abstraction generated by running the underlying analysis of 𝐴𝑖 on a program 𝑃 . For

example, Fig. 1c shows a part of the points-to map, the program-abstraction of the corresponding

points-to analysis.

Stable program-abstraction. At any point during compilation, if the current program IR is 𝑃 ,

and the stored program-abstraction for an analysis-instance 𝐴𝑖 is 𝑣 , then we term 𝑣 as the stable

program-abstraction of 𝐴𝑖 , iff 𝐴𝑖 (𝑃) = 𝑣 .

Elementary transformations. Based on the grammar of the language under consideration, corre-

sponding to each type of program nodewith a body (such as a block in LLVM IR, or a while-statement

construct), we identify a fixed set of primitive transformations which can add/delete/modify the

logical components of the program node (such as an instruction of a block, or the predicate of a

while-statement); we term such transformations as elementary transformations.

3 HOMEOSTASIS : DESIGNING SELF-STABILIZING COMPILERS
Considering the stabilization challenges inherent in the design of conventional compilers, we now

present a novel solution in the form of a new object-oriented compiler-design framework named

Homeostasis (in Sections 3.1, 3.2, and 3.3). In order to access/maintain stable program-abstractions

in a Homeostasis-enabled compiler, while the analysis pass writers have to spend minimal effort,

the optimization pass writers need not spend any effort (elaborated in Section 3.4). We formalize

the design of Homeostasis and present a correctness argument in Section 4.

3.1 Overview of Homeostasis
Homeostasis realizes self-stabilization by tracking the program modifications resulting from differ-

ent transformations. These program modifications are then used by Homeostasis to perform the

stabilization of relevant program-abstractions if/when required.

3.1.1 Design pattern employed by Homeostasis. To track program modifications resulting from

different transformations, Homeostasis uses an extension of the popular Observer pattern [Gamma

et al. 1995]. The Observer pattern defines a one-to-many dependency between multiple entities,

where an update in one entity (termed subject), is notified to all the other registered entities (termed

observers). Fig. 4 shows a class diagram (in ObjectModeling Technique, or OMT, notation [Rumbaugh

et al. 1991]) which gives an overview of the key design elements of Homeostasis: (i) Node class
and its subtypes (such as WhileStmt) correspond to the subject(s), (ii) all the program analyses

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:7

Fig. 4. Class-diagram of Homeostasis, depicting key classes and methods, in the OMT notation: class
names are shown in bold; abstract methods in italics; static members are preceded with a $; inheri-
tance is shown using a triangle on the edge, pointing towards the base class; and dashed arrows show
code snippets for methods.

(such as CallGraphGenerator) along with their base class (BasePA) correspond to the observers,

and (iii) program modifications (such asWhileStmt::elemTransformReplaceBody) correspond to

the various updates to the subject(s). The use of the Observer pattern ensures that these updates

(program modifications) are correctly notified to all the observers (program analysis passes).

Homeostasis goes beyond the standard design of the Observer pattern in two key ways. First,

instead of triggering updates of the values (i.e., program-abstractions) maintained by various pro-

gram analyses immediately upon a program modification, Homeostasis simply marks the program-

abstractions as stale (or UNSTABLE). The actual update of each program-abstraction is performed

lazily, by deferring the update to a later stage where an attempt is made to read from the program-

abstraction, using its getters (such asCallGraphGenerator::getCallGraph). Second, instead of storing
a copy of the program changes corresponding to such pending updates individually with each pro-

gram analysis (each of which may need to handle a different list of pending updates), Homeostasis

maintains a central copy of these program changes in an efficient data-structure (discussed in

Section 3.3).

3.1.2 Nodes of intermediate representation (IR). In Fig. 4, the Node class represents the super class
of all the types of nodes in the program’s intermediate representation (IR). Each such class may

define a fixed set of elementary transformation methods that may be invoked to add/modify/delete

any of the logical component(s) of the node. For example, in Fig. 4, elemTransformReplaceBody is an
elementary transformation method defined on the node WhileStmt; this transformation replaces a

component (the loop body) of the associated while-statement with the given argument. Homeostasis

requires that (i) all programmodifications are performed via a sequence of invocations of elementary

transformations, (ii) each elementary transformation marks each program-abstraction in the system

as stale by resetting the corresponding stableStatus flag, and (iii) each elementary transformation

stores the details of the resulting IR changes in the global sequence of program-changes, chSequence,
maintained by BasePA, to be read by the individual program analyses as and when required. Note

that the first requirement does not restrict the availability of high-level transformation APIs to

the optimization-pass writers; each such API may be adapted by the compiler-writers such that it

invokes one or more elementary transformations directly and/or via invocation of other similar

high-level APIs. For example, a high-level transformation API to delete a block of statements

can be implemented as a sequence of invocations of an elementary transformation that deletes

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:8 Nougrahiya and Nandivada

individual statements. Note that updating the high-level APIs is a one-time effort on the part of

compiler-writers; no additional effort is needed from the optimization-pass writers.

3.1.3 Program analysis pass classes. In Homeostasis, each program analysis is implemented as a

class that inherits from the abstract class BasePA, as shown in Fig. 4; this class contains various

key data structures and methods that are required to enable self-stabilization of the associated

program-abstractions. BasePA maintains a global set, allAnalyses, of all instances of the analysis
classes (henceforth, referred to as analysis-instances). Further, a sequence of all changes to the IR,

resulting from various elementary transformations, is maintained in a global list, named chSequence.
During stabilization trigger for any analysis-instance, if needed, the exact set of IR changes whose

impact needs to be incorporated in its program-abstraction, is obtained using chIndex, an index to

some location in the list chSequence. Note that both allAnalyses and chSequence are initialized
to empty set/list. Homeostasis may periodically employ the compress method to reduce the space

requirements of chSequence, depending upon the chIndex value of various analysis-instances in
allAnalyses (details in Section 3.2).

Fig. 4 shows CallGraphGenerator as a concrete class of BasePA, which implements the call-graph

generation routines and maintains the program-abstraction denoting the call-graph information

of the program. In Homeostasis, each program-abstraction can only be queried through its cor-

responding getter methods (such as getCallGraph in CallGraphGenerator). Before returning the
requested information, each getter method should check if the program-abstraction is stable (by

inspecting the value of stableStatus flag) and trigger stabilization if needed (by invoking the method

stabilize). Depending upon the mode of stabilization, discussed next, the stabilize method provided

by Homeostasis internally invokes either the compute or the handleUpdate method, passing them

the correct arguments, if any.

3.1.4 Modes of stabilization. An important defining characteristic of self-stabilization is the time

and manner in which a program-abstraction is stabilized under program modifications. Accordingly,

the stabilizationmode can vary along the following two dimensions: eager versus lazy, and invalidate

versus update.

Eager versus lazy. After an elementary transformation, the stabilization of an abstraction may

either get triggered (i) immediately (eager stabilization), or (ii) only in response to the first read

request made on the program-abstraction after the transformation (lazy stabilization). Note that

in practice, not every program-abstraction is read after each program modification. Hence, to

avoid the overheads due to the redundant invocation of the stabilization routines in case of eager

stabilization, Homeostasis advocates the use of lazy modes of stabilization.

Invalidate versus update. In response to one or more program modifications, the resulting

stabilization of a program-abstraction may either (i) involve the complete invalidation of the

program-abstraction (leads to regenerating the program-abstraction from scratch), or (ii) be able

to incrementally update the program-abstraction based on the modifications. Homeostasis attains

the fully-automated stabilization for invalidate modes without requiring any stabilization-specific

code from the analysis-pass writers. In invalidate modes, the stabilize method reinitializes the

program-abstraction, and invokes the compute method to regenerate the program-abstraction

from scratch; note that the code for this method would exist even in the absence of Homeostasis. In

contrast, to realize the update modes of stabilization, Homeostasis provides a well-defined method,

handleUpdate, to be implemented by the analysis-pass writers, which it later uses during automated

stabilization triggers, by passing the correct set of program changes to be handled. Though the

update modes may seem much more efficient than the invalidate modes, in practice the difference in

their performance depends on a number of factors, such as the number of programmodifications, the

complexity of the associated incremental update, and so on. Further, note that enabling the update

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:9

1 Function replaceX(newNode) // Method to replace the component X with newNode
2 oldX = getComponentX();
3 // Step A: Save nodes and edges affected by the removal of old node.
4 Set removedNodes = {oldX};
5 Set removedEdges = {..outgoing edges from, and incoming edges to, oldX..};
6 Set addedEdges = {..new edges formed due to the removal of oldX..};
7

8 // Step B: Perform the actual program update by invoking appropriate writer(s).
9 Replace the component X with newNode;

10

11 // Step C: Save nodes and edges affected by the addition of new node.
12 Set addedNodes = {newNode};
13 removedEdges = removedEdges

⋃
{..old edges removed due to the addition of newNode..};

14 addedEdges = addedEdges
⋃

{..outgoing edges from, and incoming edges to, newNode..};
15

16 // Step D: Communicate relevant information to each analysis.
17 for anl ∈ BasePA.allAnalyses do anl.stableStatus = UNSTABLE;
18 BasePA.chSequence.addFourTuple(addedNodes, removedNodes, addedEdges, removedEdges);

Fig. 5. Template of an elementary transformation in Homeostasis that replaces the component X of a
program node with newNode.

modes of stabilization for certain program-abstractions can be a challenging task. Considering such

issues, Homeostasis supports both invalidate as well as update modes of (lazy) stabilization.

On the basis of these two dimensions, Homeostasis supports the following two modes of stabi-

lization for any program-abstraction : (i) Lazy-Invalidate (LZINV), and (ii) Lazy-Update (LZUPD).

3.2 Components of Homeostasis
In this section, we expand on the design details of different components of Homeostasis (in Sec-

tions 3.2.1, 3.2.2, and 3.2.3). In Section 3.2.4, we discuss the details of how effective changes to the

IR, resulting from a sequence of elementary transformations, are obtained during stabilization in

Homeostasis. Finally, in Section 3.2.5, we demonstrate how stabilization is performed in the presence

of Homeostasis, using the example from Fig. 1a.

3.2.1 Structure of Node and its subclasses. Stabilization of program-abstractions in response to

the modifications performed by an optimization pass, can intuitively be done in two ways: (i) the

optimization pass directly modifies the program-abstraction, or (ii) the program analysis pass

performs the stabilization internally, possibly based on the exact modifications that have been

performed on the program. The first option can be complicated, and goes against the spirit/design

principles of object-oriented programming. Hence, we use the latter option in Homeostasis.

Elementary transformations. Homeostasis uses elementary transformations to communicate the

program modifications performed by different optimization passes to the program analyses. As

mentioned in Section 3.1, in Homeostasis, all program modifications happen only via elementary

transformations. Each elementary transformation in Homeostasis (i) collects the information about

addition/deletion of IR nodes and edges, and (ii) makes the collected information visible to every

program analysis object. We elaborate this using an example template of a generic elementary

transformation method that replaces a component C with a new node, as shown in Fig. 5. The

templates for the elementary transformation methods that add (or remove) components can be

trivially derived from the above template. The template method in Fig. 5 has four main steps.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:10 Nougrahiya and Nandivada

Elementary transformation : WhileStmt::setBody(Statement newBody);
oldBody = this.body
Set removedEdges = {(this.predicate, oldBody), (oldBody, this.predicate), . . . }
Set addedEdges = {(this.predicate, newBody), (newBody, this.predicate), . . . }
Set removedNodes = {oldBody}
Set addedNodes = {newBody}

Fig. 6. Values for the various sets used in Fig. 5, for a concrete elementary transformation that replaces the
body of a while-statement in the IMOP compiler framework (WhileStatementCFGInfo.java: 81-146).

Step A: This step applies to all those elementary transformations that may remove a node from

the IR. Besides storing the removed node in removedNodes, this step records all the edges that have
been removed (in removedEdges) or added (in addedEdges) as a result of removal of the node oldX.

Step B: This step performs the actual modification to the IR. For example, in Fig. 5, the compo-

nent X of a program node is replaced with the provided new node. This step contains the code that

would comprise the body of an elementary transformation in the absence of Homeostasis.

Step C: This step applies to only those elementary transformations that add a node to the

IR. Besides storing the added node in addedNodes, this step records all the edges that have been

removed (in removedEdges) or added (in addedEdges) as a result of addition of the node newNode.
Step D: In this step, Homeostasis first marks the status of each program analysis as UNSTABLE,

so that the corresponding stabilization routine is invoked whenever its program-abstraction is read

next (using the getter methods). As discussed in Section 3.1.4, for using the LZUPDmode of stabiliza-

tion a program analysis requires information about all the added/removed nodes and edges. Instead

of maintaining a copy of this information with each program analysis, for efficiency, Homeostasis

maintains it globally in the list chSequence, in the BasePA class. This list is 0-indexed. Each element

of chSequence is a four-tuple composed up of four sets: nodes added, nodes removed, edges added,

and edges removed. At the end of each elementary transformation, the method addFourTuple
appends the collected list of IR changes to the end of chSequence.

We now highlight three important points related to these four steps. (1) The exact definitions of

Steps A-C depend on (i) the exact type of the node being transformed, (ii) the specific component

being added/removed/replaced, and (iii) the semantics of the underlying language. For instance,

in case of OpenMP compilers, addition/removal of a node containing flush-directives, would

necessitate changes to the inter-task edges (or their equivalents) in the IR; these edges are used

to denote inter-task communication via shared variables. The exact set of edges added/removed

depend on the underlying semantics of OpenMP constructs. (2) An elementary transformation may

also result in addition or removal of edges without any changes in the nodes. In such cases, Steps A
and C capture the impacted edges accordingly. Further, if an elementary transformation changes

only the type, label, or annotation of an edge, then this can be represented as the replacement

of the old edge with a distinct new edge; the former is added to the set removedEdges in Step A,
and the latter is added to the set addedEdges in Step C. (3) In Step D, the list chSequence may

grow prohibitively large with increasing number of invocations of elementary transformations;

this list is maintained efficiently by Homeostasis using a compression optimization, explained later

in Section 3.3.

Example 3.1 (Concrete elementary transformation). Fig. 6 shows the values for the various sets

used in Fig. 5, for an elementary transformationmethod that replaces the body component of awhile-
statement with a given argument (newBody). This example has been taken from our implementation

of Homeostasis in the IMOP [Nougrahiya and Nandivada 2019] compiler framework for OpenMP C

programs. Note that in addition to the elements shown, the sets removedEdges and addedEdges

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:11

1 /* BasePA constructor */
2 public BasePA::BasePA(StabilizationMode mode) {
3 BasePA.allAnalyses.add(this);
4 this.compute();
5 this.stabilizationMode = mode;
6 if (this.stabilizationMode == LZINV) {
7 this.chIndex = -1;}
8 else { // this.stabilizationMode = LZUPD
9 this.chIndex = BasePA.chSequence.size() - 1;}

(a) Constructor of the base analysis class.

1 /* Template of a program -abstraction getter */
2 public V Analysis𝑌 ::get() {
3 if (this.stableStatus == UNSTABLE) {
4 this.stabilize();}
5 return this.abstraction;}

(b) Template of a getter method of a sample analysis.

1 /* Program -abstraction stabilizer */
2 private void BasePA::stabilize() {
3 this.stableStatus = STABLE;
4 if (this.stabilizationMode == LZINV) {
5 this.compute();}
6 else {// this.stabilizationMode = LZUPD
7 this.handleUpdate();
8 this.chIndex = BasePA.chSequence.size() - 1;}}

(c) Implementation of the stabilizer used by Homeostasis.

Fig. 7. Constructor and stabilizer methods of BasePA, and a template getter of a program-abstraction.

also include all the jump edges (due to jump statements, such as continue, break, etc.) that will
be removed/added from the IR as a result of this elementary transformation. Further, these sets

also contain inter-task edges
2
that are used as a part of the IR to model the parallel semantics of

OpenMP C.

3.2.2 Structure of BasePA and its subclasses. Homeostasis maintains a global set allAnalyses of
program analysis instances, by adding the reference of each program analysis instance (at the time

of its construction) to allAnalyses; see Fig. 7a. In addition, the constructor (i) invokes the compute
method, overridden by each program analysis class, to run the analysis from scratch and populate

the corresponding program-abstraction, and (ii) sets the initial value for chIndex, as per the given
mode of stabilization. In the case of LZINV mode of stabilization, chIndex is set to −1 as this field is

not used in LZINV mode. In the case of LZUPD mode of stabilization, the value of chIndex is used to

identify those elements in the global list chSequence whose impact needs to be taken into account

in order to obtain the stable program-abstraction. These elements are the change elements that lie

at indices beyond chIndex in chSequence.
The getter method of any program analysis follows the template shown in Fig. 7b, and invokes the

stabilize method, if needed, to return the expected value. See a snippet of the method getCallGraph
in Fig. 4 for an example.

3.2.3 Structure of program-abstraction stabilizers. As discussed in Section 3.1.4, Homeostasis allows

each program-abstraction to be stabilized in one of the two supported modes of stabilization: LZINV

2
IMOP uses the concept of inter-task edges between flush operations of a parallel region to statically model the communica-

tion that may happen using shared variables between different threads.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:12 Nougrahiya and Nandivada

1 Function getNetChanges(chIndex) // Obtain the net IR changes to be handled for a given chIndex
2 netChanges = <>;
3 foreach ind from (chIndex + 1)to (BasePA.chSequence.size() − 1) do

4 netChanges = mergeChanges(netChanges, BasePA.chSequence.get(ind));

5 return netChanges;

6 Function mergeChanges(ch1, ch2) // Obtain the net IR changes for the given changes
7 mergedChanges = <>;
8 mergedChanges.addNodes = (ch1.addNodes\ch2.remNodes) ∪ (ch2.addNodes\ch1.remNodes);
9 mergedChanges.remNodes = (ch1.remNodes\ch2.addNodes) ∪ (ch2.remNodes\ch1.addNodes);

10 mergedChanges.addEdges = (ch1.addEdges\ch2.remEdges) ∪ (ch2.addEdges\ch1.remEdges);
11 mergedChanges.remEdges = (ch1.remEdges\ch2.addEdges) ∪ (ch2.remEdges\ch1.addEdges);
12 return mergedChanges;

Fig. 8. Algorithms to obtain the net IR changes for those elements in chSequence whose impact needs to
be taken into account by the handleUpdate method to obtain the stable program-abstraction.

and LZUPD. Naturally, the procedure to stabilize a program-abstraction depends on the corresponding

mode of stabilization. For the LZINV mode of stabilization, the stabilize method (Fig. 7c) simply

reruns the analysis from scratch by invoking the compute method. Thus in the LZINV mode, the

program analysis writer needs to write no additional code to stabilize the program-abstraction.

For the LZUPD mode of stabilization, the stabilize method performs self-stabilization of the ab-

straction by invoking the method handleUpdate. To utilize the arguably more efficient LZUPDmode,

the program analysis writer needs to ensure that the desired incremental update algorithm is imple-

mented in the handleUpdate method. This method should define the impact of the net IR changes,

given in terms of the four sets: nodes added, nodes removed, edges added, and edges removed. The

stabilize method invokes this handleUpdate method by providing the correct argument in the form

of net IR changes (obtained as discussed next), followed by setting the chIndex to the index of the

last element of chSequence.

3.2.4 Obtaining Net IR changes. In order to obtain the net IR changes to be taken into account

by the handleUpdate method during a stabilization trigger, Homeostasis provides getNetChanges
function, whose algorithm is shown in Fig. 8. The net IR change is obtained by merging the IR

changes denoted by all the elements (if any) that lie to the right of the location indexed by chIndex
in the global list chSequence. The exact merge operation is specified in the functionmergeChanges
in Fig. 8. We demonstrate the working of these functions using a concrete example.

Example 3.2 (Net IR changes). Fig. 9 illustrates a concrete example of how the net IR changes

are obtained by Homeostasis, when required by the handleUpdate method during stabilization

trigger of some analysis-instance. The value of chIndex for the analysis-instance is𝑚, and the size

of chSequence list is (𝑚 + 4). Assume, the last three elementary transformations are:

(i) Addition of node n1, resulting in addition of edges {e1, e2}.
(ii) Replacement of node n3 with node n2, resulting in addition of edges {e3, e4}, and removal of

edges {e5, e6}.
(iii) Replacement of the previously-added node n1 with node n4, resulting in addition of edges

{e7, e8}, and removal of the previously-added edges {e1, e2}.

The figure shows the corresponding set of IR changes, whose impact needs to be taken into account

during the next stabilization trigger. The net IR changes are obtained by merging all the three IR

changes using the mergeChanges function from Fig. 8 (represented using ⊕ binary operator).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:13

Fig. 9. A concrete example demonstrating how the net IR changes are obtained in the LZUPD mode of
stabilization for some analysis-instance with value of chIndex as𝑚. Size of the global list chSequence is
(𝑚 + 4). Each element of chSequence shows a four-tuple, corresponding to the following sets, in order:
nodes added, nodes removed, edges added, and edges removed. The ⊕ operator denotes the application of
mergeChanges function from Fig. 8.

Now, we demonstrate how self-stabilization achieved by Homeostasis, as discussed in this section,

fixes the issues in compilation of the example shown in Fig. 1a, without requiring any changes to

the code written by the optimization-pass writer.

3.2.5 Example Compilation with Homeostasis. Let us revisit the example of the dead-branch

remover optimization pass given in Fig. 1a, implemented in a Homeostasis-enabled compiler. Here,

the replacemethod would invoke a sequence of elementary transformations, directly or indirectly

through other high-level transformation APIs. These elementary transformations will capture the

information about the resulting program modifications (say, from 𝑃1 to 𝑃2), and notify it to BasePA,
thereby making the information available to all program analysis passes, including the points-to

analysis pass. Later, when an attempt is made to read the points-to map using a getter of the analysis

pass, say fromwithin the methods isNeverZero and isAlwaysZero, the getter would automatically

trigger stabilization of the points-to map internally such that the map correctly corresponds to 𝑃2.

Hence, the compiler will be able to precisely deduce that the pointer p at L2 will now point only to

variable a; this would trigger the removal of the false branch of the if-statement at L2, thereby
generating the expected program, 𝑃3.

3.3 Compression Optimization: Efficient Tracking of Program Changes
The number of elementary transformations that a program undergoes during compilation can be

substantial – compilation of large programs may easily involve several hundreds of elementary

transformations. Hence, storing the individual IR-changes resulting from each elementary transfor-

mation separately in the global list chSequence can be prohibitively expensive in terms of space

requirements. In order to address this challenge, Homeostasis employs a compression optimization

that reduces the size of chSequence, relying on the following two key observations on the value of

chIndex of analysis-instances that employ the LZUPD mode of stabilization.

Observation 1. If the IR-changes corresponding to an elementary transformation have been taken

into account by all the analysis-instances in the compiler, then the IR-changes need not be saved

in chSequence. In other words, if no analysis-instance has chIndex less than 0, then the first

element (at index 0) in chSequence can be safely removed (while adjusting the chIndex of all the
analysis-instances by decrementing 1 from their values).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:14 Nougrahiya and Nandivada

Fig. 10. Concrete example of compression optimization, demonstrating application of Observations 1 and
2. Those indices in chSequence, which are indexed to by chIndex of any analysis-instance in the compiler,
are shown encircled.

Correctness argument. Recall that chSequence is a 0-indexed list. Further, as per the definition of

getNetChanges from Fig. 8, the net IR changes to be used in the next stabilization trigger of an

analysis-instance are obtained by merging the IR changes denoted by all the elements that lie

beyond the index chIndex (of the analysis-instance) in chSequence. Hence, if there is no analysis-

instance with chIndex less than 0, then the first element of chSequence (at index 0) will not be used
to obtain the net IR changes during the stabilization trigger of any analysis-instance.

Observation 2. If no analysis-instance has a chIndex that indexes into the location of an IR-change

element in the chSequence list, then it is safe to merge the IR-change element to its successor, if any, in

the list (while also adjusting the chIndex of various analysis-instances appropriately).
Correctness argument. Consider an index 𝑖 in chSequence, such that no analysis-instance has its

chIndex as 𝑖 . In this case, those analysis-instances whose chIndex is greater than 𝑖 , will not consider
the element at index 𝑖 while obtaining their net IR changes during future stabilization triggers (see

Fig. 8). Whereas, those analysis-instances whose chIndex is less than 𝑖 , will anyway merge the

elements at index 𝑖 and (𝑖 + 1) (if the element exists) to obtain the net IR changes for their next

stabilization trigger. Hence, merging the elements at 𝑖 and (𝑖 + 1) in chSequence, will not affect the
net IR changes for any analysis-instance during any of their future stabilization triggers.

The compression optimization employed by Homeostasis compresses the global chSequence list
by repeated application of these two observations, until fixed-point. Note that Homeostasis does

not dictate how often the compression optimization is invoked during the compilation. The exact

details of the compression optimization, including details on how various corner cases are handled,

are discussed formally in Section 4.2. In this section, we demonstrate the application of these two

observations using a concrete example.

Example 3.3 (Compression Optimization). In Fig. 10, we demonstrate the working of compression

optimization on a concrete example. Consider only two analysis-instances in the compiler, namely

𝑎1 and 𝑎2. Their chIndex values are 1 and 3, respectively. Upon repeated applications of Observation

1, we find that IR-changes A and B both can be safely removed from chSequence. Accordingly, both
the chIndex values are decremented by 2. Further, the IR-changes C and D (and later E and F), can
be merged, by repeated applications of Observation 2. Due to the merging of C and D, the chIndex
of 𝑎2 is further decremented by 1, to obtain 0.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:15

Type of Developer Additional Tasks Efforts Frequency

Compiler-base writers

- Define elementary transformations

- Modify high-level transformation APIs

- Create the super-class BasePA
Moderate Once per compiler

Analysis-pass writers - Follow the structure defined by BasePA Minimal Once per analysis

Optimization-pass writers None Nil –

Fig. 11. Summary of the impact of enabling Homeostasis, on different types of compiler writers.

Impact of compression optimization on space complexity of tracking IR-changes. In the

absence of compression, the list chSequence would contain as many elements as the number of

elementary transformations employed (say 𝑘). The size of each element can be O(𝑠), in terms of the

size 𝑠 of the input program (calculated as some function of the number of nodes and edges in the

IR). Hence, the total space complexity of an uncompressed chSequence can be O(𝑘 × 𝑠). In contrast,

from Observations 1 and 2, we note that the number of elements in the fixed-point compressed

state of chSequence cannot be greater than min(𝑘, 𝑝), where 𝑝 is the number of analysis-instances

in the compiler. Since 𝑝 is usually significantly smaller than 𝑘 , the worst-case space complexity of

chSequence with compression optimization, drops to O(𝑝 × 𝑠).

Time complexity of the compression algorithm. When the compression algorithm is invoked,

the fixed-point state obtained upon repeated applications of Observations 1 and 2 may compress

chSequence to a single-element, in the worst-case. Hence, if the total number of elementary

transformations performed is 𝑘 , then the compression algorithm may perform at most 𝑘 merge

operations (using function mergeChanges, Fig. 8). If the program size is given by 𝑠 , then the worst-

case time complexity of each merge operation will be O(𝑠). Hence, the worst-case time complexity

for the compression algorithm is O(𝑘 × 𝑠).

3.4 Working in a Homeostasis-enabled compiler
We now describe the additional effort that is needed to enable and useHomeostasis, and the impact of

using Homeostasis on the key questions from Fig. 2. For this discussion, let us assume a hypothetical

compiler C and itsHomeostasis-enabled counterpart C𝐻𝑆 . We present this discussion with respect to

three key kinds of compiler developers: (i)Compiler-base writers obtainC𝐻𝑆 fromC by implementing

those core components of Homeostasis which are common across all the analysis/optimization

passes. (ii) Analysis-pass writers write analysis passes in C𝐻𝑆 . (iii) Optimization-pass writers write

optimization passes in C𝐻𝑆 . Fig. 11 summarizes the impact of enabling and using Homeostasis, on

these key developers.

Impact on compiler-base writer. To obtain C𝐻𝑆 from C, the compiler-base writer will have to

additionally perform the following tasks: (i) identify the elementary transformations and develop

them in accordance with the design discussed in Section 3.2.1, (ii) ensure that all high-level transfor-

mation APIs in the compiler internally rely on the identified set of elementary transformations to

perform any program modifications, and (iii) create a base class for all analysis passes, equivalent

to BasePA from Sections 3.2.2 and 3.2.3. Note that these tasks are one-time efforts and involve

modifying only some of the IR-related classes.

Impact on analysis-pass writer. Given any analysis class AC in C, the analysis writer would
have to additionally ensure the following, for adapting AC to C𝐻𝑆 : (i) AC is a subtype of BasePA,
(ii) the code of AC needed to generate the corresponding program-abstraction is written in the

compute method, (iii) the corresponding program-abstraction for AC can be accessed only through

a getter as defined in Section 3.2.2, and (iv) optionally, if the analysis writer wants to support the

LZUPD mode of stabilization, the method handleUpdate has to be defined as per Section 3.2.3.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:16 Nougrahiya and Nandivada

In terms of additional coding effort, ensuring point (i) is trivial; so is ensuring points (ii) and (iv),

since the relevant code would be common to both C and C𝐻𝑆 , and would only possibly differ

in their method names. We argue that point (iii) would be automatically ensured in an object-

oriented compiler, and hence requires no additional effort. Consequently, we claim that the amount

of additional coding effort required to write an analysis in C𝐻𝑆 is minimal. In terms of the key

questions shown in Fig. 2, in a Homeostasis-enabled compiler, an analysis-pass writer does not

need to address questions Q
T

1−3, while adding any new program analysis in the LZINV mode of

stabilization; for the LZUPD mode of stabilization, the analysis writer needs to address only Q
T

3
,

by providing the definition of the method handleUpdate. Note that this is not an additional

overhead when using Homeostasis – such a code is needed even in the case of manual stabilization

in incremental update modes.

Impact on optimization-pass writer. An optimization-pass writer need not write any additional

code to adapt an optimization in C to C𝐻𝑆 . In terms of the key questions shown in Fig. 2, in a

Homeostasis-enabled compiler, an optimization pass writer need not address the key questions

Q
1−3, while adding any new optimization in a Homeostasis-enabled compiler. For instance, in Fig. 1,

a Homeostasis-enabled compiler can generate the expected program 𝑃3 without requiring any

changes to the code of the optimization (DeadBranchRemover) shown in Fig. 1a. Note that the

compiler-base writer would have updated the code for high-level transformation APIs (including

the replace method), such that all program-changes are expressed directly or indirectly using

elementary transformations; a one-time effort.

Overall Summary: Once a Homeostasis-enabled compiler has been designed (requires one-time

moderate effort on the part of the compiler-base writers), designing and implementing program

analyses and optimizations requireminimal/zero additional coding effort tomaintain stable program-

abstractions.

4 FORMAL DESCRIPTION AND CORRECTNESS OF HOMEOSTASIS
We now present a formal description of various components of Homeostasis. In Section 4.1, we

formally define an abstract Homeostasis-enabled compiler, and argue the correctness guarantee

provided by Homeostasis: in a Homeostasis-enabled compiler, any compiler pass accessing the

program-abstraction of an analysis will only read the stable value of that program-abstraction

(see Theorem 4.12). Later, in Section 4.2, we first formally describe how Homeostasis maintains

the compressed list of program-changes, and then we prove that the compression is semantics-

preserving.

4.1 An Abstract Homeostasis-enabled Compiler
Consider a Homeostasis-enabled compiler for an IR language L = {𝑃1, 𝑃2, . . .}, where each 𝑃𝑖 is a

valid (syntactically and semantically correct) IR program. Without loss of generality, we assume

each program IR to be in the form of a graph. Let the fixed set of elementary transformations in

the compiler be represented as Γ = {𝜏
1
, 𝜏

2
, . . . , 𝜏

m
}, where each transformation 𝜏

i
is a map L→ L.

Note that each elementary transformation updates an IR program by adding/removing a set of

nodes and/or edges in the graph to obtain the modified IR program. Fig. 12 summarizes the sets

and maps used in the formalism.

Definition 4.1 (Program-change). Given two programs, 𝑃𝑖 and 𝑃 𝑗 ∈ L, the program-change between

𝑃𝑖 and 𝑃 𝑗 (denoted by Δ(𝑃𝑖 , 𝑃 𝑗)) is defined as a 4-tuple of the form ⟨𝛿𝑛𝑎, 𝛿𝑛𝑟 , 𝛿𝑒𝑎, 𝛿𝑒𝑟 ⟩, where to
obtain 𝑃 𝑗 from 𝑃𝑖 , 𝛿𝑛𝑎 is the minimal set of program nodes to be added to 𝑃𝑖 , 𝛿𝑛𝑟 is the minimal set

of nodes to be removed from 𝑃𝑖 , 𝛿𝑒𝑎 is the minimal set of edges to be added to 𝑃𝑖 , and 𝛿𝑒𝑟 is the

minimal set of edges to be removed from 𝑃𝑖 . Specifically, for 𝑃𝑖 = (𝑁𝑖 , 𝐸𝑖) and 𝑃 𝑗 = (𝑁 𝑗 , 𝐸 𝑗), the

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:17

Set Description Typical

Element

Symbol

N set of all possible IR nodes 𝑛

E set of all possible IR edges 𝑒

L set of all valid IR programs ⊆ P(N) × P(E) 𝑃𝑖

Γ set of all the elementary transformations,

where each element is of the form L→ L
𝜏𝑖

C set of all program-changes ⊆ P(N) × P(N) × P(E) × P(E);
if program 𝑃𝑖 = (𝑁𝑖 , 𝐸𝑖) and program 𝑃 𝑗 = (𝑁 𝑗 , 𝐸 𝑗), then
program-change Δ(𝑃𝑖 , 𝑃 𝑗) = 𝑐 = (𝑁 𝑗 \ 𝑁𝑖 , 𝑁𝑖 \ 𝑁 𝑗 , 𝐸 𝑗 \ 𝐸𝑖 , 𝐸𝑖 \ 𝐸 𝑗)

𝑐

C∗
set of all change-sequences of elements in C, of any size 𝑐

A set of all analysis-instances in the compiler = {𝐴1, 𝐴2, . . . },

where each element is of the form L→ 𝑅𝑖

𝐴𝑖

𝑅𝑖 set of all program-abstraction values for analysis-instance 𝐴𝑖 𝑣

R set of all the program-abstraction values = 𝑅1 ∪ 𝑅2 ∪ . . . –

StbSt set of stabilization-status values = {Stable, Unstable} 𝑠𝑡

StbMd set of lazy modes of stabilization = {LZINV, LZUPD} 𝑚

𝐷𝑖 set of all analysis-states for the analysis-instance 𝐴𝑖

= 𝑅𝑖 × StbSt × StbMd × N−1
𝑑

D set of all the analysis-states = 𝐷1 ∪ 𝐷2 ∪ . . . –

S set of compiler states = L × P(D) × C∗ 𝑆

Fig. 12. Sets and maps used in the formalism. N−1 is the set of natural numbers ∪ {0, −1}. P(𝑋) denotes
the power set of 𝑋 .

following holds: 𝛿𝑛𝑎 = 𝑁 𝑗 \ 𝑁𝑖 , 𝛿𝑛𝑟 = 𝑁𝑖 \ 𝑁 𝑗 , 𝛿𝑒𝑎 = 𝐸 𝑗 \ 𝐸𝑖 , and 𝛿𝑒𝑟 = 𝐸𝑖 \ 𝐸 𝑗 . We denote the set of

all possible program-changes in L by C. Further, we term a sequence of program-changes, of any

length, as a change-sequence. Without loss of generality, for the ease of exposition, we assume that

all such sequences are 0-indexed. □

Definition 4.2 (Merge operator). If Δ(𝑃𝑎, 𝑃𝑏) = 𝑐𝑝 and Δ(𝑃𝑏, 𝑃𝑐) = 𝑐𝑞 , then we use 𝑐𝑝 ⊕ 𝑐𝑞 to

provide the net program-change between 𝑃𝑎 and 𝑃𝑐 . The set C is closed under the binary operator

⊕ (C × C → C). This operator corresponds to the function mergeChanges from Fig. 8.

In a compiler written in OO-style, we assume that each analysis is implemented as a class, extend-

ing BasePA. During the invocations of the compiler, one or more analysis classes get instantiated

(one or more times). Let A = {𝐴1, 𝐴2, . . .} be the set of all analysis-instances (such as an instance

of points-to analysis, an instance of alias analysis, and so on) in the compiler, where each analysis-

instance is of the form 𝐴𝑖 : L→ 𝑅𝑖 , where 𝑅𝑖 denotes the set of meaningful program-abstraction

values for 𝐴𝑖 . We term 𝐴𝑖(𝑃) as the stable program-abstraction of the analysis-instance 𝐴𝑖 for

program 𝑃 .

Definition 4.3 (Analysis State). While compiling a program 𝑃 , at any point during the compilation

process, for an analysis-instance 𝐴𝑖 , we define its analysis state as a 4-tuple of the form 𝑑𝑖 =

⟨𝑣, st,𝑚, r⟩, where 𝑣 ∈ 𝑅𝑖 is the value currently maintained by the compiler for the program-

abstraction corresponding to𝐴𝑖 , st ∈ StbSt = {Stable, Unstable}, denotes the current stabilization

status of𝐴𝑖 ,𝑚 ∈ StbMd = {LZINV, LZUPD}, determines the selected lazy mode of stabilization for𝐴𝑖 ,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:18 Nougrahiya and Nandivada

and r is either −1 (for LZINVmode of stabilization) or an integer that refers to an index in the global

change-sequence (for LZUPD mode of stabilization); r is termed as the change-index of 𝐴𝑖 . For the

LZUPD mode of stabilization, intuitively, the non-negative change-index of an analysis-instance

𝐴𝑖 denotes that position in the global change-sequence list until and including which the impact of

all elementary transformations have been taken into account, to arrive at the program-abstraction

value 𝑣 for analysis-instance 𝐴𝑖 .

Let the set R = 𝑅1 ∪𝑅2 ∪ . . . be the set of all possible values for all program-abstractions. Further,

let D be the set of all analysis states, for all the analyses-instances. □

Definition 4.4 (Compiler state). Consider a compilation process, where 𝑘 elementary transfor-

mations have been performed on the input program 𝑃 . We define a compiler state as a 3-tuple of

the form 𝑆𝑖 = ⟨𝑃𝑖 , 𝐷𝑖 , 𝑐𝑖⟩, where 𝑃𝑖 represents the current program (obtained upon applying the

𝑘 transformations on 𝑃), 𝐷𝑖 = {𝑑1, 𝑑2, . . .} represents the current set of analysis states for differ-
ent analysis-instances (each a 4-tuple as defined above), and 𝑐𝑖 = ⟨𝑐0, 𝑐1, 𝑐2, . . . 𝑐𝑘−1⟩, denotes the
sequence of 𝑘 program-changes obtained upon application of each of the 𝑘 elementary transforma-

tions (in order) on the input program 𝑃 . We denote the set of all compiler states by S. Note that for
an input program 𝑃 , the initial compiler state when compilation starts is ⟨𝑃, ∅, ∅⟩. □

Now, we state two axioms that are derived from the assumption that the analysis writer has

provided the correct implementations of compute and handleUpdatemethods; the latter is required

only for the LZUPD mode of stabilization. Axiom 4.5 formally states that the exhaustive algorithm

of an analysis-instance has been correctly implemented by the analysis writer in a method named

compute. Axiom 4.6 formally states that in order to realize the incremental-update mode of stabiliza-

tion, the analysis writer has provided a correct definition of the handleUpdate method, specifying

how an abstraction would get updated in response to the given program-changes (between the

current program and the one to which the stale program-abstraction corresponds). For the ease of

presenting our formal argument, we assume that compute and handleUpdate methods also return

the set of abstractions that were stabilized during the evaluation of these methods. This set is used

to only facilitate the formal treatment of our proposed design, and is not required otherwise to

perform the actual stabilization.

Axiom 4.5. In a Homeostasis-enabled compiler, consider an analysis-instance 𝐴𝑘 with LZINV
stabilization mode. The analysis writer of𝐴𝑘 provides a correct implementation of the method compute,
such that when compute is invoked at any compilation point, compute returns a two-tuple (𝑣,L),

where 𝑣 = 𝐴𝑘(𝑃𝑖), and L ⊆ A, is the set of abstractions which were stabilized during the evaluation

of the compute method.

Axiom 4.6. Consider an analysis 𝐴𝑘 with LZUPD mode of stabilization. Consider any compiler

state 𝑆𝑖 = ⟨𝑃𝑖 , 𝐷𝑖 , 𝑐𝑖⟩, where the corresponding analysis state for 𝐴𝑘 in 𝐷𝑖 is denoted by 𝑑𝑘 =

⟨𝑣𝑘 , st𝑘 , LZUPD, 𝑟𝑘⟩. Further, let, 𝑐𝑖 = ⟨𝑐0, 𝑐1, ... , 𝑐𝑛⟩. In a Homeostasis-enabled compiler, the anal-

ysis writer of 𝐴𝑘 provides the correct implementation of method handleUpdate, such that if there

exists a program 𝑃 𝑗 ∈ L, such that 𝑣𝑘 = 𝐴𝑘(𝑃 𝑗) and Δ(𝑃 𝑗 , 𝑃𝑖) = 𝑐𝑟𝑘+1 ⊕ 𝑐𝑟𝑘+2... ⊕ 𝑐𝑛 , then, when

handleUpdate is invoked on the compiler state 𝑆𝑖 , it returns a pair (𝑣,L), where (i) 𝑣 = 𝐴𝑘(𝑃𝑖), and

(ii) L ⊆ A, the set of abstractions which were stabilized during the evaluation of the handleUpdate
method.

In Fig. 13, we provide the definition of stabilization-function,𝜎 : S×D → D×P(A), which, given
a compiler state and a (possibly stale) analysis state for some analysis-instance (in that compiler

state), utilizes the definitions of compute and handleUpdate methods, to provide a two-tuple:

(i) the stabilized analysis state of the analysis-instance, and (ii) the set of other analysis-instances

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:19

𝑆 = ⟨𝑃, 𝐷, 𝑐⟩ 𝑑𝑘 ∈ 𝐷 𝑑𝑘 = ⟨∗, Stable, ∗, ∗⟩
𝝈(𝑆, 𝑑𝑘) = ⟨𝑑𝑘 , ∅⟩

[Stb]

𝑆 = ⟨𝑃, 𝐷, 𝑐⟩ 𝑑𝑘 ∈ 𝐷 𝑑𝑘 = ⟨𝑣,Unstable, LZINV,−1⟩
compute(𝐴𝑘 , 𝑃) = (𝑣 ′,L) 𝑑′

𝑘
= ⟨𝑣 ′, Stable, LZINV,−1⟩

𝝈(𝑆, 𝑑𝑘) = ⟨𝑑′
𝑘
,L⟩

[Stb-Inv]

𝑆 = ⟨𝑃, 𝐷, 𝑐⟩ 𝑐 = ⟨𝑐0, 𝑐1, ... , 𝑐𝑛⟩ 𝑑𝑘 ∈ 𝐷 𝑑𝑘 = ⟨𝑣,Unstable, LZUPD, 𝑟 ⟩ 𝑟 < 𝑛

handleUpdate(𝐴𝑘 , 𝑃, 𝑣, 𝑐𝑟+1 ⊕ 𝑐𝑟+2 ⊕ ... ⊕ 𝑐𝑛) = (𝑣 ′,L) 𝑑′
𝑘
= ⟨𝑣 ′, Stable, LZUPD, 𝑛⟩

𝝈(𝑆, 𝑑𝑘) = ⟨𝑑′
𝑘
,L⟩

[Stb-Upd]

Fig. 13. Evaluation of the stabilization-function, 𝝈 : S × D → D × P(A), as derived from the template of
stabilier from Fig. 7c.

on which the stabilization-function was invoked internally during the evaluation of compute or
handleUpdate method. Given such a two-tuple Θ, we use Θ.fst and Θ.snd to refer to the first and

second elements, respectively, of the tuple.

If the given analysis state is already Stable, the stabilization-function returns the analysis

state as it is, along with an empty set of analysis-instances (rule [Stb]). Otherwise, when the

stabilization mode of the analysis state is LZINV, the method compute is invoked in order to obtain

the correct abstraction value (𝑣 ′) by re-running the corresponding analysis from scratch on the

current program (rule [Stb-Inv]). In contrast, as per rule [Stb-Upd], when the stabilization mode is

LZUPD, the method handleUpdate is invoked to obtain the correct abstraction value (𝑣 ′), given the

following arguments: (i) a reference to the analysis-instance (𝐴𝑘), (ii) the current program, (iii) the

unstable/stale abstraction value (𝑣), and (iv) the net program-changes obtained by using the merge

operator on the appropriate elements from the change-sequence. Note that the change-index for

the returned analysis state is set to 𝑛 (index of the last element in the global change-sequence).

Definition 4.7 (Compiler action). Recall that Homeostasis allows changes to the IR program only

through elementary transformations. Similarly, the program-abstraction of an analysis can be

accessed only through its appropriate getters. Accordingly, we define three kinds of compiler actions

that can be issued by an optimization or analysis pass, and may alter the current compiler state,

𝑆 = ⟨𝑃, 𝐷, 𝑐⟩.

(i) Given an analysis class AC, the compiler action construct(AC,𝑚) creates an instance of AC,
invokes the compute method to populate the program-abstraction, and sets the stabilization

mode of the constructed analysis-instance to𝑚 ∈ StbMd.

(ii) The compiler action get(𝐴𝑘) returns the value 𝐴𝑘(𝑃).
(iii) The compiler action transform(𝜏i) transforms the current program 𝑃 to 𝜏

i
(𝑃).

We represent the set of all possible compiler actions with W. □

Note that in object-oriented compilers, the construct compiler action for an analysis will always

be invoked before the first invocation of the corresponding get compiler action.

Definition 4.8 (apply function). We define a compilation step using the function apply: S ×
W =⇒ S×(R ∪ {𝜖}), which applies a given compiler action𝑤 on the compiler state 𝑠 , to generate

(i) a possibly-modified compiler state 𝑠′, and (ii) a program-abstraction value or 𝜖 .

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:20 Nougrahiya and Nandivada

𝑆 = ⟨𝑃, 𝐷, 𝑐⟩ 𝐴𝑖 = new AC()

compute(𝐴𝑖 , 𝑃) = (𝑣,L) L = {𝐴1, 𝐴2, ... , 𝐴𝑛} 𝐴𝑖 ∉ L
𝐷𝑎 = 𝐷 − {𝑑1, 𝑑2, ... , 𝑑𝑛} 𝐷𝑏 = {𝝈(𝑆, 𝑑1).fst,𝝈(𝑆, 𝑑2).fst, ... ,𝝈(𝑆, 𝑑𝑛).fst}

𝑑𝑖 = ⟨𝑣, Stable,𝑚, ((𝑚 = LZUPD)?(|𝑐 | − 1) : −1)⟩
apply(𝑆, construct(AC,𝑚)) ⇒ (⟨𝑃, 𝐷𝑎 ∪ 𝐷𝑏 ∪ {𝑑𝑖 }, 𝑐⟩, 𝜖)

[C-Apply]

(a) Evaluation of apply on the “construct” compiler action, as derived from Fig. 7a. The helper method
newInstanceOf gives a fresh uninitialized analysis-instance for the given analysis.

𝑆 = ⟨𝑃, 𝐷, 𝑐⟩ 𝑑 ∈ 𝐷

𝝈(𝑆, 𝑑𝑘) = (𝑑′
𝑘
,L) 𝑑′

𝑘
= {𝑣 ′, Stable, ∗, ∗} L = {𝐴1, 𝐴2, ... , 𝐴𝑛} 𝐴𝑘 ∉ L

𝐷𝑎 = 𝐷 − {𝑑1, 𝑑2, ... , 𝑑𝑛} − {𝑑𝑥 } 𝐷𝑏 = {𝝈(𝑆, 𝑑1).fst,𝝈(𝑆, 𝑑2).fst, ... ,𝝈(𝑆, 𝑑𝑛).fst}
apply(𝑆, get(𝐴𝑘)) ⇒ (⟨𝑃, 𝐷𝑎 ∪ 𝐷𝑏 ∪ {𝑑′

𝑘
}, 𝑐⟩, 𝑣 ′)

[G-Apply]

(b) Evaluation of apply on the “get” compiler action, as derived from the template of getters from Fig. 7b.

𝑆 = ⟨𝑃, 𝐷, 𝑐⟩ 𝑃 ′ = 𝜏𝑙(𝑃) 𝑐′ = 𝑐 · ⟨Δ(𝑃, 𝑃 ′)⟩
𝐷 = {⟨𝑣1, 𝑠1,𝑚1, 𝑟1⟩, ⟨𝑣2, 𝑠2,𝑚2, 𝑟2⟩, ... , ⟨𝑣𝑥 , 𝑠𝑥 ,𝑚𝑥 , 𝑟𝑥 ⟩}

𝐷′ = {⟨𝑣1,Unstable,𝑚1, 𝑟1⟩, ⟨𝑣2,Unstable,𝑚2, 𝑟2⟩, ... , ⟨𝑣𝑥 ,Unstable,𝑚𝑥 , 𝑟𝑥 ⟩}
apply(𝑆, transform(𝜏𝑙)) ⇒ (⟨𝑃 ′, 𝐷′, 𝑐′⟩, 𝜖)

[T-Apply]

(c) Evaluation of apply on the “transform” compiler action, as derived from the template of elementary
transformations given in Fig. 5.

Fig. 14. Definition for the apply function, derived from the design of Homeostasis explained in Section 3.2.

For a Homeostasis-enabled compiler, the definition for function apply is shown in Fig. 14a,

Fig. 14b, and Fig. 14c, for the design templates of various components shown in Fig. 7a (constructor),

Fig. 7b-7c (getters and stabilizers), and Fig. 5 (elementary transformations), respectively.

• When a construct compiler action is issued for an analysis-instance 𝐴, an initial analysis

state for 𝐴 is generated and added to the set of analysis states in the current compiler state

(rule [C-Apply]). Note that in the case of LZUPD mode, the change-index of 𝐴 is set to the

index of the last element in the global change-sequence; it is set to −1 if the list is empty.

• When a get compiler action is issued for 𝐴𝑘 , the design of Homeostasis ensures that the

analysis state of 𝐴𝑘 is changed as per the mapping rules shown in Fig. 14b and 13. Using

Axioms 4.5 and 4.6, rules [Stb-Inv] and [Stb-Upd] set the stabilization status of𝐴𝑘 to Stable,

as can be inferred from the design of an abstraction getter, and stabilizer.

• When a transform compiler action with elementary transformation𝜏
l
is issued on a compiler

state 𝑆 = ⟨𝑃, 𝐷, 𝑐⟩, then as per rule [T-Apply] in Fig. 5, the design of Homeostasis changes

the compiler state to a tuple where, (i) the current program 𝑃 is modified to 𝜏
l
(𝑃), (ii) the

stabilization status of all analyses is set to Unstable, and (iii) Δ(𝑃,𝜏
l
(𝑃)) is added to the

sequence of program-changes.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:21

Definition 4.9 (Valid compiler state). We term a compiler state of the form 𝑆𝑖 = ⟨𝑃𝑖 , 𝐷𝑖 =

{𝑑1, 𝑑2, ... }, 𝑐𝑖 = ⟨𝑐0, 𝑐1, ... , 𝑐𝑛⟩⟩ as a valid compiler state, if and only if the following condition,

termed as stability-condition, holds for the state 𝑑 𝑗 = ⟨𝑣 𝑗 , st𝑗 ,𝑚 𝑗 , 𝑟 𝑗 ⟩ ∈ 𝐷𝑖 of each analysis-

instance 𝐴 𝑗 :

(i) if st𝑗 = Stable, then 𝑟 𝑗 = 𝑛 and 𝑣 𝑗 = 𝐴 𝑗(𝑃𝑖), else
(ii) if st𝑗 = Unstable, then 𝑛 ≥ 0, 𝑟 𝑗 < 𝑛, and ∃𝑃𝑜 ∈ L, such that 𝑣 𝑗 = 𝐴 𝑗(𝑃𝑜) and Δ(𝑃𝑜 , 𝑃𝑖) =

𝑐𝑟 𝑗+1 ⊕ 𝑐𝑟 𝑗+2... ⊕ 𝑐𝑛 .

Intuitively, a compiler state is considered valid when each program-abstraction is either stable, or

has access to the complete information that can be used to make it stable. □

The following Lemma gives the correctness guarantee for the value returned by a get compiler

action.

Lemma 4.10. If a compiler state 𝑆𝑖 = ⟨𝑃𝑖 , 𝐷𝑖 , 𝑐𝑖⟩ is valid, then for each analysis-instance 𝐴𝑘 with

corresponding analysis state 𝑑𝑘 ∈ 𝐷𝑖 , the value obtained upon invocation of get compiler action for

𝐴𝑘 (i.e., get(𝐴𝑘)) on 𝑆𝑖 , will always be same as 𝐴𝑘(𝑃𝑖) (i.e., the stable program-abstraction value).

Formally, for each analysis𝐴𝑘 and valid compiler state 𝑆𝑖 , ∃𝑆 𝑗 ∈ S such that apply(𝑆𝑖 , get(𝐴𝑘)) =⇒
(𝑆 𝑗 , 𝐴𝑘(𝑃𝑖)).

Proof. Let 𝑐𝑖 = ⟨𝑐0, 𝑐1, ... , 𝑐𝑈 ⟩, and let 𝐷𝑖 = {𝑑1, 𝑑2, ... , 𝑑𝑘 , ... }, where 𝑑𝑘 = ⟨𝑣𝑘 , st𝑘 ,𝑚𝑘 , 𝑟𝑘⟩ be
the analysis state of 𝐴𝑘 in 𝑆𝑖 . Assume, apply(𝑆𝑖 , get(𝐴𝑘)) =⇒ (𝑆 𝑗 , 𝑣

′
𝑘
). Hence, it is sufficient

to prove that 𝑣 ′
𝑘
= 𝐴𝑘(𝑃𝑖). As the compiler state 𝑆𝑖 is valid, the analysis state 𝑑𝑘 satisfies the

stability-condition from Definition 4.9. Two cases arise based on the value of st𝑘 :

Case A: st𝑘 = Stable. From the stability-condition of 𝑑𝑘 , we obtain 𝑣𝑘 = 𝐴𝑘(𝑃𝑖). Hence, from
rule [Stb], we derive 𝑣 ′

𝑘
= 𝑣𝑘 = 𝐴𝑘(𝑃𝑖). Hence proved.

Case B: st𝑘 = Unstable. Two cases arise based on the value of𝑚𝑘 :

Case B.1: 𝑚𝑘 = LZINV. From rule [Stb-Inv], we obtain (𝑣 ′
𝑘
,L) = compute(𝐴𝑘 , 𝑃𝑖). From

Axiom 4.5, 𝑣 ′
𝑘
= compute(𝐴𝑘 , 𝑃𝑖).fst = 𝐴𝑘(𝑃𝑖). Hence proved.

Case B.2: 𝑚𝑘 = LZUPD. From rule [Stb-Upd], we have (𝑣 ′
𝑘
,L) = handleUpdate(𝐴𝑘 , 𝑃𝑖 , 𝑣𝑘 ,

𝑐𝑟𝑘+1 ⊕ 𝑐𝑟𝑘+2... ⊕ 𝑐𝑈). From the stability-condition of 𝑑𝑘 , we derive the following:𝑈 ≥ 0, 𝑟𝑘 < 𝑈 ,

and that there exists a program 𝑃 𝑗 such that 𝑣𝑘 = 𝐴𝑘(𝑃 𝑗) and Δ(𝑃 𝑗 , 𝑃𝑖) = 𝑐𝑟𝑘+1 ⊕ 𝑐𝑟𝑘+2... ⊕ 𝑐𝑈 .

Using Axiom 4.6, we obtain 𝑣 ′
𝑘
= 𝐴𝑘(𝑃𝑖). Hence proved.

□

The following Lemma gives the correctness guarantee that the invocation of any compiler action

(construct, get, or transform) on a valid compiler state will result in a valid compiler state.

Lemma 4.11. For every sequence𝑊 = ⟨𝑤1,𝑤2, ... ⟩ of compiler actions, the compiler state, starting

with the initial compiler state ⟨𝑃, 𝜙, 𝜙⟩, remains valid after application of each action from the sequence.

Proof. (Proof by natural induction on the number of elements in𝑊 .)

Base Case: |𝑊 | = 0. For an input program 𝑃 , the initial compiler state is always ⟨𝑃, ∅, ∅⟩, which
is trivially valid.

Inductive hypothesis: The compiler state, say 𝑆𝑖 = ⟨𝑃𝑖 , 𝐷𝑖 , 𝑐𝑖⟩, obtained after application of all

compiler actions from the string𝑊𝑚 , of length𝑚, is valid. Let𝐷𝑖 = {𝑑1, 𝑑2, ... , 𝑑𝑘 = ⟨𝑣𝑘 , st𝑘 ,𝑚𝑘 , 𝑟𝑖⟩, ... },
and 𝑐𝑖 = ⟨𝑐0, 𝑐1, ... , 𝑐𝑈 ⟩⟩.

Inductive step: Consider a string of compiler actions,𝑊𝑚+1, of length𝑚+1, obtained by ap-

pending a compiler action 𝑤𝑚+1 to𝑊𝑚 . We now need to prove that if apply(𝑆,𝑤𝑚+1) = (𝑆 ′, 𝑣),
then 𝑆 ′ is a valid compiler state. Three cases occur for possible form of compiler action𝑤𝑚+1:

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:22 Nougrahiya and Nandivada

Case A: 𝑤𝑚+1 is construct(AC,𝑚𝑠) for some analysis class AC. Say the created analysis-

instance is 𝐴𝑠 and the initial analysis state for 𝐴𝑠 is 𝑑𝑠 = ⟨𝑣𝑠 , st𝑠 ,𝑚𝑠 , 𝑟𝑠⟩. As per rule [C-Apply],
𝑆 ′ = ⟨𝑃𝑖 , 𝐷𝑖 ∪ {𝑑𝑠 = ⟨𝐴𝑠(𝑃𝑖), Stable,𝑚𝑠 ,𝑈 ⟩}, 𝑐𝑖⟩. 𝑆 ′ is trivially valid as 𝑑𝑠 satisfies the stability-

condition from Definition 4.9. Hence proved.

Case B: 𝑤𝑚+1 is get(𝐴𝑥) for some 𝑑𝑥 ∈ 𝐷𝑖 . As 𝑆 is a valid compiler state, ∀𝑑 𝑗 ∈ 𝐷𝑖 satisfies the

stability-condition. Let get(𝐴𝑥) change a subset of analysis states 𝐷𝑦 ⊆ 𝐷𝑖 . Let 𝑑𝑦 (∈ 𝐷𝑦) be given
by ⟨𝑣𝑦, st𝑦,𝑚𝑦, 𝑟𝑦⟩. Assume, for each 𝑑𝑦 , the changed analysis state 𝑑 ′𝑦 is given by ⟨𝑣 ′𝑥 , st′𝑥 ,𝑚𝑥 , 𝑟

′
𝑥 ⟩.

To prove that 𝑆 ′ is a valid compiler state, it is sufficient to prove that each such 𝑑 ′𝑦 satisfies the

stability-condition. Let us consider any such 𝑑 ′𝑦 . Two sub-cases arise based on the values of st𝑦 :

Case B.1: st𝑦 = Stable. As 𝑑𝑦 satisfies the stability-condition, we derive the following from

rule [Stb]: st
′
𝑦 = st𝑦 = Stable, 𝑟 ′𝑦 = 𝑟𝑦 =𝑈 , and 𝑣 ′𝑦 = 𝑣𝑦 = 𝐴𝑥(𝑃𝑖). Hence, 𝑑

′
𝑦 satisfies the stability-

condition. Hence proved.

Case B.2: st𝑦 = Unstable. From rules [Stb-Inv] and [Stb-Upd], we derive 𝑠𝑡 ′𝑦 = Stable.

Similarly, we derive 𝑟 ′𝑦 = −1 or 𝑟 ′𝑦 = 𝑈 , from rules [Stb-Inv] and [Stb-Upd], respectively. Depending

upon value of𝑚𝑦 , two sub-cases arise:

Case B.2.i: 𝑚𝑦 = LZINV. From rule [Stb-Inv], 𝑣 ′𝑦 = compute(𝐴𝑦, 𝑃𝑖).fst. From Axiom 4.5, 𝑣 ′𝑦 =

𝐴𝑦(𝑃𝑖). Hence, 𝑑
′
𝑦 satisfies the stability-condition, and 𝑆 ′ is a valid compiler state.

Case B.2.ii: 𝑚𝑦 = LZUPD. From rule [Stb-Upd], 𝑣 ′𝑦 = handleUpdate(𝐴𝑦, 𝑃𝑖 , 𝑣𝑦, 𝑐𝑟𝑦+1 ⊕ 𝑐𝑟𝑦+2... ⊕
𝑐𝑈).fst. FromAxiom 4.6, 𝑣 ′𝑦 =𝐴𝑦(𝑃𝑖), if there exists a program 𝑃𝑘 ∈ L, such that (i) 𝑣𝑦 = 𝐴𝑦(𝑃𝑘),
and (ii) the net program-change (i.e., last argument of handleUpdate) is same as Δ(𝑃𝑘 , 𝑃𝑖).
Since 𝑑𝑦 satisfies the stability-condition, such a program 𝑃𝑘 exists. (Note that the Δ(𝑃𝑘 , 𝑃𝑖) is
the same as the last argument of handleUpdate.) Hence, 𝑣 ′𝑦 =𝐴𝑦(𝑃𝑖), and 𝑆

′
is a valid compiler

state.

Case C: 𝑤𝑚+1 is transform(𝜏t) for some 𝜏
t
∈ Γ. Let 𝑆 ′ = ⟨𝑃 ′

𝑖 , 𝐷
′
𝑖 , 𝑐

′
𝑖
⟩. From rule [T-Apply],

we have: 𝑃 ′
𝑖 = 𝜏

t
(𝑃𝑖), and 𝑐′

𝑖
= ⟨𝑐0, 𝑐1, ... , 𝑐𝑈 ,Δ(𝑃𝑖 , 𝜏t(𝑃𝑖))⟩⟩. Further, for each 𝑑 ∈ 𝐷𝑖 , there

exists a modified analysis state 𝑑 ′ ∈ 𝐷 ′
𝑖 . To prove that 𝑆 ′ is a valid compiler state, we need to

prove that each analysis state 𝑑 ′ ∈ 𝐷 ′
𝑖 satisfies the stability-condition. Consider any analysis-state

𝑑𝑥 ∈ 𝐷 , and its corresponding modified analysis-state 𝑑 ′𝑥 ∈ 𝐷 ′
𝑖 . Let 𝑑𝑥 = ⟨𝑣𝑥 , st𝑥 ,𝑚𝑥 , 𝑟𝑥 ⟩, and let

𝑑 ′𝑥 = ⟨𝑣 ′𝑥 , st′𝑥 ,𝑚′
𝑥 , 𝑟

′
𝑥 ⟩. Now, two sub-cases arise based on the value of st𝑥 :

Case C.1: st𝑥 = Stable. Since 𝑑𝑥 satisfies the stability-condition, we have: 𝑟𝑥 = 𝑈 (if 𝑚𝑥 =

LZUPD) or 𝑟𝑥 = −1 (if 𝑚𝑥 = LZINV), and 𝑣𝑥 = 𝐴𝑥(𝑃𝑖). From rule T-Apply, we have: 𝑣 ′𝑥 = 𝑣𝑥 ,

𝑚′
𝑥 =𝑚𝑥 , 𝑟

′
𝑥 = 𝑟𝑥 , and st

′
𝑥 = Unstable. From Definition 4.9, 𝑑 ′𝑥 satisfies the stability-condition,

and 𝑆 ′ is a valid program state.

Case C.2: st𝑥 =Unstable. Since𝑑𝑥 satisfies the stability-condition, we know that:𝑈 ≥ 0, 𝑟𝑥 < 𝑈 ,

and that a program, say 𝑃 𝑗 , exists such that 𝑣𝑥 = 𝐴𝑥(𝑃 𝑗) andΔ(𝑃 𝑗 , 𝑃𝑖) = 𝑐𝑟𝑥+1⊕𝑐𝑟𝑥+2... ⊕𝑐𝑈 . From
rule T-Apply, we have: 𝑣 ′𝑥 = 𝑣𝑥 ,𝑚𝑥 =𝑚′

𝑥 , 𝑟
′
𝑥 = 𝑟𝑥 , and st

′
𝑥 =Unstable. Hence, 𝑟

′
𝑥 < 𝑈 +1. Further

from the definition of ⊕, Δ(𝑃 𝑗 , 𝑃
′
𝑖) = Δ(𝑃 𝑗 , 𝑃𝑖)⊕ Δ(𝑃𝑖 , 𝑃

′
𝑖). Hence, Δ(𝑃 𝑗 , 𝑃

′
𝑖) = Δ(𝑃 𝑗 , 𝑃𝑖)⊕ 𝑐𝑈 +1

= 𝑐𝑟𝑥+1 ⊕ 𝑐𝑟𝑥+2 ... ⊕ 𝑐𝑈 ⊕ 𝑐𝑈 +1. By Definition 4.9, 𝑆 ′ is a valid compiler state.

□

Now, we first state the correctness theorem for Homeostasis. Intuitively, Theorem 4.12 states that

at any point of time during compilation, the analysis results given by Homeostasis match those

obtained by rerunning the complete analyses, provided the methods compute and handleUpdate
provided by the analysis writer are correct (i.e., Axioms 4.5 and 4.6 hold).

Theorem 4.12 (Correctness of Homeostasis). At any compilation point of a Homeostasis-

enabled compiler with compiler state 𝑆𝑖 = ⟨𝑃𝑖 , 𝐷𝑖 , 𝑐𝑖⟩, for each analysis𝐴𝑘 with corresponding analysis

state 𝑑𝑘 ∈ 𝐷𝑖 , the value obtained upon invocation of get compiler action for 𝐴𝑘 (i.e., get(𝐴𝑘)) on 𝑆𝑖 ,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:23

|𝑐 | = 0

compress((𝐷, 𝑐)) = (𝐷, 𝑐)
[CS-Base]

|𝑐 | = 𝑘 𝑘 ≥ 1

𝑘−2
∀

𝑖=−1
, ∃𝑑 ∈ 𝐷,𝑑 = ⟨∗, ∗, ∗, 𝑖⟩

compress((𝐷, 𝑐)) = (𝐷, 𝑐)
[CS-Compressed]

𝐷 = 𝐷INV
⋃

𝐷UPD ∀𝑑 ∈ 𝐷INV, 𝑑 = ⟨∗, ∗, LZINV,−1⟩ ∀𝑑 ∈ 𝐷UPD, 𝑑 = ⟨∗, ∗, LZUPD, ∗⟩
𝑐 = 𝑐1 · 𝑐′ �𝑑 ∈ 𝐷UPD, 𝑑 = ⟨∗, ∗, LZUPD,−1⟩

𝐷UPD = {⟨𝑣1, 𝑠1, LZUPD, 𝑟1⟩, ⟨𝑣2, 𝑠2, LZUPD, 𝑟2⟩, ... , ⟨𝑣𝑘 , 𝑠𝑘 , LZUPD, 𝑟𝑘 ⟩}
𝐷′
UPD = {⟨𝑣1, 𝑠1, LZUPD, 𝑟1−1⟩, ⟨𝑣2, 𝑠2, LZUPD, 𝑟2−1⟩, ... , ⟨𝑣𝑘 , 𝑠𝑘 , LZUPD, 𝑟𝑘−1⟩}

compress((𝐷, 𝑐)) = (𝐷INV
⋃

𝐷′
UPD, 𝑐

′)
[CS-DelFirst]

𝐷 = 𝐷INV
⋃

𝐷UPD ∀𝑑 ∈ 𝐷INV, 𝑑 = ⟨∗, ∗, LZINV,−1⟩ ∀𝑑 ∈ 𝐷UPD, 𝑑 = ⟨∗, ∗, LZUPD, ∗⟩
𝑐 = 𝑐𝑎 · 𝑐𝑖 · 𝑐𝑏 |𝑐𝑎 | = 𝑖 𝑖 ≥ 1 |𝑐𝑏 | ≥ 1

𝑖−1
∀

𝑗=−1
, ∃𝑑 ∈ 𝐷UPD, 𝑑 = ⟨∗, ∗, LZUPD, 𝑗⟩ �𝑑 ∈ 𝐷UPD, 𝑑 = ⟨∗, ∗, LZUPD, 𝑖⟩

𝑐𝑏 = ⟨𝑐𝑖+1, 𝑐𝑖+2, ... , 𝑐𝑛⟩ 𝑐′
𝑏
= ⟨𝑐𝑖 ⊕ 𝑐𝑖+1, 𝑐𝑖+2, ... , 𝑐𝑛⟩ 𝑐′ = 𝑐𝑎 · 𝑐′

𝑏

𝐷UPD = {⟨𝑣1, 𝑠1, LZUPD, 𝑟1⟩, ⟨𝑣2, 𝑠2, LZUPD, 𝑟2⟩, ... , ⟨𝑣𝑘 , 𝑠𝑘 , LZUPD, 𝑟𝑘 ⟩}
𝐷′
UPD = {⟨𝑣1, 𝑠1, LZUPD, ((𝑟1>𝑖)?(𝑟1−1):𝑟1)⟩, ⟨𝑣2, 𝑠2, LZUPD, ((𝑟2>𝑖)?(𝑟2−1):𝑟2)⟩,

... , ⟨𝑣𝑘 , 𝑠𝑘 , LZUPD, ((𝑟𝑘>𝑖)?(𝑟𝑘−1):𝑟𝑘)⟩}
compress((𝐷, 𝑐)) = (𝐷INV

⋃
𝐷′
UPD, 𝑐

′)
[CS-MergeMid]

Fig. 15. Definition for the function compress: P(D) × C∗ → P(D) × C∗.

will always be same as 𝐴𝑘(𝑃𝑖). Formally, for each analysis 𝐴𝑘 and compiler state 𝑆𝑖 , ∃ 𝑆 𝑗 ∈ S, such
that apply(𝑆𝑖 , get(𝐴𝑘)) =⇒ (𝑆 𝑗 , 𝐴𝑘(𝑃𝑖)).

Proof. Follows directly from Lemma 4.10 and Lemma 4.11. □

4.2 Compression of Change-Sequence in Homeostasis
Homeostasis keeps the global change-sequence compact by internally performing the compression

operation on it, as discussed in Section 3.3. In this section, we formalize this functionality, and

argue that the correctness of Homeostasis continues to hold when we use the proposed idea of

change-sequence compression.

Fig. 15 presents the formal definition of the compress function. This function takes a two-tuple

of the form (𝐷, 𝑐), where 𝐷 is a set of analysis-states, and 𝑐 is a change-sequence. The compress
function returns another two-tuple, say (𝐷 ′, 𝑐′), such that (i) the change-sequence 𝑐′ is obtained by
optionally compressing a single element of the input change-sequence 𝑐 , and (ii) the set 𝐷 ′

contains

all the analysis-states from 𝐷 , with required modifications in case if the input change-sequence

was compressed.

Recall that the key intuition behind compression is as follows: If no analysis-state in the compiler

has a change-index equal to some index in the change-sequence, then the element at that index in

the change-sequence can be safely merged (using the ⊕ operator) to its successor (if any) in the

change-sequence. Further, if no analysis-state in the compiler has a change-index less than zero,

then the first element (at index 0) of change-sequence can be safely removed. Following are the

cases that may arise when performing compression of the input change-sequence one element at a

time:

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:24 Nougrahiya and Nandivada

• When the change-sequence 𝑐 is empty, it is already in its compressed form. Hence, as per rule

[CS-Base], 𝐷 and 𝑐 are returned without any changes.

• Similarly, if corresponding to each element in the change-sequence (except, optionally, the

last) if there exists at least one analysis-state that has its change-index same as the index of that

element, and if there exists at least one analysis-state that has its change-index as −1, then the

change-sequence is already in its compressed form ([CS-Compressed]).

• Otherwise, if no analysis-state has a change-index of −1, then we purge the first element from

the change-sequence, and update all the analysis-states by decrementing their change-index by

one (rule [CS-DelFirst]).

• Otherwise, the element at the least index number that is not present as the change-index of

any analysis-state is merged to its successor element (if any) in the change-sequence. Further, the

change-index of all those analysis-states whose change-index is greater than the compressed index

number, is decremented by one (rule [CS-MergeMid]).

Note that no action is performed during compressionwhen only the last element in the change-index

is not indexed to by any of the analysis-states; this case falls under the rule [CS-Compressed], once

the fixed-point application of the compress is complete. Further note that for efficiency purposes,

in practice, in a change-sequence, all those 𝑘 consecutive elements that are not indexed by any

change-index are compressed together and change-indices of the affected analysis-instances are

decremented by 𝑘 , in one go.

In Homeostasis, the compress function can be called during any compilation point, such as,

immediately after a stabilization trigger, after an elementary transformation, and so on. Regardless

of the number and places of invocations for this function, the following lemma holds.

Lemma 4.13. Consider a valid compiler state, say 𝑆 = ⟨𝑃, 𝐷, 𝑐⟩, and another state obtained after a sin-
gle application of the compress function, say 𝑆 ′ = ⟨𝑃, 𝐷 ′, 𝑐′⟩, such that compress((𝐷, 𝑐)) = (𝐷 ′, 𝑐′).
Assume, 𝑐 = {𝑐0, 𝑐1, ... , 𝑐 |𝑐 |−1}, and 𝑐′ = {𝑐′

0
, 𝑐′

1
, ... , 𝑐′

|𝑐′ |−1
}. For each analysis-state in LZUPDmode, say

𝑑 = ⟨𝑣, 𝑠, LZUPD, 𝑟 ⟩ ∈ 𝐷 , and the corresponding modified analysis-state, say 𝑑 ′ = ⟨𝑣, 𝑠, LZUPD, 𝑟 ′⟩ ∈ 𝐷 ′
,

the following equality holds.

𝑐𝑟+1 ⊕ 𝑐𝑟+2 ... ⊕ 𝑐 |𝑐 |−1 = 𝑐′𝑟 ′+1 ⊕ 𝑐′𝑟 ′+2 ... ⊕ 𝑐′|𝑐′ |−1 . (1)

Proof. Let 𝑘 be the smallest integer in the set {−1, 0, 1, ... , |𝑐 | − 1} such that there does not exist

any analysis-state in 𝐷 whose change-index is same as 𝑘 . That is, �𝑑 = ⟨∗, ∗, ∗, 𝑟 ⟩ ∈ 𝐷 , such that

𝑟 = 𝑘 . Following three cases arise:

Case I: No such 𝑘 exists. This case refers to the fixed-point state for the compress function,

as described by Rules [CS-Base] and [CS-Compressed]. As per these rules, note that 𝑐′ = 𝑐 , and

𝐷 ′ = 𝐷 . Hence, Equation 1 trivially holds.

Case II: 𝑘 = −1. Following two sub-cases arise based on the size of 𝑐 .

Case II.a.: |𝑐 | = 0. In this case, Rule [CS-Base] is applicable. Since 𝑐′ = 𝑐 , and 𝐷 ′ = 𝐷 ,

Equation 1 trivially holds.

Case II.b.: |𝑐 | ≥ 1. In this case, Rule [CS-DelFirst] is applicable. As per this rule, |𝑐′ | = |𝑐 | −1,

𝑟 ′ = 𝑟 − 1 and

|𝑐′ |−1
∀
𝑖=0

, 𝑐′𝑖 = 𝑐𝑖+1

Under these equalities we infer that, (i) the number of terms on the LHS and RHS of Equation 1

is same, and (ii) each term on the LHS is same as the corresponding term on the RHS. Hence,

Equation 1 holds.

Case III: 𝑘 ≥ 0.When 𝑘 = |𝑐 | − 1, Rule [CS-Compressed] is applicable. As before, Equation 1

will hold in that case. Otherwise, when 0 ≤ 𝑘 ≠ |𝑐 | − 1, Rule [CS-MergeMid] is applicable. In this

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:25

case, |𝑐′ | = |𝑐 | − 1. Further, as per this rule, the following holds:

𝑘−1
∀
𝑖=0

, 𝑐′𝑖 = 𝑐𝑖 , 𝑐′
𝑘
= 𝑐𝑘 ⊕ 𝑐𝑘+1 and

|𝑐′ |−1
∀

𝑖=𝑘+1
, 𝑐′𝑖 = 𝑐𝑖+1 (2)

Following two sub-cases arise based on the different values of 𝑟 :

Case III.a. 𝑟 < 𝑘 . As per Rule [CS-MergeMid], 𝑟 ′ = 𝑟 . In this case, the number of elements

on the LHS of Equation 1 is one more than the number of elements of its RHS. Clearly, 𝑐𝑘
and 𝑐𝑘+1 are present in the LHS, whereas in the RHS, 𝑐𝑘 and 𝑐𝑘+1 have been replaced with

another element 𝑐′
𝑘
. Using Equation 2, we derive that all terms on the left of 𝑐𝑘 are same as

the corresponding terms on the left of 𝑐′
𝑘
. Similarly, all terms on the right of 𝑐𝑘+1 are same as

the corresponding terms on the right of 𝑐′
𝑘
. Additionally, since 𝑐′

𝑘
= 𝑐𝑘 ⊕ 𝑐𝑘+1, we infer that

Equation 1 holds.

Case III.b. 𝑟 > 𝑘 . As per Rule [CS-MergeMid], 𝑟 ′ = 𝑟 −1. In this case, the number of elements

on the LHS of Equation 1 is same as the number of elements of its RHS. Clearly, 𝑐𝑘 does not

appear in the LHS. As per Equation 2, each term on the LHS is same as the corresponding

term on the RHS. Hence Equation 1 holds.

□

Corollary 4.14. Consider a valid compiler state, say 𝑆 = ⟨𝑃, 𝐷, 𝑐⟩. If the fixed-point application of

the compress function on the input (𝐷, 𝑐) is (𝐷 ′, 𝑐′), that is, compress((𝐷, 𝑐))★ = (𝐷 ′, 𝑐′), then
the compiler state 𝑆 ′ = ⟨𝑃, 𝐷 ′, 𝑐′⟩ is valid.

Proof. The proof follows directly from Definition 4.9 and Lemma 4.13. □

Note that as a direct implication of Corollary 4.14, Lemma 4.10, and Lemma 4.11, the correctness

guarantee of Homeostasis, stated in Theorem 4.12, will hold regardless of the number of compilation

points where the compress function is invoked by Homeostasis.

5 DISCUSSION
We now present some salient characteristics of Homeostasis, followed by an account of how we

estimate the amount of stabilization-effort required in the absence of Homeostasis. Then, we briefly

discuss a generic incremental iterative data-flow analysis pass, which we have implemented and

instantiated in Homeostasis to aid our evaluation.

5.1 Salient Characteristics of Homeostasis
Merging program changes across transformations. To stabilize a program-abstraction in

update (UPD) mode, the handleUpdate method of the corresponding analysis requires net changes

performed on the program (in terms of added and removed nodes/edges) since the last stabiliza-

tion of that program-abstraction. A simple union of all such changes performed across multiple

transformations, would not suffice. For instance, if a program node 𝑛 (or edge 𝑒), is added by a

transformation, and then deleted by another transformation before the stabilization gets triggered,

the node 𝑛 (or edge 𝑒) should not be considered as an added/removed node (or edge). In Homeostasis,

BasePA internally merges the changes saved across all transformations to provide the relevant

information when requested. In Section 5.5, we give an example of how the provided information

is used in the handleUpdate method of a specific analysis.

Resolving pass-dependencies. Homeostasis automatically resolves the pass-dependencies of all

compiler passes on program analysis passes by internally stabilizing the program-abstractions in

the topological order of their dependencies. This is achieved through the design of getters and

stabilizers inHomeostasis (see Fig. 7). For example, the getter method of an UNSTABLE analysis, say𝐴,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:26 Nougrahiya and Nandivada

does not return until its stabilizer has been run. If analysis𝐴 is dependent upon some other analysis

𝐵 (that is, if the computation of the program-abstraction of 𝐴 requires the program-abstraction of

𝐵), then the compute or handleUpdate methods of 𝐴 invoked from the stabilizer of 𝐴 would, in

turn, invoke the getter of 𝐵. This will ensure that the stabilizer of 𝐵 is run before the completion of

𝐴, regardless of the order in which the stabilizations of both analyses were triggered.

5.2 Using Homeostasis in Compilers with Multi-Level IRs
A majority of the real-world compilers employ multiple levels of IR, and invoke a host of IR-

level-specific analyses and optimizations on the program at each IR level. For such compilers,

we can easily see that Homeostasis can be used for stabilizing the program-abstractions of the

analyses within each such IR level, in response to the optimizations performed at that level. During

compilation when the program is lowered from a higher-level IR (say, HIR) to a lower-level IR

(say, LIR), (i) the program-abstractions of HIR are no longer relevant for the compiler passes of

LIR (and hence need not be stabilized), and (ii) all the necessary program-abstractions for LIR are

computed on the current state of the program, when needed. Thus, program-abstractions need not

be stabilized across different levels of IR. Consequently, compilers supporting multi-level IRs can

realize self-stabilization by using Homeostasis at each level of the IR independently.

5.3 Using Homeostasis in Non-Object-Oriented Compilers
While this paper presents the design of Homeostasis in the context of object-oriented compilers,

we believe that the proposed design can be adapted to allow self-stabilization in compilers that

are written even in procedural languages. For example, in languages like C, the information

about each analysis pass can be represented as a structure containing six members: (i) a program-

abstraction of type “void*", (ii) an enum field stabilizationMode, (iii) an integer field chIndex,
(iv) a function pointer named compute pointing to the function that populates the corresponding

program-abstraction, and (v) a function pointer named handleUpdate pointing to the function that

incrementally stabilizes the corresponding program-abstraction, (vi) a function pointer named get
pointing to a method that returns a stable program-abstraction (by invoking the corresponding

compute or handleUpdate functions, as needed). The first five members correspond to the instance

fields and methods of the class BasePA, and the last member corresponds to the get method shown

in Fig. 7. All instances of this six-member structure are maintained in a global list. We have to

identify the set of elementary transformations and modify them to conform to the code shown in

Fig. 5.

Since procedural languages do not support the Observer pattern naturally, we would need

that the compiler-writer follows a disciplined approach in modifying the IR, and accessing the

program-abstractions. To use Homeostasis in compilers written in such a language, (i) the compiler

writer must perform all IR modifications (directly/indirectly) only via the fixed set of elementary

transformations, (ii) perform the initialization of the analysis instance via a generic method (akin

to the constructor of BasePA, Fig. 7a), and (iii) access the program-abstraction of an analysis, only

via the invocation of its get function. We believe that a similar exercise can be carried out for

compilers written in functional programming languages. We leave it as a future work to actually

instantiate Homeostasis in such non-OO compilers.

5.4 Estimating Manual Stabilization Effort in the Absence of Homeostasis
To contrast the savings in effort due to the self-stabilization scheme of Homeostasis, we now present

a scheme to estimate the effort required for manual stabilization in the absence of Homeostasis.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:27

public void unrollLoop (WhileStatement loop) {
DumpSnapshot.dumpPointsTo(loop , "original"); // L1
Statement newBody = ... /* code to obtain the unrolled body */
loop.setBody(newBody); // L2
CompoundStatementNormalizer.removeExtraScopes(loop); // L3
DumpSnapshot.dumpPointsTo(loop , "afterUnroll");} // L4

Fig. 16. Concrete optimization pass: Loop unroller from IMOP (WhileStatementInfo.java:60-83).

Critical program-abstractions, and change-points. Note that in order to perform manual

stabilization in the context of an optimization O, the pass writer needs to inspect the following two

parameters in relation to questions Q
1
and Q

2
(see Fig. 2) : (i) critical program-abstractions: those

program-abstractions which may be rendered stale by O, and may be read later by an existing or

future optimizing pass (and hence may need to be stabilized); we use 𝑆𝑎 to denote the set of critical

program-abstractions, and (ii) change-points: those program points in the code of the optimization O
which may directly or indirectly trigger an elementary transformation (and hence may necessitate

stabilization); we use 𝑆𝑝 to denote the set of change-points. We demonstrate these parameters

using an example.

Example 5.1. Fig. 16 shows a snippet of a concrete optimization pass that performs loop unrolling

in the IMOP compiler framework. We have added the calls to the dumpPointsTo method to simply

print the points-to information corresponding to the specified node, symbolising the clients that

may need points-to information, before and after unrolling. Method setBody is an elementary

transformation method that replaces the current body of the receiver while-statement with the

provided body. Method removeExtraScopes is used to remove unnecessary wrapping of statements

within blocks (for example, {{S}} → {S}). For this snippet, 𝑆𝑝 = {L2, L3}, and 𝑆𝑎 is the set of those

program-abstractions that may be impacted by the statements in 𝑆𝑝 ; for example, CFG, call-graph,

use-def chains, and so on. Note that there may be other change-points within the implementation

of the common utility removeExtraScopes; we do not consider them here as they are not present

in the code written as a part of this pass.

Relevant change-Points (RP). An inexperienced programmer may perform manual stabilization

naïvely by re-computing each of the program-abstractions (or a likely superset of 𝑆𝑎 , for correctness),

after each change-point in 𝑆𝑝 – a highly inefficient scheme, both in terms of its effect on performance,

and the number of program points where the stabilization code needs to be invoked. An experienced

programmer, on the other hand, is more likely to insert stabilization code only at a subset of change-

points present in the code of the optimization pass. This reduction stems from two key insights: (i)

Stabilization is required only after the last change-point in a series of transformations, after which

one or more critical program-abstractions may be read. (ii) Further, a program-abstraction need

not be stabilized at such a last change-point, if the net program-changes at that change-point is

guaranteed to not alter the existing values of the program-abstraction. For example, consider the

addition/deletion of a node for an assignment statement (of the form x=y). If the variable x is a

pointer-type variable, then such an addition/deletion does not change the points-to map of the

variable x, if both x and y point to the same set of ‘may points-to’ locations, even in the absence of

this statement. Similarly, if the variable x is of integer type, then the addition/deletion of such a

node will not impact the points-to information of any variable (if the expert can assert that the

value of the variable x is not used as an offset for any pointer dereference).

The second key insight leads to cases where even if the program-abstraction is marked as

UNSTABLE, in reality no stabilization is required. Considering the challenges in obtaining an expert-

based study in a large compiler framework, and the difficulty in automatically identifying the cases

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:28 Nougrahiya and Nandivada

Full recomputation of the

analysis from scratch

Incremental update of the

program-abstraction using the

stored changes to the program

Stabilization triggers

eagerly at each

elementary

transformation

EGINV EGUPD

Stabilization triggers

at relevant

change-points in the

optimization pass

RPINV RPUPD

Stabilization triggers

lazily upon an attempt

to read from the stale

program-abstractions

LZINV LZUPD

Fig. 17. Summary of various modes of stabilization used in the evaluation of our implementation of
Homeostasis in IMOP.

related to the second key insight, for the purpose of our evaluation, we approximate the set of expert-

marked change-points by the set of relevant change-points that is based on the first key insight.

A relevant change-point is a program point in the optimization pass that corresponds to the last

change-point in a series of transformations, after which one or more critical program-abstractions

may be read; hence, one or more program-abstractions may require manual stabilization at a

relevant change-point. For example, in Fig. 16, the set of relevant change-points, from among

the change-points {L2, L3}, is a singleton set {L3} – L3 is the last change-point in the series of

transformations (L2;L3) after which a program-abstraction, the points-to map, will be read (at L4).

Modes of manual stabilization. Besides the lazy modes of stabilization preferred by Homeostasis,

a few other modes of stabilization are easily conceivable. For example, the stabilization of all

program-abstractions can be triggered during each elementary transformation of the program

eagerly (see Section 3.1.4). Like the two modes of lazy stabilization, this eager scheme leads to

two modes of stabilization: eager-invalidate (EGINV) and (EGUPD). An efficient alternative to the

eager modes of stabilization is to invoke stabilization at only the set of relevant change-points. Like

before, two modes of stabilization are possible – RPINV and RPUPD, corresponding to the invalidate

and incremental update options, respectively.

These stabilization modes are very similar to the custom codes manually written by the com-

piler pass writers in conventional compilers: (i) UPD modes in the presence of incremental update,

whereas INV modes otherwise, and (ii) EG-modes during naïve (and inefficient) but easy manual sta-

bilization, whereas RP-modes during relatively efficient stabilizations performed by an experienced

compiler writer. For the purpose of evaluation (see Section 7), along with the two lazy-modes of

self-stabilization advocated by Homeostasis, we have implemented these four modes of stabilization

(EGINV, EGUPD, RPINV, and RPUPD) to approximate different modes of manual stabilization. Fig. 17

summarizes all the implemented modes of stabilization.

5.5 Implementing Iterative Data-Flow Analyses in Homeostasis
To conveniently implement multiple analyses that can use LZUPD mode of stabilization, we imple-

mented a generic pass of an analysis that can be used to implement any incremental, inter-thread,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:29

1 Function handleUpdate()
2 Set seeds = .. empty set ..;

3 IRChanges netIRChanges = getNetChanges(this.chIndex);
4 foreach 𝑒 in netIRChanges.removedEdges do Add the destination node of the removed edge 𝑒 to seeds;
5 foreach 𝑛 in netIRChanges.removedNodes do Add the (old) successors of the removed node 𝑛 to seeds;
6 foreach 𝑛 in netIRChanges.addedNodes do Add the added node 𝑛 itself, as well as its successors to seeds;
7 foreach 𝑒 in netIRChanges.addedEdges do Add the destination node of the added edge 𝑒 to seeds;
8 incrementalIDFA(seeds);

Fig. 18. Definition of the handleUpdate function for forward iterative data-flow analysis.

flow-sensitive, iterative data-flow analysis (IDFA) for OpenMP parallel programs. We term this

generic analysis as HIDFA and implemented it as a class that extends BasePA.
Fig. 18 shows the steps used by the handleUpdate method of the HIDFA class in the context of

forward data-flow analyses; the steps in the context of backward analysis are similarly derived (not

shown). To realize self-stabilization, it populates a set (seeds) of nodes, starting which the flow

maps may need an update as a result of program transformations. These seed nodes are passed

to the incrementalIDFA method for performing the stabilization (Line 8). The implementation

of incrementalIDFA is inspired from the work by Marlowe and Ryder [1989]; Ryder et al. [1988],

and is a simple extension of the two-phase incremental update algorithms for iterative versions of

data-flow analysis given by Pollock and Soffa [1989], adapted to handle the parallel semantics of

the OpenMP parallel programs.

For completeness, we now give brief details of our implementation of incrementalIDFA. This
method starts with the reconstruction of the SCC Decomposition Graph (SDG) of the updated

control-flow graph of the program. Each SCC-node in the SDG that contains any of the seed nodes is

marked for processing. All the marked SCC-nodes are processed one-by-one, as per their topological-

sort order in the SDG. Within each SCC-node, the processing continues using a worklist-based

approach in two-phases: (i) exaggerate phase: in this phase, the flow-maps of various program-nodes

in the SCC-node are initialized to an under-approximated value (such as ⊤), starting which the

precise flow-map can be eventually obtained, and (ii) adjust phase: in this phase, the program-nodes

are processed until fixed-point, using the data-flow equations similar to the exhaustive iterative

data-flow algorithm. At the end of the second phase, the flow-maps of all program-nodes within

the SCC-node correspond to the maximum fixed-point (MFP) solution. During the processing of an

SCC-node, if it is found that the program-nodes of any successor SCC-nodes need to be added to

the worklist, then such successor SCC-nodes are marked for processing. This method continues till

there are no more marked SCC-nodes left for processing. We refer the reader to the work by Pollock

and Soffa [1989] for more details on the underlying two-phase incremental update algorithm.

6 INSTANTIATION OF HOMEOSTASIS
In order to assess the feasibility and generality of Homeostasis, we have retrofitted Homeostasis to

a research compiler, and have implemented/adapted a number of analysis passes and optimization

passes in the compiler, to conform to the design of Homeostasis. In this section, we discuss the

relevant instantiation details.

6.1 Retrofitting Homeostasis to a Real-World Compiler
The design ofHomeostasis is applicable to all the object-oriented compilers. RetrofittingHomeostasis

in mainstream real-world compilers, like LLVM, OpenJ9, IMOP, and so on, will require rewriting all

the existing program transformations using the identified fixed set of elementary transformations,

and modifying all the existing analysis passes to conform to the structure prescribed by Homeostasis

(see Fig. 11). We have implemented our prototype in IMOP. We believe that a similar exercise can

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:30 Nougrahiya and Nandivada

be undertaken for other object-oriented compiler frameworks as well. To further strengthen this

belief, in Appendix B we briefly discuss the guidelines on how the LLVM compiler framework

can be extended with Homeostasis. The one-time effort required to retrofit Homeostasis to IMOP is

discussed next.

Identifying elementary transformations. The IMOP IR comprises two kinds of nodes – leaf

nodes and non-leaf nodes. All OpenMP or C constructs with “body”, such as while-loop, if-statement,

and OpenMP parallel-region, are represented as non-leaf nodes. Similarly, nodes such as simple

statements of C, and OpenMP directives such as barriers and flushes, are considered as leaf nodes.

Each non-leaf node defines a nested flow of control, using edges among its components, which

can themselves be non-leaf nodes. We identified the pre-existing fundamental transformations in

IMOP that are used to add, replace, or delete various components of a non-leaf node, as the set of

elementary transformations. In total, we identified and modified 47 elementary transformations

spread across 17 non-leaf nodes to make them conform to the design shown in Fig. 5.

We observe that the modification of these elementary transformations did not necessitate any

changes at their call-sites. From Fig. 5, note that Step B, which corresponds to the pre-existing code

of an elementary transformation (in the absence of Homeostasis) does not undergo any changes

while retrofitting the compiler with Homeostasis – the IR transformations are performed as before.

Steps A, C, and D, interact only with stabilization-specific data structures to capture the program-

changes resulting from Step B; they do not alter the meaning of the elementary transformation.

Consequently, the compiler-pass writers can continue to use the elementary transformation as

before, without having to consider their impact on self-stabilization.

Modifying higher-level transformation APIs. In order to allow for easier expression of trans-

formation passes, IMOP provides four basic CFG transformations: (i) insertion of a successor node,

(ii) insertion of a predecessor node, (iii) insertion of a node on an edge, and (iv) removal of a

node. To retrofit Homeostasis to IMOP, we have modified the implementation of all these four

transformations such that they express all IR changes directly or indirectly in terms of the identified

set of elementary transformations. IMOP provides many higher-level transformation APIs such as

duplicating a block of statements, renaming of free variables, and so on. All these transformation

APIs employ elementary transformations, the above-mentioned CFG transformations, or other

higher-level transformations to express any changes to the IR. Since all the transformations APIs

deployed in IMOP directly or indirectly express all the program changes via elementary transfor-

mations, the implementation of none of the existing optimization passes in IMOP required any

specific modifications to adapt them to use Homeostasis.

Creating/identifying the super-class BasePA. IMOP already contains a class named BasePA,
which serves as the super-class of all the analysis passes. We modified BasePA as per Fig. 7 to

conform to the design of Homeostasis. This mainly involved (i) modifying the constructor as shown

in Fig. 7a, (ii) adding the stabilize method from Fig. 7c, (iii) adding an abstract method compute
to be implemented by each concrete subclass of BasePA, and (iv) adding a dummy method for

handleUpdate to be overridden by each concrete subclass of BasePA that seeks to employ LZUPD
stabilization-mode. Further, to allow efficientmaintenance of the centralized list of program-changes,

as detailed in Fig. 15, we added the appropriate data structures and methods.

6.2 Adapting Analysis Passes to Use Homeostasis
In order to assess the applicability of Homeostasis to various kinds of program-abstractions, we

have (i) extended existing analysis passes of IMOP to conform to the design of Homeostasis, and (ii)

implemented HIDFA and its various instantiations in IMOP.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:31

Program-abstraction (Relevant analysis-pass class) Description

1. Points-to maps (PointsToAnalysis∗) points-to information

2.

Reaching-definitions

(ReachingDefinitionAnalysis∗)
reaching definitions

3. Liveness maps (LivenessAnalysis∗) liveness information of variables

4. Copy maps (CopyPropagationAnalysis∗)
information about variables that are copies

of each other

5. Must-lock sets (LockSetAnalysis∗)
information about locks that must have

been taken at a node

6. Dominator sets (DominanceAnalysis∗) dominator information

7. Control-flow graphs (CFGInfo) control-flow graph

8. Inter-task edges (InterTaskEdge)
information representing inter-task

communication

9. Strongly-connected components (SCC)
SCC Decomposition Graph (SDG) and

enclosing SCC-nodes

10. Phase-flow graphs (NodePhaseInfo) may-happen-in-parallel (MHP) analysis

11. Call graphs (CallStatementInfo) call graph

12. Symbol-/type-tables (CompoundStatementInfo)
information about the symbols and

user-defined types in a scope

13. Label-lookup sets (StatementInfo) information about labels of a statement

14. Single-valued expressions (SVEChecker)
information about expressions that evaluate

to same value by all the threads

Fig. 19. List of program-abstractions corresponding to key analysis passes in IMOP that were made
conforming to Homeostasis. The bracketed text in the first column, gives the name of the IMOP class
modified. Classes annotated with ∗ are the analyses that are implemented as subclasses of HIDFA in IMOP.

Fig. 19 provides a brief description of the program-abstractions for some of the key analysis passes

in IMOP that now use Homeostasis. In particular, we have implemented a set of six standard flow-

sensitive context-insensitive inter-thread iterative data-flow analyses as subclasses of the HIDFA

class: (i) points-to analysis, (ii) reaching-definitions analysis, (iii) liveness analysis (a backward

IDFA), (iv) copy propagation analysis, (v) lockset analysis, and (vi) dominance analysis. None of

these IDFA passes required any stabilization-specific code in order to support LZUPD stabilization-

mode. For their super-class HIDFA, as well as for other analyses listed in the figure, we had to

(1) modify their corresponding getter methods, as per the design from Fig. 7, (2) ensure that the

code to generate the program-abstraction from scratch is invoked from the overridden method

compute, and (3) wherever applicable, ensure that the code to perform an incremental update of

the program-abstraction is invoked from the overridden method handleUpdate.

6.3 Optimization Passes in the Context of Homeostasis
Recall that in a Homeostasis-enabled compiler framework, the optimization-pass writers can effi-

ciently design and implement new optimizations without having to write any stabilization-specific

code (see Fig. 11). Fig. 20 lists some key optimization passes (including existing, as well as new ones

implemented by us) in IMOP; none of them required any stabilization-specific code. Two common

characteristics of these passes are: (i) Each of them expresses the required program transformations

using either the elementary transformations and/or other transformation APIs provided by IMOP.

(ii) Each of them uses/impacts one or more Homeostasis-enabled program-abstractions described in

Fig. 19. Now, we briefly describe a subset of these optimization passes (that we implemented for

evaluating Homeostasis), which we collectively term as BarrElim.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:32 Nougrahiya and Nandivada

Optimization Pass Description

(Relevant class/method in IMOP)

1.

Redundant barrier remover
†

(RedundantSynchronizationRemoval)

removes those barriers that do not preserve any

inter-thread dependences across them

2.

OmpPar expander
†

(ParallelConstructExpander.expandParRegion)

expands the scope of parallel-regions upwards and

downwards

3.

OmpPar merger
†

(ParallelConstructExpander.mergeParRegions)
merges two consecutive parallel-regions, if safe

4.

OmpPar-loop interchange
†

(ParallelConstructExpander.interchangeUp)

interchanges a parallel-region with its enclosing

loop, if safe

5.

OmpPar unswitching
†

(ParallelConstructExpander.interchangeUp)

interchanges a parallel-region with its enclosing

if-statement, if safe

6.

Variable privatization
†

(ParallelConstructExpander.expandUpward)
privatizes OpenMP shared variables, if safe

7. Function inliner
† (FunctionInliner)

selectively inlines those monomorphic calls that

contain at least one barrier

8. Scope remover
† (CompoundStatementNormalizer)

removes redundant encapsulations of

compound-statements within the given node

9.

Unused-elements remover
†

(NodeInfo::removeUnusedElements)

removes unused functions, types, typedefs, and

symbol declarations

10. Expression simplification (ExpressionSimplifier)
simplifies complex C expressions as per IMOP’s

normalization rules

11.

OmpConstruct simplification

(ExpressionSimplifier)

simplifies combined OpenMP constructs as per

IMOP’s normalization rules

12.

Loop unroller

(IterationStatementInfo::unrollLoop)
unrolls a serial loop

13.

Inter-phase code percolator

(BarrierDirectiveInfo::percolateCodeUpwards)

moves instructions across an OpenMP barrier,

if safe

14. Copy eliminator (CopyElimination)
removes redundant variables, relying on

copy-propagation analysis

15.

Loop barrier extractor

(LoopInstRescheduler::peelFirstBarrier)
peels out a barrier from within a serial loop, if safe

Fig. 20. List of key optimization passes inspected in IMOP; none of these passes required any stabilization-
specific code in the context of Homeostasis. The bracketed text in the first column, gives the name of the
IMOP class modified. Passes annotated with a † indicate that they belong to, or are used by, the BarrElim
set of optimization passes.

BarrElim: a set of optimization passes to aid barrier elimination. In order to develop a

real-world client for evaluating Homeostasis, we have implemented a set of three optimization

passes that aim to reduce redundant barriers in OpenMP C programs: redundant-barrier-remover,

parallel-construct-expander, and selective-function-inliner. The parallel-construct-expander in

turn uses five pre-existing optimizations: (i) privatisation of shared variables, (ii) parallel-region

scope expander, (iii) merging of consecutive parallel-regions, (iv) parallel-region and enclosing

serial-loop interchange, and (v) parallel-region unswitching. Further, the selective-function-inliner

uses two pre-existing cleanup-optimizations: extra-scope-remover, and unused-elements-remover.

Collectively, we term the three implemented optimization passes as BarrElim.
The optimization passes in BarrElim extend prior work by Gupta and Schonberg [1996]; Tseng

[1995] on parallel-region expansion and barrier removal with function inlining to realize an efficient

barrier removal algorithm. These optimization passes perform the following steps, as shown in the

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:33

Fig. 21. Block diagram of BarrElim, the selected set of client optimization passes, for removal of barriers
from OpenMP programs.

block diagram in Fig. 21 : (1) Remove redundant barriers (within a parallel-region), whose removal

do not violate any data dependence among the statements across them. The remaining two passes

help improve the opportunities for barrier removal within each function. (2) Expand and merge the

parallel-regions, while possibly expanding their scope to the call-sites of their enclosing functions,

wherever possible. This helps in bringing more barriers (including the implicit ones) within the

resulting parallel-region, thereby creating new opportunities for barrier removal. (3) Inline those

monomorphic calls whose target function (i) is not recursive, and (ii) contains at least one barrier.

These three optimization passes are repeated until fixed-point (no change).

Like many similar optimizations [Aloor and Nandivada 2015; Barik et al. 2013; Gupta et al. 2017;

Nandivada et al. 2013], the optimization passes in BarrElim involve multiple alternating phases

of inspections and transformations, which in turn lead to a number of interleaved accesses (reads

and writes) to various program-abstractions, such as phase information, points-to information,

super-graph (involving CFGs, call-graphs, and inter-task edges), AST, and so on – this interaction

is depicted in Fig. 21 using the dotted edge.

We have found that BarrElim is an impactful set of optimization passes for OpenMP codes. For

example, on the NPB benchmarks [Van derWijngaart andWong 2002], the BarrElim optimized code

yielded up to 5% improvement in execution time; the input benchmarks, as well as the BarrElim
optimized codes were compiled using the -O3 switch of gcc. Considering that the obtained gains

are on top of the many optimizations enabled by the -O3 switch, it can be seen that the gains

are significant. Consequently, from among the various optimization passes present in IMOP, we

select the BarrElim set of optimization passes (involving nine optimization passes and numerous

program-abstractions) to evaluate the ease-of-use and performance of Homeostasis (see Section 7).

7 IMPLEMENTATION AND EVALUATION
We have implemented all the key components of Homeostasis (see Fig. 4, and Section 3.2) in

the IMOP compiler framework [Nougrahiya and Nandivada 2019]. IMOP is a new open-source

compiler framework for conveniently writing program analyses, source-to-source optimizations,

and profiling tools for OpenMP C programs; it spans more than 170𝑘 lines of code (LOC) in Java.

IMOP has been used successfully in various published works (such as [Viswakaran Sreelatha

and Balachandran 2016], [Viswakaran Sreelatha et al. 2018], [Viswakaran Sreelatha and Nasre

2018] and [Krishnakumar et al. 2019]), and is under active development. Our implementation of

Homeostasis in IMOP involved coding of ∼4500 LOC for adding self-stabilization to the elementary-

transformation methods, and ∼2500 LOC for supporting self-stabilization for existing program-

abstractions of IMOP.

We have also implemented HIDFA, our generic inter-thread IDFA pass with incremental up-

date in Homeostasis (∼3300 LOC; discussed in Section 5.5). We instantiated HIDFA to realize the

implementation of following six standard flow-sensitive context-insensitive inter-thread iterative

data-flow analyses: (i) points-to analysis (∼870 LOC), (ii) reaching-definitions analysis (∼190 LOC),
(iii) liveness analysis (∼140 LOC), (iv) copy-propagation analysis (∼200 LOC), (v) lock-set analysis

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:34 Nougrahiya and Nandivada

(∼240 LOC), and (vi) dominance analysis (∼116 LOC). Further, in order to assess the usability of

Homeostasis, we have implemented a set of optimization passes, collectively termed as BarrElim,
for barrier removal (∼2500 LOC; see Section 6.3). As expected, in the set of optimization passes in

BarrElim no stabilization-specific code was needed. This underscores the ease-of-use facilitated by
the design of Homeostasis. We have made our implementation of Homeostasis in IMOP open-source

and publicly available [Nougrahiya and Nandivada 2021].

7.1 Experimental Setup
We present our evaluation on a set of twenty-four real-world benchmark programs taken from

four popular benchmark suites (listed in Fig. 22) : (i) all eight benchmark programs of NPB-OMP

3.0 suite [Van der Wijngaart and Wong 2002], (ii) quake, and art-m, the two (out of 3) OpenMP-C

benchmark programs from SPEC OMP 2001 [Aslot et al. 2001] that can be handled by IMOP, (iii) all

three OpenMP C benchmark programs – amgmk, clomp, and stream – from Sequoia benchmark

suite [Seager, M 2008], and (iv) all the eleven benchmark programs from IMSuite benchmark

suite [Gupta and Nandivada 2015]. Note that these comprise some of the largest standard open-

source benchmark programs for OpenMP C. Since IMOP accepts only OpenMP C programs, we did

not consider any other benchmarks from SPEC OMP 2001, or from Sequoia, as they contain a mix

of C/C++/MPI code. For IS from NPB, the set of client optimization passes, BarrElim, could not

find any opportunity for optimization; as no program transformation was performed by the pass,

no stabilization of data-flow analyses was triggered in any mode of self-stabilization – hence, we

omit IS from our discussion. In Fig. 22, we list a few static characteristics of the benchmarks, such

as the size of each selected benchmark, the number of parallel constructs, and the number of static

barriers.

In order to study the impact of different hardware on the performance improvements obtained

with Homeostasis, we used two multicore platforms to perform our empirical evaluation: (i) Nanda,

a 64-thread (dual socket, 16 cores per socket, 2 threads per core) 2.3 GHz Intel Xeon Gold 5218

system with 64 GB of memory, running Ubuntu 22.04.1 LTS and Java HotSpot 64-Bit Server VM

14.0; and (ii) K2, a 64-thread (quad-socket, 8 cores per socket, 2 threads per core) 2.3 GHz AMD

Abu Dhabi system with 512 GB of memory, running CentOS 6.4 and Java HotSpot 64-Bit Server VM

9.0. The multi-core aspect of these systems is relevant for the part of the evaluation that executes

the generated OpenMP code. The OpenMP codes were compiled using the GCC 11.3.0 compiler.

Taking inspiration from the insightful paper of Georges et al. [2007], we report the compilation-

and execution-time numbers by taking a geometric mean over 30 runs. We present the evaluation

in four directions: (i) Ease-of-use of Homeostasis (in Section 7.2), (ii) Performance evaluation of

the proposed lazy modes of stabilization (in Section 7.3), (iii) Impact of using the compression

optimization on the data-structures employed by Homeostasis to keep track of the program-changes

(in Section 7.4), and (iv) Correctness of the lazy modes of stabilization (in Section 7.5).

7.2 Ease of Use: Self-stabilization vs. Manual Stabilization
We now present an empirical study for assessing the impact of Homeostasis on writing differ-

ent compiler passes, by comparing the coding effort required to realize self-stabilization in a

Homeostasis-enabled compiler, against those required to perform manual stabilization (in the

absence of Homeostasis). We perform this evaluation in the context of the various component

optimization passes of BarrElim.
Based on the discussion in Section 5.4, we designed a simple scheme to estimate the additional

coding effort that may be required to perform manual stabilization. We profiled the IMOP compiler

by instrumenting the implementations of the various optimization passes of BarrElim, as well as
of various program analyses and elementary transformations. By running this profiled compiler on

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:35

1 2 3 4 5 6

Benchmark #LOC #Nodes #Edges #PC #Barr

1. BT (NPB) 2615 4748 5016 9 47

2. CG (NPB) 642 1403 1485 14 31

3. EP (NPB) 352 775 813 2 4

4. FT (NPB) 899 2033 2151 7 14

5. IS (NPB) 333 711 762 2 4

6. LU (NPB) 2355 4687 4974 8 35

7. MG (NPB) 1278 2784 2918 10 19

8. SP (NPB) 2543 5364 5744 7 72

9. quake (SPEC) 1489 3333 3491 11 22

10. art-m (SPEC) 1691 1710 1791 4 4

11. amgmk (Sequoia) 895 1867 1949 2 5

12. clomp (Sequoia) 1605 4162 4289 28 73

13. stream (Sequoia) 331 735 762 6 12

14. bellman-ford (IMSuite) 143 546 564 3 6

15. bfs-dijkstra (IMSuite) 104 295 305 2 4

16. byzantine (IMSuite) 135 444 467 3 6

17. dominating-set (IMSuite) 321 1223 1277 12 24

18. kcommittee (IMSuite) 220 889 925 6 12

19. leader-elect-dp (IMSuite) 122 442 460 2 4

20. leader-elect-hs (IMSuite) 184 528 553 3 6

21. leader-elect-lcr (IMSuite) 89 301 314 3 6

22. mis (IMSuite) 161 549 574 4 8

23. mst (IMSuite) 299 1226 1279 9 18

24. vertex-coloring (IMSuite) 172 609 636 3 6

Fig. 22. Benchmark characteristics. Abbreviations: #LOC=number of lines of code, #Node=number of exe-
cutable nodes in the CFG, #Edge=number of edges in the CFG, #PC=number of static parallel constructs,
and #Barr=number of static barriers (implicit + explicit).

Component Pass of BarrElim LOC #CP

Parallel-construct expansion 1675 66

Function inlining 463 15

Redundant-barrier deletion 313 2

Driver 10 1

Total : 2461 84

(a) Maximum number of change-points ob-
tained within the component optimization
passes of BarrElim upon running them on the
benchmarks under study. Abbr. : LOC=number
of lines of code; #CP=number of change-points.

Program-Abs. Mode #RP

Points-to graphs UPD 17

Control-flow graphs UPD 70

Call graphs UPD 60

Phase information INV 61

Inter-task edges INV 31

Symbol-/type-tables UPD 37

Label-lookup tables UPD 60

(b) Program-abstractions read by the BarrElim passes.
Abbr :Mode=stabilization-mode; #RP=number of rele-
vant change-points in the BarrElim passes after which
the abstraction was read from.

Fig. 23. Stabilization-related information for the set of optimization passes constituting BarrElim, obtained
upon profiling/inspecting the code.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:36 Nougrahiya and Nandivada

each benchmark program, we obtained (i) the set of change-points for the BarrElim passes, and (ii)
the set of program-abstractions that may be impacted by the BarrElim passes (see Section 6.3). In

this section, we use this data to estimate the manual coding effort that may be required to answer

the key questions from Fig. 2.

Which program-abstractions to stabilize?As discussed in Section 5.4, since it is difficult to obtain

the exact set of critical program-abstractions (to be stabilized manually), we manually analyzed

the code of various optimization passes of BarrElim and estimated that there are seven program-

abstractions (listed in Fig. 23b) that may be impacted by the BarrElim passes. Thus, in the case

of manual-stabilization, on writing each of the BarrElim passes, the pass writer needs to identify

these seven program-abstractions, from the plethora of available program-abstractions – a daunting

task. Note that the BarrElim optimization passes may also impact other program-abstractions that

may be added to the compiler in future; hence, for each newly added analysis-pass, the analysis-pass

writer would have to manually assess whether the corresponding program-abstraction may be

rendered stale due to the transformations performed by any of the BarrElim optimization passes

(and, in fact, by any of the other optimization passes in the compiler).

In contrast, in a Homeostasis-enabled compiler, all these tasks are automated – the optimization-

pass (or even analysis-pass) writer needs to put no effort into identifying the program-abstractions

(existing or new) that may be impacted by an optimization pass.

Where to invoke stabilization? In Fig. 23a, we enumerate the number of change-points discovered

in the major components of BarrElim. In the absence of Homeostasis, the pass writer would have to

correctly identify these 84 change-points (i.e., on average, almost 1 for every 28 lines of code!) across

various optimization passes of BarrElim, and insert code for ensuring stabilization of the affected

program-abstractions. At each change-point, the pass writer may need to handle stabilization of the

impacted program-abstractions, irrespective of the chosen mode of stabilization. To identify a more

aggressive baseline, we note that not all change-points (referred to in Figure 23a) may warrant

stabilization, and a pass writer may need to invoke the stabilization code only at the relevant

change-points (see Section 5.4), for only those set of abstractions that may be modified at that point.

Fig. 23b, column 4, lists the number of relevant change-points for each program-abstraction

impacted by the optimization passes of BarrElim; this data too was obtained by profiling the IMOP

compiler (profiling details discussed above), while running it on all the benchmarks under study.

The figure shows that there are a significant number of places in the components of BarrElim
where this stabilization code needs to be manually invoked, in the absence of Homeostasis. For

example, CFG stabilization needs to be performed at 70 places, and call-graphs at 60 places –

which can lead to cumbersome and error-prone code. Further, upon addition of any new program

analysis to the compiler (or any modification to the existing analysis), the pass writer would have to

revisit all the change-points of pre-existing optimizations (for example, 84 change-points across all

optimization passes of BarrElim) to check if the change-point may have necessitated stabilization

of the newly added/modified program-abstraction.

In contrast, in a Homeostasis-enabled compiler, all the above tasks are automated – the pass

writer needs to spend no effort in identifying the places of stabilization, as she needs to add no

additional code as part of the optimization in order to stabilize the program-abstractions.

How to stabilize?Weuse the same stabilization code for bothmanual stabilization andHomeostasis,

and hence there is no difference between them, with respect to this key question.

Summary. In contrast to the traditional compilers, it is much easier to ensure stabilization of

program-abstractions when writing optimizations or analyses in Homeostasis.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:37

7.3 Performance Evaluation
We conduct the performance evaluation of the proposed lazy modes of stabilization, by studying

the parameters related to stabilization time, total compilation time, and memory consumption, in

the context of the prior discussed set of optimization passes, BarrElim. We do so by presenting a

comparison to the RP-modes of stabilization, which correspond to manual stabilizations performed

by experienced compiler-pass writers (see Section 5.4). In Fig. 24, we present various parameters

related to compilation of the benchmark programs under study, when compiled with the RPINV
mode of stabilization; these numbers serve as the baseline for the evaluations discussed in this

section.

We have also done an elaborate evaluation compared to the weaker baseline of the eager EG-

modes of stabilization, which correspond to naïve (that is, easy but inefficient) manual stabilizations;

the details can be found in Appendix A.

(A) Stabilization time. In Fig. 24, columns 4 and 5 show the stabilization time for IDFA flow-maps

in the context of RPINV mode of stabilization, while performing the set of optimization passes of

BarrElim on the benchmark programs under study, for Nanda and K2, respectively. The zero (0)

entries for the STB-times of IS are due to the fact that no optimization opportunities were found by

the BarrElim passes for IS.
In Fig. 25, we illustrate the impact of using LZINV, RPUPD, and LZUPD modes of stabilization,

by showing their relative speedups with respect to RPINV, in terms of speedups in the IDFA

stabilization-time. We exclude SP from this discussion on stabilization time, since there were no

stabilization triggers for SP under lazy modes of stabilizations (that is, the stabilization time for lazy

modes of stabilization was zero). As expected, the LZUPD mode incurs the least cost for stabilization

among all the cases across both the platforms; consequently, it results in the maximum speedup

with respect to RPINV – with speedups varying between 2.6× and 30.64× (geomean 8.84×) for
Nanda; between 3.22× and 29.68× (geomean 9.58×) for K2.

We have noted that the gains in IDFA stabilization time using a particular mode of stabilization

depend on multiple stabilization-mode-specific factors, such as (i) number of triggers of stabiliza-

tion, (ii) number of times transfer-functions are applied on various program nodes during IDFA

stabilization, (iii) cost incurred to process each program node per stabilization, and so on. For our

baseline mode of stabilization, RPINV, we show the first two factors in columns 2 and 3 of Fig. 24,

respectively. We do not report the numbers for the third factor as it varies significantly based on the

different types of statements in the benchmark, and hence is difficult to summarize per benchmark.

In Fig. 26, we show the number of stabilization triggers when using the lazy modes of stabilization

normalized with respect to the RP-modes. Similarly, in Fig. 27, for various modes of stabilization

we show the number of transfer-function applications across all stabilization triggers normalized

with respect to those numbers in the case of RPINV mode. We observe that for each benchmark,

the speedup obtained across different modes of stabilization closely correlates to these numbers.

Across different benchmarks, the relative impact of these factors may vary, depending upon, for

instance, the fraction of time spent in applying transfer-function when processing a program node

during IDFA stabilization. We now illustrate our observations by comparing the performance of

different modes of stabilization.

LZUPD vs. RPINV. The LZUPD mode consistently outperforms the RPINV mode across all bench-

marks, for both the platforms, as shown in Fig. 25. This can be attributed to the significant reductions

in the number of transfer-function applications, as well as in the number of stabilization triggers,

when using the LZUPD mode as compared to the RPINV mode, as shown in Fig. 27 and Fig. 26,

respectively. The maximum speedup in IDFA stabilization-time for LZUPD was observed in quake
for Nanda (30.64×), and inMG for K2 (29.68×), consequent upon the fact that for quake andMG,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:38 Nougrahiya and Nandivada

1 2 3 4 5 6 7 8 9 10

Benchmark #Trig #T-Func

STB-Time (s) Total Time (s) Memory (MB)

Ch-Size

Nanda K2 Nanda K2 Nanda K2

1. BT (NPB) 17 214327 3.62 5.93 8.29 14.25 2862.24 8530.41 15170

2. CG (NPB) 89 242019 2.14 3.46 3.65 6.11 1675.41 3850.55 115070

3. EP (NPB) 2 1983 0.04 0.07 0.56 1.17 421.32 1784.43 0

4. FT (NPB) 61 443820 4.42 7.16 7.81 13.03 2771.97 10060.87 49871

5. IS (NPB) 0 806 0 0 0.33 0.82 330.51 1430.9 0

6. LU (NPB) 33 507444 8.43 14.63 11.92 21.13 2856.21 8894.1 41361

7. MG (NPB) 230 2372204 24.95 58.17 34.47 74.12 2788.71 13969.44 571691

8. SP (NPB) 35 672958 8.31 14.36 11.66 20.43 2828.68 16217.09 38102

9. quake (SPEC) 35 437217 6.74 10.44 8.92 14.29 3220.78 13348.05 16727

10. art-m (SPEC) 5 88347 1.03 2.01 2.33 4.56 610.15 3030.15 134

11. amgmk (Sequoia) 56 239940 3.2 6.54 6.15 11.36 2715.4 7760.35 52486

12. clomp (Sequoia) 63 397078 6.76 11.56 13.72 23.19 2779.42 14921.1 146511

13. stream (Sequoia) 45 51020 0.55 1.03 1.4 2.79 548.6 2154.01 36426

14. bellman-ford (IMS) 23 15038 0.3 0.49 0.86 1.62 488.84 2008.73 6051

15. bfs-dijkstra (IMS) 17 4695 0.13 0.29 0.73 1.49 480.23 1965.33 3237

16. byzantine (IMS) 19 7979 0.19 0.32 0.59 1.25 405.9 1768.1 4563

17. dominating-set (IMS) 75 186360 1.88 3.09 3.19 5.32 1255.84 4298.49 64687

18. kcommittee (IMS) 43 44272 0.56 1.01 1.57 2.93 535.33 2147.7 30767

19. leader-elect-dp (IMS) 5 2325 0.07 0.12 0.39 0.84 340.87 1407.41 282

20. leader-elect-hs (IMS) 11 9978 0.18 0.35 0.84 1.67 500.83 1977.11 2624

21. leader-elect-lcr (IMS) 6 1844 0.05 0.1 0.52 1.11 407.03 1698.05 402

22. mis (IMS) 7 6033 0.13 0.24 0.51 1.08 380.34 1650.04 540

23. mst (IMS) 53 217334 2 3.21 3.28 5.57 899.43 3184.65 48387

24. vertex-coloring (IMS) 13 13370 0.26 0.46 0.91 1.82 504.2 2017.47 1954

Fig. 24. Evaluation numbers for performing the BarrElim optimization passes on various benchmark
programs, in the context of RPINV mode of stabilization. These numbers serve as the baseline for Section 7.3.
Abbreviations: #Trig=number of stabilization triggers, #T-Func=number of transfer-function applications, and
Ch-Size=total size of the change-sequence across all stabilization triggers (as a sum of the number of nodes
and twice the number of edges in each trigger). STB-Time and Total Time refer to the IDFA-stabilization time,
and overall compilation time, respectively.Memory refers to the maximum resident set size of the compilation
process when running the BarrElim optimization passes. Note that Ch-Size is calculated through a special
run of the RPINV mode, where we force retention of the change-sequence, even though the mode does not
require it.

compared to RPINV, LZUPD re-processes a significantly small fraction of the nodes (1.18% and 0.25%,

respectively), over a reduced number of stabilization triggers (82.86% and 75.22%, respectively). In

contrast, for bfs-dijkstra, LZUPD attains the least (though still quite significant) speedups of 2.6× in

Nanda, and 3.22× in K2, as it results in reprocessing one of the highest fractions of nodes (9.03%),

along with a higher count of stabilization triggers (76.47%), as compared to the RPINV mode, across

all the benchmarks.

LZUPD vs. RPUPD. It is clear from Fig. 25 that though the RPUPDmode consistently performs better

than RPINV, and compared to LZUPD it performs either worse or similarly, across all the benchmarks,

for both the platforms. This is because, as shown in Fig. 26 and Fig. 27, LZUPD results in significantly

fewer stabilization triggers (geomean 36.52% lower) than the RPUPD mode, while also reprocessing

considerably fewer nodes (geomean 8.41% lower).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:39

(a) Nanda

(b) K2

Fig. 25. Speedup in IDFA stabilization-time under various modes of stabilization with respect to the RPINV
mode, when applying the client optimization passes of BarrElim. Higher is better.

LZUPD vs. LZINV.As shown in Fig. 25, we see that in the context of IDFA stabilization-time, LZUPD
performs better than LZINV for all the benchmarks (geomean 6.18× better for Nanda; geomean

6.51× better for K2). This observation can be attributed to the fact that the cost of invalidating

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:40 Nougrahiya and Nandivada

Fig. 26. Number of times IDFA stabilizationwas triggered under lazymodes of stabilizationwhen performing
the BarrElim optimization passes, normalized with respect to the number of triggers in case of RP-modes.
Lower is better.

Fig. 27. Total number of applications of transfer-functions across all stabilization triggers when performing
the BarrElim optimization passes, for various modes of stabilization normalized with respect to the number
of applications in case of the RPINV mode (set to 100). Lower is better.

and recomputing a program-abstraction (such as the results of any instantiation of HIDFA) is, in

general, higher than the cost of incrementally updating the program-abstraction. This is evident

from Fig. 27, which shows that the LZUPD mode reprocesses only a small fraction of the program

nodes reprocessed in the case of LZINV mode (geomean 91.19% fewer).

LZINV vs. RPINV. Across all the benchmarks, and both the platforms, we notice a performance

improvement with LZINV mode, as compared to the RPINV mode, with geomean speedup as 1.43×,
for Nanda, and 1.47×, for K2. The maximum speedup was observed in the case of stream (2.29× in

Nanda, and 2.94× for K2), consequent upon the fact that among the benchmarks shown in Fig. 25,

stream corresponds to the largest reduction in the number of stabilization triggers (see Fig. 26)

with the lazy modes of stabilization. In contrast, clomp and mst correspond to some of the lowest

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:41

reductions in number of stabilization triggers, thereby resulting in some of the lowest speedups

with the LZINV mode.

LZINV vs. RPUPD. From Fig. 25, note that the RPUPD mode consistently outperforms the LZINV
mode in the context of IDFA-stabilization time, across all the benchmarks, for both the platforms

(except for EP in K2, where the performance is the same). This trend can be explained as follows.

From Fig. 26, it is clear that the LZINV mode consistently results in fewer stabilization triggers than

the RPUPD mode. However, it is also expected that the incremental update of IDFA flow-maps in

UPD-modes will result in fewer applications of the transfer-functions per trigger, as compared

to the same in the case of INV-modes which involve invalidation and full recomputation of the

IDFA flow-maps. This is evident in Fig. 26, where we notice that RPUPD mode consistently applies

significantly fewer transfer-functions (geomean 90.38% fewer) as compared to the LZINV mode. As

a result, RPUPD mode outperforms the LZINV mode. For the case of EP on K2, where we observe

similar performance for both these modes, we believe that the performance gains expected due to

47.53% reduction in the number of transfer-function applications in case of RPUPD as compared to

the LZINV mode (which is also the least of such reductions across all the benchmarks), are negated

by the other overheads resulting from double the number of stabilization triggers in case of RPUPD
as compared to that in LZINV.

Summary. Overall, we found that the LZUPD mode leads to the maximum benefits in stabilization

time, across all the four modes of stabilization. Further, we also observed that if the UPD-mode

is unavailable for a program-abstraction due to the absence of its incremental-update algorithm,

the fully-automated stabilization provided by Homeostasis in the form of LZINV mode can still

provide good performance improvements over the manual stabilization attained using the RPINV
mode. These observations underline the performance benefits in stabilization time when using

Homeostasis. This may in turn improve the overall compilation speed, as discussed next.

(B) Total compilation time. In Fig. 24, columns 6 and 7 show the overall compilation time

incurred in the context of RPINV mode of stabilization, for Nanda and K2, respectively. These

numbers correspond to an end-to-end compilation that starts with parsing of the input program

file, followed by the application of various default simplification/normalization passes employed by

IMOP, and ends with the application of the BarrElim set of optimization passes until fixed-point,

before the final (optimized) program is written to the disk.

In Fig. 28, we demonstrate the impact of using the lazy modes of stabilization, as compared to

the RPINV mode of manual stabilization, in terms of speedup obtained in the total compilation time.

Both LZINV and LZUPD perform consistently better than the baseline across all the benchmarks,

with maximum and geomean speedups of: 5.58× and 1.25× for Nanda with LZINV; 5.06× and 1.23×
for K2 with LZINV; 8.95× and 2.36× for Nanda with LZUPD; and 11.32× and 2.21× for K2 with

LZUPD mode of stabilization. We have also observed that LZUPD is never slower than RPUPD mode

of stabilization – we skip the plot for RPUPD and the detailed analysis for brevity.

We observe that the speedups obtained in total compilation time using different modes of

stabilization, with respect to a baseline mode, depends on the following key factors: (i) fraction

of the total compilation time spent in performing the stabilization using the baseline mode (see

Fig. 24: columns 4 and 6 for Nanda; columns 5 and 7 for K2); (ii) overall speedup obtained in the

stabilization process (shown in Fig. 25); and (iii) changes in memory footprint and available heap

size for the VM across the compilation process, both of which may non-deterministically affect the

GC overheads. We now illustrate these observations by comparing the relative performances of

various modes of stabilization.

LZUPD vs. RPINV. In Fig. 28, we observe that LZUPD consistently outperforms RPINV, as expected.
The greatest speedups in total compilation time are obtained forMG (8.95× in Nanda, and 11.32× in

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:42 Nougrahiya and Nandivada

(a) Nanda

(b) K2

Fig. 28. Speedup in total compilation time under both the lazy modes of stabilization facilitated by
Homeostasis, with respect to the RPINV mode, when applying the BarrElim set of optimizations. Higher is
better.

K2), owing to the facts that MG has (i) one of the highest fractions of total compilation time spent

in stabilization (72.38% in Nanda; 78.48% in K2; see Fig. 24), and (ii) one of the highest speedups in

stabilization-time (17.33× in Nanda; 29.68× in K2), across all the benchmarks. In contrast, since EP
corresponds to the least fraction of total compilation time spent in stabilization (7.14% in Nanda;

5.98% in K2), across all the benchmarks, as well as (comparatively) only moderate speedup in

stabilization-time (8× in Nanda; 7× in K2), it obtains the least speedup in total compilation time

(1.10× in Nanda; 1.09× in K2).

LZINV vs. RPINV. Across all the benchmarks, and for both the platforms, LZINV results in better

total-compilation time than RPINV (geomean 2.36× in Nanda; 2.21× in K2). In Fig. 26, note that the

number of stabilization-triggers is reduced to zero in the case of SP, when using the lazy modes of

stabilization; this results in SP attaining the highest gains in total compilation time with LZINV
(5.58× in Nanda; 5.06× in K2), among all the benchmarks. In contrast, for similar reasons as in the

case of LZUPD, EP corresponds to the least speedup in total compilation time when using LZINV,
for both the platforms (1.04× in Nanda; 1.03× in K2).

LZUPD vs. LZINV. In Fig. 28, LZUPD consistently performs better than LZINV (except for SP, where
the performance difference is negligible), across both the platforms – maximum and geomean values

are 6.98× and 1.88× in Nanda, respectively; 8.98× and 1.79× in K2, respectively. We attribute this

observation to the fact that, as shown in Fig. 27, the number of applications of the transfer-functions

in the case of LZUPD is smaller than that with LZINV for all the benchmarks (except for SP, where
the difference is zero); note that the number of stabilization triggers remain the same between both

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:43

the modes. The maximum speedups in both the platforms are obtained for MG, consequent upon
the fact that MG corresponds to the largest drop in the number of stabilization-triggers (138.72×,
in Fig. 27) from LZINV to LZUPD, across all the benchmarks.

An interesting observation from our study was that across both the lazy modes of stabilization,

the actual benefits obtained in the total compilation time, with respect to the RPINV mode of

stabilization, were far higher than the speedups expected in the total compilation time (based

on the fraction of the total compilation time spent in the stabilization process, and the speedup

within the stabilization process). For instance, in the case of MG in K2, when using the RPINV
mode of stabilization (i) around 78% of the total compilation time was spent in performing the

IDFA-stabilization (as shown in Fig. 24), and (ii) this fraction of the time spent in IDFA-stabilization

process benefitted from the LZUPD mode with an approximate speedup of 30× (shown in Fig. 25)

over the RPINV mode. This should result in a speedup of 4.14× (= 1/(1 − 0.78) + (0.78/30)) in the

total compilation time. However, as shown in Fig. 28, the actual speedup observed inMG for K2

was 11.32×! We believe that this behaviour can be attributed to the latent benefits obtained in other

parts of the compilation (that is, outside the stabilization process itself), owing to a significant

reduction in the memory usage across most of the benchmarks, as discussed in part (C) of this

section.

Summary. In conclusion, the lazymodes of stabilization used inHomeostasismay result in significant

gains in the overall compilation time, as compared to the manual stabilization (RPINVmode). Further,

the UPD-mode consistently outperforms the INV-mode, between both the lazymodes of stabilization

facilitated by Homeostasis. These gains in lazy modes are on top of the benefits obtained in terms of

ease-of-use (see Section 7.2) due to the nearly-automated nature ofHomeostasis, requiring minimum

(in case of LZUPD) or zero (in case of LZINV) additional effort from the compiler developers.

(C) Memory consumption. In Fig. 24 (columns 8 and 9) we show the maximummemory footprint

(in MB), in terms of the maximum resident set size, while running the BarrElim optimization passes

in the context of RPINVmode, for Nanda and K2, respectively. The values shown are calculated with

the help of /usr/bin/time GNU utility (version : 1.7). While this tool is quite effective in drawing

a broad picture of the peak memory requirements of a process, there are two main limitations

to using this tool. First, the resident set size is not measured continuously, but rather at some

indeterminate intervals. This means that the tool might not calculate the actual peak memory

usage of the process. Second, the maximum resident set size does not include the size of pages that

have been swapped out, which may not accurately reflect the true memory requirements of the

process. In addition, the non-deterministic nature of the garbage collector (GC) implemented by

the Java Virtual Machine (JVM) can also affect the accuracy of these measurements. For example, a

process with higher memory demands may result in the triggering of a full GC, in which the JVM

is paused to clean up the garbage from all memory regions of the JVM heap. This can result in a

much smaller heap size compared to a process with lower memory demands that does not trigger a

full GC. Considering these sources of imprecision in such a measurement, we believe that very

small improvements or deteriorations (< 5%) should be ignored.

In Fig. 29, we illustrate the percentage savings in the memory footprint by LZINV, RPUPD, and
LZUPD modes, as compared to the RPINV mode, for both Nanda and K2. All these three modes of

stabilization perform better (or are more or less comparable), in terms of memory requirements,

than the RPINVmode, except for the case ofmst with LZINV in Nanda. The geomean improvements

in memory consumption for LZINV, RPUPD, and LZUPD modes, as compared to the RPINV mode, are

10.67%, 34.29%, and 36.35%, respectively, for Nanda; 10.69%, 34.25%, and 35.97%, respectively, for K2.

One key factor that determines the impact of various modes of stabilization on the percentage

reduction in memory footprint with respect to RPINV is the relative count of the number of times

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:44 Nougrahiya and Nandivada

(a) Nanda

(b) K2

Fig. 29. Percentage savings in memory footprint (in terms of maximum resident set size) under various
modes of self-stabilization, with respect to the RPINV mode, while running the client analysis. Higher is
better.

various transfer-functions were applied (see Fig. 27). As discussed above, both lazy and update

options minimize the number of times different transfer functions are applied during stabilization

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:45

Fig. 30. Size of the compressed change-set in terms of the program nodes and edges, averaged across
various stabilization triggers, when applying the set of client optimization passes from BarrElim. Lower is
better.

of the data-flow analyses. Consequently, LZUPD requires the least amount of memory (within the

margin of error), with maximum percentage savings over the RPINV mode – 81.78% for quake
in Nanda, and 85.8% for SP in K2. In SP, the lazy modes (LZINV and LZUPD) do not trigger any

stabilization of the data-flow analyses (i.e., zero transfer functions are applied during stabilization),

attributing to high savings in memory consumption – 78.41% and 78.45%, respectively, for Nanda;

85.96% and 85.80%, respectively, for K2. In contrast, since for both the UPD-modes (RPUPD and

LZUPD), EP corresponds to the least reduction in the number of transfer-function applications as

compared to the RPINV mode (see Fig. 27), it witnesses some of the least savings in its memory

footprint with the UPD-modes. For the case of mst with LZINV mode, we observe an anomalous

behaviour, where the memory footprint reduces by 5.09% in K2, but increases by 21.05% in Nanda.

Since all the steps involved in compilation remain the same across both the platforms, we believe

that such behaviour is due to the differences in the underlying architectures and operating systems,

as well as in the JVMs and the GCs.

Summary. Overall, we see that the proposed lazy modes of stabilization lead to significant memory

savings compared to the naive RPINV scheme. This in turn can improve the memory traffic and

overall gains in performance.

7.4 Impact of Compression Optimization
In this section, we empirically study the memory requirements of the change-set, which represents

the program changes that need to be maintained in order to allow UPD-modes of stabilization at a

later stage during compilation. Further, we also assess the efficacy of compression optimization

employed by Homeostasis in order to keep the change-set compact.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:46 Nougrahiya and Nandivada

Fig. 31. Percentage reduction in the size of the uncompressed change-set with the help of compression
optimization, when applying the client optimization passes from BarrElim. Higher is better.

Memory requirements of maintaining change-set. In Fig. 22, columns 3 and 4 show the

size of each benchmark program in terms of the number of program nodes and program edges,

respectively. In order to obtain the memory requirements of maintaining the change-set throughout

the compilation process, we calculate its size in terms of two parameters at each stabilization-

trigger: (i) fraction of the program nodes that are present in the change-set, and (ii) fraction of

the program edges that are present in the change-set. Note that the size of the program itself may

differ across each stabilization trigger. In Fig. 30, we show the average of these two parameters

taken individually across all the stabilization triggers that occurred during the compilation. We

observe that the memory requirements for maintaining the change-set are negligible in terms of the

program nodes and edges, for real-world optimizations – maximum and geomean values for these

fractions are 0.36% and 0.09%, respectively, for program nodes, and 1.26% and 0.31%, respectively,

for program edges.

Impact of compression on change-set. In order to study the impact of compression optimization

employed by Homeostasis in order to keep the change-set compact, we ran a set of experiments

where we disabled the compression optimization altogether. For the ease of comparison, we consider

the size of a change-set to be equal to the summation of (i) its number of program nodes, and (ii)

twice the number of its program edges. In Fig. 24, column 10 shows the sum of the size of the

uncompressed change-set across all the stabilization triggers, when compilation was performed

with compression-optimization disabled.

Recall that Homeostasis allows the compression routine to be invoked at any point of compilation,

any number of times. For the purpose of our evaluation, we invoked the compression routine at the

end of each stabilization trigger (a natural choice for performing compression, as the change-index

gets updated there). The total number of stabilization triggers, and hence, the total number of

invocations of the compression routine, for each benchmark program when applying the BarrElim
set of optimization passes is shown in Column 2 of Fig. 24. In Fig. 31, we show the percentage

reduction in the sum of the total size of the change-set across all the stabilization triggers, when we

ran the experiments with compression-optimization enabled, as compared to the runs where the

optimization was disabled. We observe that the overall reduction in memory requirements with

the help of compression-optimization are significant – maximum and geomean values are 99.7%

and 93.18%, respectively. The overall impact of the compression-optimization on the change-set

depends on the exact transformations being performed by the client optimization pass on the

program under compilation. For the case of art-m, we observe that the compression-optimization

yielded the least benefits (39.55%). This observation is attributed to the fact that the absolute size of

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:47

the uncompressed change-set itself is quite small to begin with (only 134, which is the least among

all the programs).

Impact of compression on compilation time. We also studied the impact of compression

optimization on the compilation time, and found no observable difference resulting from the

optimization.

Summary. In conclusion, we observe that (i) the compression-optimization is quite efficient at

keeping the change-set compact, and as a result, (ii) the memory requirements of the change-set

are negligible in terms of the program size under compilation, thereby making the UPD-modes

feasible for even large programs which may undergo aggressive optimizations.

7.5 Empirical Correctness
In order to empirically validate the correctness of our design/implementation of HIDFA and its

six instantiations (see Section 5), we have verified the generated flow-facts under each mode of

stabilization, in the context of various optimization passes provided by IMOP [Nougrahiya and

Nandivada 2019]. We found that the final flow-facts across all the stabilization-modes match.

Further, to empirically validate correct stabilization in the context of the BarrElim optimization

passes, we have also verified that for each benchmark the generated optimized code (i) does not

differ across the modes of self-stabilization, and (ii) produces the same execution output as that of

the unoptimized code.

Overall evaluation summary. Our evaluation shows that (i) Homeostasis makes it easy to write

optimizations and program analysis passes, (ii) the lazy stabilization choices lead to faster compila-

tion times with lesser memory requirements, (iii) the proposed compression optimization employed

by Homeostasis is effective and leads to negligible space requirements for keeping track of the

program-changes, and (iv) our implementation leads to correct analysis and optimized code.

7.6 Threats to Validity
In this section, we discuss various external and internal threats to the validity of our evaluation

results, and how we mitigate the same.

Threats to external validity. (1) The evaluation results obtained for any one client-optimization

pass may not depict the nature of results for other optimization passes. To mitigate the impact of

this threat to validity, we have performed the evaluation with a large set of optimization passes

– involving nine diverse optimization passes and numerous program-abstractions – which we

collectively term as BarrElim (see Section 6.3). (2) The evaluation results on selected benchmark

programs may not be generalizable to other kinds of input programs. To mitigate this issue, we have

performed our evaluation on a set of 24 real-world programs from four popular benchmark suites

(see Section 7.1). Some of these are among the largest open-source standard benchmark programs

available in OpenMPC. For better coverage, the selected set also contains somemedium-/small-sized

standard programs. (3) The performance results obtained on one compiler framework may not be

applicable to other compiler frameworks. In Section 7.3, we notice a strong correlation between

the performance of a stabilization-mode (in terms of compilation time and memory requirement)

and the number of times transfer-functions are applied when using that mode. Usage of a different

underlying compiler framework is not expected to have any considerable impact on the number

of transfer-function applications: this number depends on the incremental algorithm, the current

program, and the change-set. Consequently, we expect similar relative-performance behaviour

across various compilers.

Threats to internal validity. (4) For any program-abstraction, the set of relevant change-points

in an optimization pass may be an over-approximation of the program-points where an expert

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:48 Nougrahiya and Nandivada

compiler writer would manually trigger stabilization (with no redundant stabilization operations).

Thus, the RPINV stabilization-mode may not exactly represent an expert-written stabilization

(see Section 5.4). Such a threat-to-validity is unavoidable, as it would require manual analysis of

large unfamiliar code of the selected set of client optimization passes as well as the numerous

program-abstractions that these passes may potentially impact – these could span many tens of

thousands of lines of code, making it nearly infeasible for independent experts to carry out such an

exercise, owing to their busy schedules. To investigate the impact of this threat-to-validity on our

evaluation, we manually compared the set of relevant change-points obtained via profiling, and

the set of change-points where we (the implementers of BarrElim passes) would have inserted

stabilization triggers for manual stabilization. We found that these two sets matched. We have

made the complete codebase for our client optimization passes and related program-abstractions as

open-source [Nougrahiya and Nandivada 2021] for the purpose of cross-checking and reproducing

the experiments. (5) The measurement of memory consumption can be unreliable due to the

non-deterministic behaviour of the garbage collector (GC) of Java VM. In order to mitigate the

impact of GC, we report the numbers by taking a geometric mean over 30 runs of each experiment,

taking inspiration from the findings of Georges et al. [2007].

8 RELATEDWORK
We divide the related work into two different subsections: one on the efficient recompilation of

programs under development, and another on incremental analyses.

8.1 Efficient Recompilation
When a program undergoes edits across its multiple versions, or during the process of its develop-

ment in IDEs, the full recompilation of the modified program including re-computation of all the

analyses and application of optimizations from scratch can be cost-prohibitive. Various approaches

have been given to reuse different program-abstractions (including object code, and IR obtained

before/after applying optimizations) to minimize the cost of recompilation. Smith et al. [1990] have

developed mechanisms to perform incremental update of dependence information during interac-

tive parallelization of Fortran programs. During the recompilation of programs, Pollock and Soffa

[1992] incrementally incorporate the changes into globally optimized code in an attempt to reduce

redundant analysis that is performed for the purpose of optimizations. For enabling incremental

symbolic executions, Person et al. [2011] have provided methods to detect and characterize the

effects of program changes, using static analyses. Incrementalization of static analyses that are

expressed using logic programming languages, such as Prolog and Datalog, is facilitated by Eichberg

et al. [2007], Szabó et al. [2018], Szabó et al. [2021], and Garcia-Contreras et al. [2018], among

others. Various approaches, such as those by Szabó et al. [2018, 2016], exist to enable incremental

update of static analyses in response to program edits in the context of Integrated Development

Environments (IDE)s. Eichberg and Bockisch [2005] provide a constraint-solving based approach

for resolving dependencies (explicitly specified) among the analyses, in Eclipse. Kloppenburg [2009]

discusses the notion of incremental update for static analyses, in the context of IDEs. To the best

of our knowledge, there are no generic object-oriented compiler designs or implementations that

address the challenges related to stabilization requirements, and guarantee self-stabilization during

the process of compilation, especially in the context of parallel programs.

8.2 Incremental Analyses
There is a vast literature on the topic of incremental update of program-abstractions of various

kinds of program analyses ([Sathyanathan et al. 2017], [Nichols et al. 2019], [Yur et al. 1997], [Liu

et al. 2019], [Chen et al. 2015], [Lu and Xue 2019], [Pollock and Soffa 1989], [Marlowe and Ryder

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:49

1989; Ryder et al. 1988], [Carroll and Ryder 1987, 1988], [Sreedhar et al. 1996], [Liu and Huang

2022] [Ryder 1983], [Arzt and Bodden 2014]). Though these incremental approaches provide

algorithms that take a set of program changes as their argument, and stabilize the stale program-

abstraction accordingly, they only address Q
T

3
out of the six key questions raised in Fig. 2. Further,

these approaches do not provide any mechanism for efficiently maintaining the program changes

either. Homeostasis closes this gap by providing automated techniques to address the remaining

five key questions. Thus, different incremental analyses can be used along with Homeostasis. Under

Homeostasis, such algorithms can be directly implemented in the handleUpdate method. The pass

writers need not specify where to invoke the incremental stabilization and with what arguments –

these tasks are conveniently automated by Homeostasis, for all the existing and future optimizations.

9 CONCLUSION
In this paper, we have presented a novel, efficient, and reliable compiler-design framework called

Homeostasis, for enabling generic self-stabilization of the relevant program-abstractions in re-

sponse to every possible transformation of the program, in the context of object-oriented com-

pilers. Homeostasis decouples the program analysis and optimization passes in a compiler: using

Homeostasis, neither the optimization writers need to write any code to stabilize the (existing or

future) program-abstractions, nor do the writers of a program analysis need to know about the set

of optimization passes in the compiler in order to ensure correct stabilization of the corresponding

program-abstraction. We added Homeostasis to the IMOP compiler framework for OpenMP C pro-

grams. To illustrate the benefits of Homeostasis, we implemented a generic inter-thread data-flow

analysis pass HIDFA, and a set of six standard IDFAs as its instantiations. We also implemented a

set of optimization passes, collectively termed as BarrElim, which includes a set of four standard

optimizations, and is used to remove redundant barriers in OpenMP programs; we did not have to

add any stabilization-specific code for any of the optimization passes of BarrElim. Our evaluation
of these passes on a set of real-world benchmarks has given us encouraging results concerning the

performance and feasibility of using Homeostasis. While Homeostasis has been discussed using a

Java-based compiler, we believe that the design of Homeostasis is generic enough to be applicable

to other object-oriented compilers (including JIT compilers), for serial as well as parallel programs.

ACKNOWLEDGMENTS
We express our gratitude to the ACM TOPLAS editor Jan Vitek, associate editor Michael G. Burke,

and the anonymous reviewers for their insightful suggestions, which greatly contributed to enhanc-

ing the quality of this paper. Special appreciation goes to the members of PACE Lab (IIT Madras), for

their valuable discussions related to this work. We are especially grateful to Rupesh Nasre, Manas

Thakur, and Anju M A, for their thorough reviews of various drafts of this paper. Furthermore, we

would also like to thank the anonymous reviewers of previous submissions of this paper, for their

constructive feedback, which has helped refine this research. This work is partially supported by

SERB CRG grant (sanction number CRG/2022/006971), and NSM research grant (sanction number

MeitY/R&D/HPC/2(1)/2014).

REFERENCES
Raghesh Aloor and V. Krishna Nandivada. 2015. Unique Worker Model for OpenMP. In Proceedings of the 29th ACM on

International Conference on Supercomputing (ICS ’15). ACM, New York, NY, USA, 47–56.

Lars Ole Andersen. 1994. Program Analysis and Specialization for the C Programming Language. Ph.D. Dissertation. DIKU,

University of Copenhagen.

Steven Arzt and Eric Bodden. 2014. Reviser: Efficiently Updating IDE-/IFDS-Based Data-Flow Analyses in Response to

Incremental Program Changes. In Proceedings of the 36th International Conference on Software Engineering (ICSE 2014).

Association for Computing Machinery, New York, NY, USA, 288–298. https://doi.org/10.1145/2568225.2568243

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/2568225.2568243

1:50 Nougrahiya and Nandivada

Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley B. Jones, and Bodo Parady. 2001. SPEComp: A New

Benchmark Suite for Measuring Parallel Computer Performance. In Workshop on OpenMP Applications and Tools, Rudolf

Eigenmann and Michael J. Voss (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–10.

Rajkishore Barik, Jisheng Zhao, and Vivek Sarkar. 2013. Interprocedural Strength Reduction of Critical Sections in Explicitly-

parallel Programs. In Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques,

Edinburgh, United Kingdom, September 7-11, 2013. IEEE Computer Society, 29–40.

William Blume, Rudolf Eigenmann, Keith Faigin, John Grout, Jay Hoeflinger, David Padua, Paul Petersen, William Pottenger,

Lawrence Rauchwerger, Peng Tu, and Stephen Weatherford. 1995. Polaris: Improving the effectiveness of parallelizing

compilers. In Languages and Compilers for Parallel Computing, Keshav Pingali, Utpal Banerjee, David Gelernter, Alex

Nicolau, and David Padua (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 141–154.

Neil V. Brewster and Tarek S. Abdelrahman. 2001. A Compiler Infrastructure for High-Performance Java. InHigh-Performance

Computing and Networking, Bob Hertzberger, Alfons Hoekstra, and Roy Williams (Eds.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 675–684.

Alan Carle and Lori Pollock. 1989. Modular Specification of Incremental Program Transformation Systems. In Proceedings

of the 11th International Conference on Software Engineering (ICSE ’89). Association for Computing Machinery, New York,

NY, USA, 178–187. https://doi.org/10.1145/74587.74612

Martin D. Carroll and Barbara G Ryder. 1987. An Incremental Algorithm for Software Analysis. In Proceedings of the

Second ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Environments (SDE

2). Association for Computing Machinery, New York, NY, USA, 171–179. https://doi.org/10.1145/24208.24228

Martin D. Carroll and Barbara G Ryder. 1988. Incremental Data Flow Analysis via Dominator and Attribute Update. In

Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’88). Association

for Computing Machinery, New York, NY, USA, 274–284. https://doi.org/10.1145/73560.73584

Steven Carroll and Constantine Polychronopoulos. 2003. A Framework for Incremental Extensible Compiler Construction. In

Proceedings of the 17th Annual International Conference on Supercomputing (ICS’03). Association for Computing Machinery,

New York, NY, USA, 53–62. https://doi.org/10.1145/782814.782824

Yuting Chen, Qiuwei Shi, and Weikai Miao. 2015. Incremental Points-to Analysis for Java via Edit Propagation. In Structured

Object-Oriented Formal Language and Method, Shaoying Liu and Zhenhua Duan (Eds.). Springer International Publishing,

Cham, 164–178.

Michael Eichberg and Christoph Bockisch. 2005. Magellan. Retrieved August 11, 2022 from http://www.st.informatik.tu-

darmstadt.de/Magellan

Michael Eichberg, Matthias Kahl, Diptikalyan Saha, Mira Mezini, and Klaus Ostermann. 2007. Automatic Incrementalization

of Prolog Based Static Analyses. In Proceedings of the 9th International Conference on Practical Aspects of Declarative

Languages (PADL’07). Springer-Verlag, Berlin, Heidelberg, 109–123. https://doi.org/10.1007/978-3-540-69611-7_7

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley Longman Publishing Co., Inc., USA.

Isabel Garcia-Contreras, José F. Morales, and Manuel V. Hermenegildo. 2018. An Approach to Incremental and Modular

Context-sensitive Analysis of Logic Programs. CoRR abs/1804.01839 (2018). http://arxiv.org/abs/1804.01839

Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically Rigorous Java Performance Evaluation. SIGPLAN

Not. 42, 10 (Oct. 2007), 57–76. https://doi.org/10.1145/1297105.1297033

Google. 2001. Chrome V8. Retrieved August 11, 2022 from https://github.com/v8/v8

Manish Gupta and Edith Schonberg. 1996. Static Analysis to Reduce Synchronization Costs in Data-Parallel Programs. In

Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’96). Association

for Computing Machinery, New York, NY, USA, 322–332. https://doi.org/10.1145/237721.237799

Suyash Gupta and V. Krishna Nandivada. 2015. IMSuite: A Benchmark Suite for Simulating Distributed Algorithms. J.

Parallel and Distrib. Comput. 75 (2015), 1–19. https://doi.org/10.1016/j.jpdc.2014.10.010

Suyash Gupta, Rahul Shrivastava, and V. Krishna Nandivada. 2017. Optimizing Recursive Task Parallel Programs. In

Proceedings of the International Conference on Supercomputing, ICS 2017, Chicago, IL, USA, June 14-16, 2017, William D.

Gropp, Pete Beckman, Zhiyuan Li, and Francisco J. Cazorla (Eds.). ACM, 11:1–11:11.

IBM. 2017. Eclipse OpenJ9. Retrieved August 11, 2022 from https://github.com/eclipse/openj9

Sven Kloppenburg. 2009. Incrementalization of Analyses for Next Generation IDEs. Ph.D. Dissertation. Technische Universität,

Darmstadt. http://tuprints.ulb.tu-darmstadt.de/1960/

Gnanambikai Krishnakumar, Kommuru Alekhya Reddy, and Chester Rebeiro. 2019. ALEXIA: A Processor with Lightweight

Extensions for Memory Safety. ACM Trans. Embed. Comput. Syst. 18, 6, Article Article 122 (Nov. 2019), 27 pages.

https://doi.org/10.1145/3362064

Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for Lifelong Program Analysis & Transformation.

In Proceedings of the International Symposium on Code Generation and Optimization (CGO ’04). IEEE Computer Society,

Washington, DC, USA.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/74587.74612
https://doi.org/10.1145/24208.24228
https://doi.org/10.1145/73560.73584
https://doi.org/10.1145/782814.782824
http://www.st.informatik.tu-darmstadt.de/Magellan
http://www.st.informatik.tu-darmstadt.de/Magellan
https://doi.org/10.1007/978-3-540-69611-7_7
http://arxiv.org/abs/1804.01839
https://doi.org/10.1145/1297105.1297033
https://github.com/v8/v8
https://doi.org/10.1145/237721.237799
https://doi.org/10.1016/j.jpdc.2014.10.010
https://github.com/eclipse/openj9
http://tuprints.ulb.tu-darmstadt.de/1960/
https://doi.org/10.1145/3362064

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:51

Bozhen Liu and Jeff Huang. 2022. SHARP: Fast Incremental Context-Sensitive Pointer Analysis for Java. Proc. ACM Program.

Lang. 6, OOPSLA1, Article 88 (Apr 2022), 28 pages. https://doi.org/10.1145/3527332

Bozhen Liu, Jeff Huang, and Lawrence Rauchwerger. 2019. Rethinking Incremental and Parallel Pointer Analysis. ACM

Trans. Program. Lang. Syst. 41, 1, Article 6 (March 2019), 31 pages. https://doi.org/10.1145/3293606

LLVM-Developer-Community. 2019a. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/8299fd9dee7df7c5f92ab2572aad04ce2fbbf83e

LLVM-Developer-Community. 2019b. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/d2904ccf88e8ed487647feb90cfbf331bd888509

LLVM-Developer-Community. 2019c. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/a95d95d3922e1a24d8b9affdd570c1d8fca00129

LLVM-Developer-Community. 2020a. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/fa8c2ae76f7e4f498d29e2716233bd29025e8827

LLVM-Developer-Community. 2020b. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/de92dc2850c17259090ccf644b2f2375ab8e1664

LLVM-Developer-Community. 2020c. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/e1133179587dd895962a2fe4d6eb0cb1e63b5ee2

LLVM-Developer-Community. 2020d. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/e2fc6a31d347dc96c2dec6acb72045150f525630

LLVM-Developer-Community. 2020e. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/1ccfb52a6174816e450074f65e5f0929a9f046a5

LLVM-Developer-Community. 2020f. LLVMGitHub Repository. RetrievedAugust 11, 2022 fromhttps://github.com/llvm/llvm-

project/commit/e6cf796bab7e02d2b8ac7fd495f14f5e21494270

LLVM-Developer-Community. 2020g. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/edccc35e8fa2c546e0ef1c8efde56e6b12e3c175

LLVM-Developer-Community. 2020h. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/d6b05fccb709eb38b5b4b21901cb63825faee83e

LLVM-Developer-Community. 2020i. LLVMGitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/llvm-

project/commit/0d90d2457c3b94760df4848941c0e7b93d07b1a2

LLVM-Developer-Community. 2021a. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/ddc4b56eef9fec990915470069a29e70bbde3711

LLVM-Developer-Community. 2021b. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/7c8b8063b66c7b936d41a0c4069c506669e13115

LLVM-Developer-Community. 2021c. LLVM GitHub Repository. Retrieved August 11, 2022 from https://github.com/llvm/

llvm-project/commit/2461cdb41724298591133c811df82b0064adfa6b

Jingbo Lu and Jingling Xue. 2019. Precision-Preserving yet Fast Object-Sensitive Pointer Analysis with Partial Context

Sensitivity. Proc. ACM Program. Lang. 3, OOPSLA, Article 148 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360574

Thomas J. Marlowe and Barbara G. Ryder. 1989. An Efficient Hybrid Algorithm for Incremental Data Flow Analysis. In

Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’90). Association

for Computing Machinery, New York, NY, USA, 184–196. https://doi.org/10.1145/96709.96728

Steven S. Muchnick. 1998. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA.

V. Krishna Nandivada, Jun Shirako, Jisheng Zhao, and Vivek Sarkar. 2013. A Transformation Framework for Optimizing

Task-Parallel Programs. ACM Trans. Program. Lang. Syst. 35, 1, Article Article 3 (April 2013), 48 pages. https://doi.org/

10.1145/2450136.2450138

Lawton Nichols, Mehmet Emre, and Ben Hardekopf. 2019. Fixpoint Reuse for Incremental JavaScript Analysis. In Proceedings

of the 8th ACM SIGPLAN International Workshop on State Of the Art in Program Analysis (SOAP 2019). Association for

Computing Machinery, New York, NY, USA, 2–7. https://doi.org/10.1145/3315568.3329964

Emma Nilsson-Nyman, Görel Hedin, Eva Magnusson, and Torbjörn Ekman. 2009. Declarative Intraprocedural Flow Analysis

of Java Source Code. Electronic Notes in Theoretical Computer Science 238, 5 (2009), 155–171. Proceedings of the 8th

Workshop on Language Descriptions, Tools and Applications (LDTA 2008).

Aman Nougrahiya and V. Krishna Nandivada. 2019. IMOP : IIT Madras OpenMP compiler framework. Retrieved August 11,

2022 from https://github.com/amannougrahiya/imop-compiler

Aman Nougrahiya and V. Krishna Nandivada. 2021. Implementation of Homeostasis in the IMOP compiler framework.

Retrieved August 11, 2022 from https://github.com/anonymousoopsla21/homeostasis

Aman Nougrahiya and V. Krishna Nandivada. 2023. List of Mainstream and Experimental Compiler Frameworks. https:

//www.cse.iitm.ac.in/~amannoug/compiler-listing.pdf

Oracle. 1999. HotSpot. Retrieved August 11, 2022 from https://github.com/openjdk-mirror/jdk7u-hotspot

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3527332
https://doi.org/10.1145/3293606
https://github.com/llvm/llvm-project/commit/8299fd9dee7df7c5f92ab2572aad04ce2fbbf83e
https://github.com/llvm/llvm-project/commit/8299fd9dee7df7c5f92ab2572aad04ce2fbbf83e
https://github.com/llvm/llvm-project/commit/d2904ccf88e8ed487647feb90cfbf331bd888509
https://github.com/llvm/llvm-project/commit/d2904ccf88e8ed487647feb90cfbf331bd888509
https://github.com/llvm/llvm-project/commit/a95d95d3922e1a24d8b9affdd570c1d8fca00129
https://github.com/llvm/llvm-project/commit/a95d95d3922e1a24d8b9affdd570c1d8fca00129
https://github.com/llvm/llvm-project/commit/fa8c2ae76f7e4f498d29e2716233bd29025e8827
https://github.com/llvm/llvm-project/commit/fa8c2ae76f7e4f498d29e2716233bd29025e8827
https://github.com/llvm/llvm-project/commit/de92dc2850c17259090ccf644b2f2375ab8e1664
https://github.com/llvm/llvm-project/commit/de92dc2850c17259090ccf644b2f2375ab8e1664
https://github.com/llvm/llvm-project/commit/e1133179587dd895962a2fe4d6eb0cb1e63b5ee2
https://github.com/llvm/llvm-project/commit/e1133179587dd895962a2fe4d6eb0cb1e63b5ee2
https://github.com/llvm/llvm-project/commit/e2fc6a31d347dc96c2dec6acb72045150f525630
https://github.com/llvm/llvm-project/commit/e2fc6a31d347dc96c2dec6acb72045150f525630
https://github.com/llvm/llvm-project/commit/1ccfb52a6174816e450074f65e5f0929a9f046a5
https://github.com/llvm/llvm-project/commit/1ccfb52a6174816e450074f65e5f0929a9f046a5
https://github.com/llvm/llvm-project/commit/e6cf796bab7e02d2b8ac7fd495f14f5e21494270
https://github.com/llvm/llvm-project/commit/e6cf796bab7e02d2b8ac7fd495f14f5e21494270
https://github.com/llvm/llvm-project/commit/edccc35e8fa2c546e0ef1c8efde56e6b12e3c175
https://github.com/llvm/llvm-project/commit/edccc35e8fa2c546e0ef1c8efde56e6b12e3c175
https://github.com/llvm/llvm-project/commit/d6b05fccb709eb38b5b4b21901cb63825faee83e
https://github.com/llvm/llvm-project/commit/d6b05fccb709eb38b5b4b21901cb63825faee83e
https://github.com/llvm/llvm-project/commit/0d90d2457c3b94760df4848941c0e7b93d07b1a2
https://github.com/llvm/llvm-project/commit/0d90d2457c3b94760df4848941c0e7b93d07b1a2
https://github.com/llvm/llvm-project/commit/ddc4b56eef9fec990915470069a29e70bbde3711
https://github.com/llvm/llvm-project/commit/ddc4b56eef9fec990915470069a29e70bbde3711
https://github.com/llvm/llvm-project/commit/7c8b8063b66c7b936d41a0c4069c506669e13115
https://github.com/llvm/llvm-project/commit/7c8b8063b66c7b936d41a0c4069c506669e13115
https://github.com/llvm/llvm-project/commit/2461cdb41724298591133c811df82b0064adfa6b
https://github.com/llvm/llvm-project/commit/2461cdb41724298591133c811df82b0064adfa6b
https://doi.org/10.1145/3360574
https://doi.org/10.1145/96709.96728
https://doi.org/10.1145/2450136.2450138
https://doi.org/10.1145/2450136.2450138
https://doi.org/10.1145/3315568.3329964
https://github.com/amannougrahiya/imop-compiler
https://github.com/anonymousoopsla21/homeostasis
https://www.cse.iitm.ac.in/~amannoug/compiler-listing.pdf
https://www.cse.iitm.ac.in/~amannoug/compiler-listing.pdf
https://github.com/openjdk-mirror/jdk7u-hotspot

1:52 Nougrahiya and Nandivada

Suzette Person, Guowei Yang, Neha Rungta, and Sarfraz Khurshid. 2011. Directed Incremental Symbolic Execution. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’11).

Association for Computing Machinery, New York, NY, USA, 504–515. https://doi.org/10.1145/1993498.1993558

Lori L. Pollock and Mary Lou Soffa. 1989. An Incremental Version of Iterative Data Flow Analysis. IEEE Transactions on

Software Engineering 15, 12 (1989), 1537–1549.

Lori L. Pollock and Mary Lou Soffa. 1992. Incremental Global Reoptimization of Programs. ACM Trans. Program. Lang. Syst.

14, 2 (April 1992), 173–200. https://doi.org/10.1145/128861.128865

Daniel Quinlan, Chunhua Liao, Thomas Panas, Robb Matzke, Markus Schordan, Rich Vuduc, and Qing Yi. 2013. ROSE User

Manual: A Tool for Building Source-to-Source Translators. Technical Report. Lawrence Livermore National Laboratory.

Thomas Reps, Tim Teitelbaum, and Alan Demers. 1983. Incremental Context-Dependent Analysis for Language-Based

Editors. ACM Trans. Program. Lang. Syst. 5, 3 (July 1983), 449–477. https://doi.org/10.1145/2166.357218

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, andWilliam Lorensen. 1991. Object-Oriented Modeling

and Design. Prentice-Hall, Inc., USA.

Barbara G. Ryder. 1983. Incremental Data Flow Analysis. In Proceedings of the 10th ACM SIGACT-SIGPLAN Symposium on

Principles of Programming Languages (POPL’83). Association for Computing Machinery, New York, NY, USA, 167–176.

https://doi.org/10.1145/567067.567084

Barbara G. Ryder, T.J. Marlowe, and M.C. Paull. 1988. Conditions for Incremental Iteration: Examples and Counterexamples.

Science of Computer Programming 11, 1 (1988), 1–15.

Patrick W. Sathyanathan, Wenlei He, and Ten H. Tzen. 2017. Incremental Whole Program Optimization and Compilation. In

Proceedings of the 2017 International Symposium on Code Generation and Optimization (CGO ’17). IEEE Press, 221–232.

Seager, M. 2008. The ASC Sequoia Programming Model. (8 2008). https://doi.org/10.2172/945684

Kevin Smith, Bill Appelbe, and Kurt Stirewalt. 1990. Incremental Dependence Analysis for Interactive Parallelization. In

Proceedings of the 4th International Conference on Supercomputing (ICS ’90). Association for Computing Machinery, New

York, NY, USA, 330–341. https://doi.org/10.1145/77726.255173

Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. 1996. A New Framework for Exhaustive and Incremental

Data Flow Analysis Using DJ Graphs. In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language

Design and Implementation (PLDI ’96). Association for Computing Machinery, New York, NY, USA, 278–290. https:

//doi.org/10.1145/231379.231434

Richard M. Stallman and GCC-Developer-Community. 2009. Using The GNU Compiler Collection: A GNU Manual For GCC

Version 4.3.3. CreateSpace, Paramount, CA.

Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing Lattice-Based Program

Analyses in Datalog. Proc. ACM Program. Lang. 2, OOPSLA, Article Article 139 (Oct. 2018), 29 pages. https://doi.org/10.

1145/3276509

Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. 2021. Incremental Whole-Program Analysis in Datalog with Lattices.

In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation

(PLDI 2021). Association for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/10.1145/3453483.3454026

Tamás Szabó, Sebastian Erdweg, and Markus Voelter. 2016. IncA: A DSL for the Definition of Incremental Program Analyses.

In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering (ASE 2016). Association

for Computing Machinery, New York, NY, USA, 320–331. https://doi.org/10.1145/2970276.2970298

Chau-Wen Tseng. 1995. Compiler Optimizations for Eliminating Barrier Synchronization. In Proceedings of the Fifth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP ’95). Association for Computing

Machinery, New York, NY, USA, 144–155. https://doi.org/10.1145/209936.209952

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 2010. Soot: A Java

Bytecode Optimization Framework. In CASCON First Decade High Impact Papers (CASCON ’10). IBM Corp., USA, 214–224.

https://doi.org/10.1145/1925805.1925818

Rob F Van der Wijngaart and Parkson Wong. 2002. NAS Parallel Benchmarks Version 3.0. Technical Report. NAS technical

report, NAS-02-007.

Jyothi Krishna Viswakaran Sreelatha and Shankar Balachandran. 2016. Compiler Enhanced Scheduling for OpenMP for

Heterogeneous Multiprocessors. InWorkshop on Energy Efficiency with Heterogeneous Computing (EEHCO ’16). ACM,

Prague, Czech Republic.

Jyothi Krishna Viswakaran Sreelatha, Shankar Balachandran, and Rupesh Nasre. 2018. CHOAMP: Cost Based Hardware

Optimization for Asymmetric Multicore Processors. IEEE Trans. Multi-Scale Computing Systems 4, 2 (2018), 163–176.

Jyothi Krishna Viswakaran Sreelatha and Rupesh Nasre. 2018. Optimizing Graph Algorithms in Asymmetric Multicore

Processors. IEEE Trans. on CAD of Integrated Circuits and Systems 37, 11 (2018), 2673–2684.

Jyh-Shiarn Yur, Barbara G. Ryder, William A. Landi, and Phil Stocks. 1997. Incremental Analysis of Side Effects for C

Software System. In Proceedings of the 19th International Conference on Software Engineering (ICSE ’97). Association for

Computing Machinery, New York, NY, USA, 422–432. https://doi.org/10.1145/253228.253369

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/1993498.1993558
https://doi.org/10.1145/128861.128865
https://doi.org/10.1145/2166.357218
https://doi.org/10.1145/567067.567084
https://doi.org/10.2172/945684
https://doi.org/10.1145/77726.255173
https://doi.org/10.1145/231379.231434
https://doi.org/10.1145/231379.231434
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3276509
https://doi.org/10.1145/3453483.3454026
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/209936.209952
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/253228.253369

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:53

1 2 3 4 5 6 7

Benchmark #Trig #T-Func

STB-Time (s) Total Time (s)

Nanda K2 Nanda K2

1. BT (NPB) 77 842396 12.3 22.56 18.92 34.45

2. CG (NPB) 226 601627 4.89 8.16 6.76 11.2

3. EP (NPB) 4 3304 0.07 0.15 0.6 1.28

4. FT (NPB) 153 1108996 9.54 16.8 14.98 26.28

5. IS (NPB) 0 806 0 0 0.33 0.8

6. LU (NPB) 139 1998450 29.65 58 35.07 67.68

7. MG (NPB) 540 5097722 52.46 129.09 70.44 158.95

8. SP (NPB) 122 2252994 24.86 46.52 30.18 55.67

9. quake (SPEC) 91 1115729 15.11 25.98 17.81 30.56

10. art-m (SPEC) 10 161550 1.92 3.63 3.39 6.51

11. amgmk (Sequoia) 161 714256 7.69 16.17 12.73 24.53

12. clomp (Sequoia) 330 2048957 30.57 54.78 54.14 95.16

13. stream (Sequoia) 141 158386 1.41 2.57 2.27 4.22

14. bellman-ford (IMS) 55 34775 0.63 1.17 1.27 2.44

15. bfs-dijkstra (IMS) 37 10037 0.42 0.71 0.89 1.76

16. byzantine (IMS) 47 19061 0.51 0.91 0.98 1.96

17. dominating-set (IMS) 180 442560 3.97 6.34 5.74 9.04

18. kcommittee (IMS) 131 134113 1.38 2.3 2.8 4.68

19. leader-elect-dp (IMS) 10 4260 0.29 0.5 0.61 1.3

20. leader-elect-hs (IMS) 40 32761 0.41 0.7 1.15 2.26

21. leader-elect-lcr (IMS) 12 3422 0.08 0.16 0.58 1.2

22. mis (IMS) 14 11315 0.38 0.68 0.8 1.58

23. mst (IMS) 169 687945 5.82 8.75 7.54 11.57

24. vertex-coloring (IMS) 29 28527 0.44 0.81 1.17 2.27

Fig. 32. Evaluation numbers for performing the BarrElim set of optimizations on various benchmark
programs, in the context of EGINV mode of stabilization. These numbers serve as the baseline for Section A.
Abbreviations: #Trig=number of stabilization triggers, #T-Func=number of transfer-function applications, and
STB-Time and Total Time refer to the IDFA-stabilization time, and overall compilation time, respectively.

A PERFORMANCE COMPARISON WITH EAGER MODES OF STABILIZATION (EGINV
AND EGUPD)

We now present an evaluation describing the impact of the lazy modes of self-stabilization on

compilation while running the BarrElim set of optimizations, taking the weaker baseline of EGINV
mode, where the stabilization is performed eagerly at the end of each elementary transformation.

Note that such a scheme of EGINV stabilization is easy to automate, but can be quite inefficient, as we

show in this section. We present our evaluation in the context of parameters related to stabilization

time, and total compilation time. In Fig. 32, we present various parameters related to compilation

of the benchmark programs under study, when compiled with EGINV mode of stabilization; these

numbers serve as the baseline for the evaluations discussed in this section.

In Fig. 32, columns 4 and 5 show the stabilization time for IDFA flow-maps in the context of

EGINV mode of stabilization, while performing the BarrElim set of optimization passes on the

benchmark programs under study, for Nanda and K2, respectively. The zero (0) entries for the

STB-times of IS are due to the fact that no optimization opportunities were found by BarrElim
passes for IS.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:54 Nougrahiya and Nandivada

(a) Nanda

(b) K2

Fig. 33. Speedup in IDFA stabilization-time under various modes of stabilization with respect to the EGINV
mode, when applying the set of client optimizations, BarrElim. Higher is better.

In Fig. 33, we illustrate the impact of using LZINV, EGUPD, and LZUPD modes of stabilization,

by showing their relative speedups with respect to EGINV, in terms of speedups in the IDFA

stabilization-time. We exclude SP from this discussion on stabilization time, since there were no

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:55

stabilization triggers for SP under lazy modes of stabilizations (that is, the stabilization time for lazy

modes of stabilization was zero). As expected, the LZUPD mode incurs the least cost for stabilization

among all the cases across both the platforms; consequently it results in the maximum speedup

with respect to EGINV – with speedups varying between 8.00× and 82.36× (geomean 22.39×) for
Nanda; between 7.89× and 87.88× (geomean 24.42×) for K2.

We have noted that the gains in IDFA stabilization time using a particular mode of stabilization

depend on multiple stabilization-mode-specific factors, such as (i) number of triggers of stabiliza-

tion, (ii) number of times transfer-functions are applied on various program nodes during IDFA

stabilization, (iii) cost incurred to process each program node per stabilization, and so on. For our

baseline mode of stabilization, EGINV, we show the first two factors in columns 2 and 3 of Fig. 32,

respectively. In Fig. 34, we show the number of stabilization triggers when using the lazy modes of

stabilization normalized with respect to the EG-modes. Similarly, in Fig. 35, for various modes of

stabilization we show the number of transfer-function applications across all stabilization triggers

normalized with respect to those numbers in case of EGINV mode. We observe that for each bench-

mark, the speedup obtained across different modes of stabilization closely correlates to the these

numbers. Across different benchmarks, the relative impact of these factors may vary, depending

upon, for instance, the fraction of time spent in applying transfer-function when processing a

program node during IDFA stabilization. We now illustrate our observations by comparing the

performance of different modes of stabilization.

LZUPD vs. EGINV. The LZUPD mode consistently outperforms the RPINV mode across all bench-

marks, for both the platforms, as shown in Fig. 33. This can be attributed to the significant reductions

in the number of transfer-function applications, as well as in the number of stabilization triggers,

when using the LZUPD mode as compared to the EGINV mode, as shown in Fig. 35 and Fig. 34,

respectively. The maximum speedup in IDFA stabilization-time for LZUPD was observed in LU
(82.36× in Nanda, and 29.68× in K2), consequent upon the fact that for LU, compared to EGINV,
LZUPD re-processes significantly small fraction of the nodes (3.93%) over a reduced number of

stabilization triggers (13.67%). In contrast, for leader-elect-lcr and bfs-dijkstra, LZUPD leads to some

of the least (though still quite significant) speedups, as it results in reprocessing high fractions of

nodes (15.24% and 19.30%, respectively), along with a high count of stabilization triggers (25% and

35.14%, respectively), as compared to the EGINV mode.

LZUPD vs. EGUPD. It is clear from Fig. 33 that though the EGUPDmode consistently performs better

than EGINV, compared to LZUPD it performs consistently worse, across all the benchmarks, for both

the platforms. This is because, as shown in Fig. 34 and Fig. 35, LZUPD results in significantly fewer

stabilization triggers (geomean 76.36% lower) than the EGUPD mode, thereby also resulting in a

considerably fewer number of applications of the transfer-functions (geomean 14.6% fewer).

LZINV vs. EGINV. Across all the benchmarks, and both the platforms, we notice a performance

improvement with LZINV mode, as compared to the EGINV mode, with geomean speedup as 3.62×,
for Nanda, and 3.75×, for K2. The maximum speedup was observed in case of stream (5.88×) in
Nanda, and leader-elect-dp (8.33×) in K2, consequent upon the fact that among the benchmarks

shown in Fig. 33, stream and leader-elect-dp correspond to quite large reductions in the number of

stabilization triggers (see Fig. 34) with the lazy modes of stabilization.

LZINV vs. EGUPD. From Fig. 33, note that the EGUPD mode outperforms the LZINV mode in the

context of IDFA-stabilization time, for most of the cases across both the platforms. This trend

can be explained as follows. From Fig. 34, it is clear that the LZINV mode consistently results in

fewer stabilization triggers than the EGUPD mode. However, it is also expected that the incremental

update of IDFA flow-maps in UPD-modes will result in fewer applications of the transfer-functions

per trigger, as compared to the same in case of INV-modes which involve invalidation and full

recomputation of the IDFA flow-maps. This is evident in Fig. 34, where we notice that EGUPD mode

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:56 Nougrahiya and Nandivada

Fig. 34. Number of times IDFA stabilizationwas triggered under lazymodes of stabilizationwhen performing
the BarrElim optimization passes, normalized with respect to the number of triggers in case of EG-modes.
Lower is better.

Fig. 35. Total number of applications of transfer-functions across all stabilization triggers when performing
the BarrElim set of optimizations, for various modes of stabilization normalized with respect to the number
of applications in case of the EGINV mode. Lower is better.

consistently applies significantly fewer transfer-functions (geomean 90.38% fewer) as compared to

the LZINV mode. As a result, EGUPD mode outperforms the LZINV mode, for most of the scenarios.

Summary. Overall, we found that the LZUPD mode leads to the maximum benefits in stabilization

time, across all the four modes of stabilization. Further, we also observed that if the UPD-mode

is unavailable for a program-abstraction due to absence of its incremental-update algorithm, the

fully-automated stabilization provided by Homeostasis in the form of LZINV mode can still provide

good performance improvements over the naive automated stabilization attained using the EGINV
mode. These observations underline the performance benefits in stabilization time when using

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

Homeostasis: Design and Implementation of a Self-Stabilizing Compiler 1:57

(a) Nanda

(b) K2

Fig. 36. Speedup in total compilation time under both the lazy modes of stabilization facilitated by
Homeostasis, with respect to the EGINV mode, when applying the BarrElim set of optimization passes.
Higher is better.

Homeostasis. This may in turn improve the overall compilation speed, as shown in Fig. 36 (with

geomean improvements of 4.09× and 3.80× in Nanda and K2, respectively).

B GUIDELINES TO RETROFIT HOMEOSTASIS IN LLVM
Given the popularity of the LLVM compiler framework, in this section we provide brief guidelines on

how LLVM can be retrofitted with Homeostasis. This further helps us argue about the generality and

applicability of Homeostasis to arbitrary IRs. The key components of Homeostasis (from Section 3.2)

are mapped in LLVM as follows:

• The LLVM IR corresponds to the IR which can be used as the base program-abstraction. The

basic blocks (BasicBlock), functions (Function), and modules (Module) of the LLVM IR can be

treated as the three specific nodes on which elementary transformations can be specified. Each

element (Instruction) of the basic-block needs to be made immutable.

• Various fundamental transformations on BasicBlock of LLVM IR that can serve as the ele-

mentary transformations need to be identified. A key requirement here is that one should be able to

represent all possible transformations of the basic blocks using these elementary transformations.

One such possible set comprises of two fundamental transformations: (i) insertion of an IR instruc-

tion at a given index, and (ii) removal of an IR instruction. Note that the updates to an immutable

IR instruction can be achieved by creating a new instruction, and replacing the old instruction with

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1:58 Nougrahiya and Nandivada

the new one. The structure of these elementary transformations should be made conforming to

the design shown in Fig. 5. Similar elementary transformations can be identified for the classes

Function and Module.
• For ease of use, various higher-level transformation APIs (such as those that support copying

a block, renaming a variable, etc.) can be created using these elementary transformations. Further,

the code for existing transformation APIs should be updated such that all translations of the IR are

expressed directly or indirectly using the identified set of elementary transformations.

• In Homeostasis, all program-abstractions must inherit from a base class, BasePA. LLVM already

has a Pass super-class, which can serve the purpose of BasePA. The Pass class can be modified to

adhere to the design given in Fig. 7. The definition of stabilize method from Homeostasis can be

used as it is in the Pass class.

• LLVM already identifies a set of analysis passes, and a set of transformation passes; former

corresponds to the analysis passes discussed in this text, whereas latter to the optimization passes.

For each of the identified analysis passes, one needs to ensure that all accesses to the related

program-abstractions are done through the appropriate getters that follow the simple structure

shown in Fig. 7. As discussed in Section 6.2, one needs to ensure that (1) the existing code to

generate the program-abstraction from scratch is invoked from the overridden method compute,
and (2) the existing code to perform incremental update of the program-abstraction, wherever

applicable, is invoked from the overridden method handleUpdate.

Note that the core library of LLVM is larger than one million lines of code written in C++, spanning

across more than 3𝑘 files. Consequently, the development effort required to retrofit Homeostasis

to LLVM is not trivial. However, the proven benefits of attaining self-stabilization in a compiler

clearly make this one-time effort worthwhile, more so considering the large size of the code base

involving numerous interacting passes of analysis and transformation passes. We leave this as a

future work.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2024.

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Homeostasis: Designing Self-Stabilizing Compilers
	3.1 Overview of Homeostasis
	3.2 Components of Homeostasis
	3.3 Compression Optimization: Efficient Tracking of Program Changes
	3.4 Working in a Homeostasis-enabled compiler

	4 Formal Description and Correctness of Homeostasis
	4.1 An Abstract Homeostasis-enabled Compiler
	4.2 Compression of Change-Sequence in Homeostasis

	5 Discussion
	5.1 Salient Characteristics of Homeostasis
	5.2 Using Homeostasis in Compilers with Multi-Level IRs
	5.3 Using Homeostasis in Non-Object-Oriented Compilers
	5.4 Estimating Manual Stabilization Effort in the Absence of Homeostasis
	5.5 Implementing Iterative Data-Flow Analyses in Homeostasis

	6 Instantiation of Homeostasis
	6.1 Retrofitting Homeostasis to a Real-World Compiler
	6.2 Adapting Analysis Passes to Use Homeostasis
	6.3 Optimization Passes in the Context of Homeostasis

	7 Implementation and Evaluation
	7.1 Experimental Setup
	7.2 Ease of Use: Self-stabilization vs. Manual Stabilization
	7.3 Performance Evaluation
	7.4 Impact of Compression Optimization
	7.5 Empirical Correctness
	7.6 Threats to Validity

	8 Related work
	8.1 Efficient Recompilation
	8.2 Incremental Analyses

	9 Conclusion
	Acknowledgments
	References
	A Performance Comparison with Eager Modes of Stabilization (EGINV and EGUPD)
	B Guidelines to retrofit Homeostasis in LLVM

