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Multi-dimensional Arrays 
•  char multi[4][10]; 

– multi[4] – an array of ten characters 
–  4 such arrays 

multi[0] = {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’} 
multi[1] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’} 
multi[2] = {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’} 
multi[3] = {‘9’, ‘8’, ‘7’, ‘6’, ‘5’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’} 

•  Individual elements are addressable: 
– multi[0][3] = ‘3’ 

Ted Jenson’s tutorial on pointers 
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm 
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Linear Contiguous Memory 
multi[0] = {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’} 
multi[1] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’} 
multi[2] = {‘A’,‘B’,‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’} 
multi[3] = {‘9’, ‘8’, ‘7’, ‘6’, ‘5’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’} 

•  The data is stored in the memory as 
 0123456789abcdefghijABCDEFGHIJ9876543210 

  

 starting at the address &multi[0][0] 
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Address Pointers 
multi[0] = {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’} 
multi[1] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’} 
multi[2] = {‘A’,‘B’,‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’} 
multi[3] = {‘9’, ‘8’, ‘7’, ‘6’, ‘5’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’} 

•  multi is the address of location with ‘0’ 
•  multi+1 is the address of ‘a’ 

–  It adds 10, the number of columns, to get this location. If we 
were dealing with integers and an array with the same 
dimension the compiler would add 10*sizeof(int) 

•  To get to the content of the 2nd element in the 4th row we 
need to use *(*(multi + 3) + 1) 
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Address Computation 
•  With a little thought we can see that:  

   *(*(multi + row) + col)  and 
     multi[row][col]      
 yield the same results 

•  Because of the double de-referencing required in 
the pointer version, the name of a 2-dimensional 
array is often said to be equivalent to a pointer to 
a pointer 
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multi[row][col] ≡ *(*(multi + row) + col) 
•  To understand more fully what is going on, let us 

replace 
     *(multi + row)  with X  

 
i.e., *(*(multi+row)+col) = *(X + col) 

•  X is like a pointer since the expression is de-
referenced and col is an integer 

•  Here “pointer arithmetic” is used 
•  That is, the address pointed to (i.e., value of)  

         X + col  = X + col * sizeof(int) 
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multi[row][col] ≡ *(*(multi + row) + col) 
•  Since we know the memory layout for 2 dimensional 

arrays, we can determine that in the expression (multi + 
row) as used above, (multi + row + 1) must increase by 
an amount equal to that needed to "point to" the next 
row, which for integers would be an amount equal to 
     COLS * sizeof(int) 

•  That says that if the expression *(*(multi + row) + col) 
is to be evaluated correctly at run time, the compiler 
must generate code which takes into consideration the 
value of COLS, i.e., the 2nd dimension 

remember passing arrays as parameters? 
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multi[row][col] ≡ *(*(multi + row) + col) 
•  Thus, to evaluate either expression, a total of 5 

values must be known: 
– Address of the first element of the array, which is 

returned by the expression multi, i.e., name of the array 
– The size of the type of the elements of the array, in this 

case, sizeof(int) 
– The 2nd dimension of the array 
– The specific index value for the first dimension, row in 

this case 
– The specific index value for the second dimension, col 

in this case 
Ted Jenson’s tutorial on pointers 
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm 
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multi[row][col] ≡ *(*(multi + row) + col) 
•  Question: 

– When we say value = *ptr; the pointer ptr is de-
referenced to get the data stored 

– What happens in *(*(array + row) + column)? 
– Why is *(array + row) not de-referenced to give, say, 

an integer? 

•  Answer:  
–  It is de-referenced 
– Remember a 2-D array is a pointer to a pointer 
–  *(array + row) de-references to a pointer to a 1-D array 
–  *(array + row) + 1 would do a pointer increment 
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Array multi[4][10] 
 

 
   …0123456789abcdefghijABCDEFGHIJ9876543210… 

multi multi +1 multi +2 multi +3 

Address(multi+1) = address(multi) + 10 
Because the character array has 10 columns 
Each of these is a pointer to a pointer (or pointer to a 1-D array) 
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Revisiting Functions on Arrays 
•  Initializing a 2-dimensional array 

void set_value(int m_array[][COLS]) 
{ 

 int row, col; 
 for (row = 0; row < ROWS; row++) 
    { 
        for (col = 0; col < COLS; col++) 
  { 
       m_array[row][col] = 1; 
     } 
     } 

} 
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Recap 
•  Arrays 
•  Functions 
•  Sorting 
•  Pointers 
•  Strings 
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Arrays 
•  A data structure containing items of same data type 
•  Declaration: array name, storage reservation 

–  int marks[7] = {22,15,75,56,10,33,45}; 
•  a contiguous group of memory locations 
•  named “marks” for holding 7 integer items 

–  elements/components - variables 
•  marks[0], marks[1], … , marks[6] 
•  marks[i], where i is a position/subscript (0≤i≤6) 

–  the value of marks[2] is 75 
–  new values can be assigned to elements 

•  marks[3] = 36; 
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Multi-Dimensional Arrays 
•  Arrays with two or more dimensions can be 

defined 
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Two Dimensional Arrays 
•  Declaration:  int A[4][3] : 4 rows and 

3 columns, 4×3 array 
•  Elements: A[i][j] - element in row i 

and column j of array A 
•  Rows/columns numbered from 0 
•  Storage: row-major ordering 

–  elements of row 0, elements of row 1, 
etc 

•  Initialization:  
 int B[2][3]={{4,5,6},{0,3,5}}; 
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Functions 
•  Break large computing tasks into small ones 
•  Transfer of control is affected by calling a function 

– With a function call, we pass some parameters 
– These parameters are used within the function 
– A value is computed  
– The value is returned to the function which initiated the 

call 
– A function could call itself, these are called recursive 

function calls 

•  Function prototype, function definition, and 
function call 
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Passing Arguments to Functions 
•  In C, function arguments are passed “by value” 

–  values of the arguments  given to the called function  
in temporary variables rather than the originals 

–  the modifications to the parameter variables do not 
affect the variables in the calling function 

•  “Call by reference” 
–  variables are passed by reference  

•  subject to modification by the function 

–  achieved by passing the “address of” variables 

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18 

Selection Vs Insertion Sort 
•  Scanning from left to right 

•  Selection sort 
– Swaps the ith element with the largest unsorted element 

•  Insertion sort 
–  Inserts the ith element into its proper place 

i 

i 
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*p 

100 250 

What is a Pointer? 
•  Recap: a variable int k 

– Names a memory location that can 
hold one value at a time 

– Memory is allocated statically at 
compile time 

– One name ⇔ one value 

•  A pointer variable int *p 
– Contains the address of a memory 

location that contains the actual value 
– Memory can be allocated at runtime 
– One name ⇔ many values  

p 200 

k 38 100 

Addr 

*p 

250 84 m 
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l-value and r-value 
•  Given a variable k 

–  Its l-value refers to the address of the memory location 
–  l-value is used on the left side of an assignment 

•  Ex.  k = expression 

–  Its r-value refers to the value stored in the memory 
location 

–  r-value is used in the right hand side of an assignment 
•  Ex.  var = k + … 

•  Pointers allow one to manipulate the l-value! 
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Accessing Arrays Using Pointers 
•  The name of the array is the address of the first 

element in the array 
•  In C, we can replace 

     ptr = &myArray[0]; 
 with 
     ptr = myArray; 
 to achieve the same result 
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Strings 
•  A string is a array of characters terminated by the 

null character, ‘\0’ 
•  A string is written in double quotes 

– Example:  “This is a string” 
•  “ ” – empty string 
•  Anything within single quotes gets a number 

associated with it 
•  ‘This is rejected by the C Compiler’ 
•  Character arrays can also be accessed by pointers 
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Strcpy Using Pointers 

char *myStrcpy(char *destination, char *source) 
{ 
  char *p = destination; 
  while (*source != '\0') 
    { 
       *p++ = *source++; 
    } 
  *p = '\0'; 
  return destination; 
} 

Ted Jenson’s tutorial on pointers 
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm 


