
30/10/17

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

Madhu Mutyam
Department of Computer Science and Engineering

Indian Institute of Technology Madras

CS1100
Introduction to Programming

Pointers

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Accessing Arrays with Pointers
#include <stdio.h>
int myArray[] = {1,24,17,4,-5,100};
int *ptr;
int main(void){
 int i;
 ptr = &myArray[0];
 printf(“\n”);
 for (i = 0; i < 6; i++){

 printf("myArray[%d] = %d ", i, myArray[i]);
 printf(“value at ptr + %d is %d\n", i, *(ptr + i));

 }
 return 0;
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

ptr++ and ++ptr
•  ++ptr and ptr++ are both equivalent to ptr + 1

–  though they are “incremented” at different times

•  Replace the following statement
 printf(“value at ptr + %d is %d\n", i, *(ptr + i));

 with:
 printf("ptr + %d = %d\n",i, *ptr++);
 printf("ptr + %d = %d\n",i, *(++ptr));

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

*ptr++
•  *ptr++ is to be interpreted as returning the value

pointed to by ptr and then incrementing the
pointer value.

•  This has to do with the precedence of the
operators.

•  (*ptr)++ would increment, not the pointer, but
that which the pointer points to!
–  i.e. if used on the first character of the example string

“IIT” the ‘I’ would be incremented to a ‘J’.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Arrays
•  The name of the array is the address of the first

element in the array
•  In C, we can replace

 ptr = &myArray[0];
 with
 ptr = myArray;
 to achieve the same result

•  Many texts state that the name of an array is a
pointer

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Array Names Are Not Pointers
•  While we can write

 ptr = myArray;
•  we cannot write

 myArray = ptr;
•  The reason:

– While ptr is a variable, myArray is a constant
– That is, the location at which the first element of

myArray will be stored cannot be changed once
myArray has been declared

30/10/17

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Pointer Types
•  C provides for a pointer of type void. We can

declare such a pointer by writing:
 void *vptr;

•  A void pointer is a generic pointer
– For example, a pointer to any type can be compared

to a void pointer
•  Type casts can be used to convert from one type

of pointer to another under proper circumstances

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Trying Out Pointers

Generic address of j

Dereferencing – will print r-value of k

#include <stdio.h>
int j = 1, k = 2; int *ptr;
main() {
ptr = &k;
printf(“\n j has the value %d and is stored at %p”,j,(void*)&j);
printf(“\n k has the value %d and is stored at %p”,k,(void*)

 &k);
printf(“\n ptr has the value %p stored at %p”, ptr, (void *)

 &ptr);
printf(“\nThe value of the integer pointed to by ptr is %d\n”,

 *ptr);
}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

Pointers and Strings
•  C does not have a string type

–  languages like Pascal, Fortran have…

•  In C, a string is an array of characters terminated
with a binary zero character (written as '\0’)
–  remember this is not the character ‘0’

•  One can manipulate strings as character arrays
•  Character arrays can also be accessed by pointers

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

A Character Array
•  One could create a string as follows,

 char myString[40];
 myString[0] = 'T';
 myString[1] = 'e';
 myString[2] = 'd’;
 myString[3] = '\0’;

– Note - terminated with a nul character

•  nul (or ‘\0’) ≠ NULL (pointer to nothing)
•  Obviously this is very tedious

Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

“Strings”
•  One might write:

 char myString[40] = {'T', 'e', 'd', '\0’};
•  But this also takes more typing than is convenient
•  So, C permits:

 char myString[40] = "Ted";
– Note that C automatically inserts ‘\0’

•  Compiler sets aside a contiguous block of memory
40 bytes long

•  The first four bytes contain Ted\0

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Strings: Input and Output
•  The function gets() accepts the name of the

string as a parameter, and fills the string with
characters that are input from the keyboard till
newline character is encountered. At the end, a
null terminator is appended.
– Not a popular function because there are no built-in

checks

•  char *gets(char *s);
•  gets(str) – reads from standard input into str
•  puts(str) – writes to standard output from str

30/10/17

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

char b1[] = “ABCDE”;
char b2[] = “LMNOF”;
char b3[] = “ZYXWV”;
puts(b1);
puts(b2);
puts(b3);
puts(“Input:”);
gets(b2);
puts(b1);
puts(b2);
puts(b3);

puts(b1); ABCDE
puts(b2); LMNOP
puts(b3); ZYXWV
puts(…); Input: 1234
gets(b2);
puts(b1); ABCDE
puts(b2); 1234
puts(b3); ZYXWV

A sample run
puts(b1); ABCDE
puts(b2); LMNOP
puts(b3); ZYXWV
puts(…); Input: 1234567890
gets(b2);
puts(b1); 7890
puts(b2); 1234567890
puts(b3); ZYXWV

Another run

gets may Overwrite Memory

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Character Pointers
#include <stdio.h>
char strA[80] = "A string to be used for demonstration";
char strB[80];
int main(void)
{

 char *pA; /* a pointer to type character */
 char *pB; /* another pointer to type character */
 puts(strA); /* show string A */
 pA = strA; /* point pA at string A */
 puts(pA); /* show what pA is pointing to */

 --continued à

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Copying Strings…

 pB = strB; /* point pB at string B */
 putchar('\n'); /* move down one line on the screen */
 while(*pA != '\0') /* while string */

 {
 *pB++ = *pA++; /* copy and increment pointer */
 }

 pB = '\0'; / insert end-of-string */
 puts(strB); /* show strB on screen */
 return 0;

}
Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

A Version of strcpy

char *myStrcpy(char *destination, char *source)
{
 char *p = destination;
 while (*source != '\0')
 {
 *p++ = *source++;
 }
 *p = '\0';
 return destination;
}

Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Equivalent Definition Using Arrays

char *myStrcpy(char dest[], char source[])
{
 int i = 0;
 while (source[i] != '\0')
 {

 dest[i] = source[i];
 i++;

 }
 dest[i] = '\0';
 return dest;
}

char *myStrcpy(char *destination, char *source)
 char *p = destination;

 while (*source != '\0')

 *p++ = *source++;

 *p = '\0’;
 return destination;

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

Copying Arrays Using Pointers
•  Exercise – define a function to copy part of an

integer array into another. Access the elements
using pointers.

•  Function prototype:
 void intCopy(int *ptrA, int *ptrB, int num);

– where num is the number of integers to be copied.

30/10/17

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Pointer Arithmetic ≡ Array Indexing
•  Both work identically
•  Since parameters are passed by value, in both the

passing of a character pointer or the name of the
array as above, what actually gets passed is the
address of the first element of each array.

•  The numerical value of the parameter passed is
the same. This would tend to imply that somehow
source[i] is the same as *(source+i).

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

Indexes are Converted to Pointer Addresses
•  We could write *(i + a) just as easily as *(a + i).
•  But *(i + a) could have come from i[a] !
•  From all of this comes the curious truth that if:

 char a[20]; int i;
 Writing a[3] = ‘x’; is the same as writing
 3[a] = ‘x’; !

Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

Equivalent Statements
 dest[i] = source[i];

•  due to the fact that array indexing and pointer
arithmetic yield identical results, we can write
this as:
 *(dest + i) = *(source + i);

•  Also we could write
 while (*source != '\0’) as
 while (*source)

–  since the code for ‘\0’ is 0 = false

SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

Declaring “IITM”
•  char myName[40] = “IITM”;

– would allocate space for a 40 byte array and put the
string in the first 5 bytes

•  char myName[] = “IITM”;
–  the compiler would count the characters, leave room

for the nul character and store the total of the 5
characters in the memory location named by myName

•  char *myName = “IITM”;
–  in the pointer notation, the same 5 bytes required,

plus 4 bytes to store the pointer variable myName

