
30/10/17

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

Madhu Mutyam
Department of Computer Science and Engineering

Indian Institute of Technology Madras

CS1100
Introduction to Programming

Multi-Dimensional Arrays

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Multi-dimensional Arrays
•  char multi[4][10];

– multi[4] – an array of ten characters
–  4 such arrays

multi[0] = {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’}
multi[1] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’}
multi[2] = {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’}
multi[3] = {‘9’, ‘8’, ‘7’, ‘6’, ‘5’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’}

•  Individual elements are addressable:
– multi[0][3] = ‘3’

Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Linear Contiguous Memory
multi[0] = {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’}
multi[1] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’}
multi[2] = {‘A’,‘B’,‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’}
multi[3] = {‘9’, ‘8’, ‘7’, ‘6’, ‘5’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’}

•  The data is stored in the memory as
 0123456789abcdefghijABCDEFGHIJ9876543210

 starting at the address &multi[0][0]

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Address Pointers
multi[0] = {‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’}
multi[1] = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’}
multi[2] = {‘A’,‘B’,‘C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I’, ‘J’}
multi[3] = {‘9’, ‘8’, ‘7’, ‘6’, ‘5’, ‘4’, ‘3’, ‘2’, ‘1’, ‘0’}

•  multi is the address of location with ‘0’
•  multi+1 is the address of ‘a’

–  It adds 10, the number of columns, to get this location. If we
were dealing with integers and an array with the same
dimension the compiler would add 10*sizeof(int)

•  To get to the content of the 2nd element in the 4th row we
need to use *(*(multi + 3) + 1)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Address Computation
•  With a little thought we can see that:

 ((multi + row) + col) and
 multi[row][col]
 yield the same results

•  Because of the double de-referencing required in
the pointer version, the name of a 2-dimensional
array is often said to be equivalent to a pointer to
a pointer

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

multi[row][col] ≡ *(*(multi + row) + col)
•  To understand more fully what is going on, let us

replace
 *(multi + row) with X

i.e., *(*(multi+row)+col) = *(X + col)

•  X is like a pointer since the expression is de-
referenced and col is an integer

•  Here “pointer arithmetic” is used
•  That is, the address pointed to (i.e., value of)

 X + col = X + col * sizeof(int)

30/10/17

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

multi[row][col] ≡ *(*(multi + row) + col)
•  Since we know the memory layout for 2 dimensional

arrays, we can determine that in the expression (multi +
row) as used above, (multi + row + 1) must increase by
an amount equal to that needed to "point to" the next
row, which for integers would be an amount equal to
 COLS * sizeof(int)

•  That says that if the expression *(*(multi + row) + col)
is to be evaluated correctly at run time, the compiler
must generate code which takes into consideration the
value of COLS, i.e., the 2nd dimension

remember passing arrays as parameters?

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

multi[row][col] ≡ *(*(multi + row) + col)
•  Thus, to evaluate either expression, a total of 5

values must be known:
– Address of the first element of the array, which is

returned by the expression multi, i.e., name of the array
– The size of the type of the elements of the array, in this

case, sizeof(int)
– The 2nd dimension of the array
– The specific index value for the first dimension, row in

this case
– The specific index value for the second dimension, col

in this case
Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

multi[row][col] ≡ *(*(multi + row) + col)
•  Question:

– When we say value = *ptr; the pointer ptr is de-
referenced to get the data stored

– What happens in *(*(array + row) + column)?
– Why is *(array + row) not de-referenced to give, say,

an integer?

•  Answer:
–  It is de-referenced
– Remember a 2-D array is a pointer to a pointer
–  *(array + row) de-references to a pointer to a 1-D array
–  *(array + row) + 1 would do a pointer increment

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Array multi[4][10]

 …0123456789abcdefghijABCDEFGHIJ9876543210…

multi multi +1 multi +2 multi +3

Address(multi+1) = address(multi) + 10
Because the character array has 10 columns
Each of these is a pointer to a pointer (or pointer to a 1-D array)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

Revisiting Functions on Arrays
•  Initializing a 2-dimensional array

void set_value(int m_array[][COLS])
{

 int row, col;
 for (row = 0; row < ROWS; row++)
 {
 for (col = 0; col < COLS; col++)
 {
 m_array[row][col] = 1;
 }
 }

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Recap
•  Arrays
•  Functions
•  Sorting
•  Pointers
•  Strings

30/10/17

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

Arrays
•  A data structure containing items of same data type
•  Declaration: array name, storage reservation

–  int marks[7] = {22,15,75,56,10,33,45};
•  a contiguous group of memory locations
•  named “marks” for holding 7 integer items

–  elements/components - variables
•  marks[0], marks[1], … , marks[6]
•  marks[i], where i is a position/subscript (0≤i≤6)

–  the value of marks[2] is 75
–  new values can be assigned to elements

•  marks[3] = 36;

22

 15

75

56

10

 33

45

0

1

2

3

4

5

6

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Multi-Dimensional Arrays
•  Arrays with two or more dimensions can be

defined

0

1

2

3

0 1 2

A[4][3]

0 1 2 0 1 2

0

1

2

3

0 1

B[2][4][3]

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Two Dimensional Arrays
•  Declaration: int A[4][3] : 4 rows and

3 columns, 4×3 array
•  Elements: A[i][j] - element in row i

and column j of array A
•  Rows/columns numbered from 0
•  Storage: row-major ordering

–  elements of row 0, elements of row 1,
etc

•  Initialization:
 int B[2][3]={{4,5,6},{0,3,5}};

0

1

2

3

0 1 2

A[4][3]

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Functions
•  Break large computing tasks into small ones
•  Transfer of control is affected by calling a function

– With a function call, we pass some parameters
– These parameters are used within the function
– A value is computed
– The value is returned to the function which initiated the

call
– A function could call itself, these are called recursive

function calls

•  Function prototype, function definition, and
function call

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Passing Arguments to Functions
•  In C, function arguments are passed “by value”

–  values of the arguments given to the called function
in temporary variables rather than the originals

–  the modifications to the parameter variables do not
affect the variables in the calling function

•  “Call by reference”
–  variables are passed by reference

•  subject to modification by the function

–  achieved by passing the “address of” variables

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

Selection Vs Insertion Sort
•  Scanning from left to right

•  Selection sort
– Swaps the ith element with the largest unsorted element

•  Insertion sort
–  Inserts the ith element into its proper place

i

i

30/10/17

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

*p

100 250

What is a Pointer?
•  Recap: a variable int k

– Names a memory location that can
hold one value at a time

– Memory is allocated statically at
compile time

– One name ⇔ one value

•  A pointer variable int *p
– Contains the address of a memory

location that contains the actual value
– Memory can be allocated at runtime
– One name ⇔ many values

p 200

k 38 100

Addr

*p

250 84 m

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

l-value and r-value
•  Given a variable k

–  Its l-value refers to the address of the memory location
–  l-value is used on the left side of an assignment

•  Ex. k = expression

–  Its r-value refers to the value stored in the memory
location

–  r-value is used in the right hand side of an assignment
•  Ex. var = k + …

•  Pointers allow one to manipulate the l-value!

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

Accessing Arrays Using Pointers
•  The name of the array is the address of the first

element in the array
•  In C, we can replace

 ptr = &myArray[0];
 with
 ptr = myArray;
 to achieve the same result

SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

Strings
•  A string is a array of characters terminated by the

null character, ‘\0’
•  A string is written in double quotes

– Example: “This is a string”
•  “ ” – empty string
•  Anything within single quotes gets a number

associated with it
•  ‘This is rejected by the C Compiler’
•  Character arrays can also be accessed by pointers

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Strcpy Using Pointers

char *myStrcpy(char *destination, char *source)
{
 char *p = destination;
 while (*source != '\0')
 {
 *p++ = *source++;
 }
 *p = '\0';
 return destination;
}

Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

