CS1100
Introduction to Programming

Multi-Dimensional Arrays

Madhu Mutyam
Department of Computer Science and Engineering
Indian Institute of Technology Madras

Course Material - SD, SB, PSK, NSN, DK, TAG ~ CS&E, lIT M 1

30/10/17

Multi-dimensional Arrays

* char multi[4][10];
— multi[4] — an array of ten characters
— 4 such arrays
multi[0] = {°0’, ‘1°, 2°, *3°,‘4’, 5°, °6’, ‘7’ ‘8”, ‘9’}
multi[1] = {‘a’, b, °c’, °d’, ‘e’, ‘f", ‘g’, ‘h’, ‘1, §°}
multi[2] = {A’, ‘B’, °C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘T", ‘J’}
multi[3] = {9, °8’, °7°, °6’, °5’, ‘4*, 3, ‘2’,°1", ‘0’}
* Individual elements are addressable:
~ multi[0][3] = 3’

Ted Jenson’s tutorial on pointers
SD, PSK, NSN, DK, TAG — CS&E, IITM PP i htm

Linear Contiguous Memory

multi[0] = {‘0°, ‘1’, <2°, 3°, ‘4*,*5°,“6°, °7°, ‘8", ‘9’}
multi[1] = {‘a’, b, ‘¢’, d’, ‘e’, ‘T, ‘g’, ‘h’, ", j’}
multi[2] = {*A’,'B’,°C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I, ‘J’}
multi[3] = {9, ‘8", ‘7°, °6°, 5, ‘4’,3°,2°, ‘1", ‘0’}
* The data is stored in the memory as
0123456789abcedefghijABCDEFGHIJ9876543210

starting at the address &multi[0][0]

SD, PSK, NSN, DK, TAG — CS&E, ITM 3

Address Pointers
multi[0] = {<0°, ‘1°, ‘2°, ‘3°, ‘4, *5’,6’, ‘7, 8, 9’}
multi[1] = {‘a’, ‘b’, °¢’, ‘d’, ‘¢e’, T, ‘g’, ‘h’, ‘I°, j°}
multi[2] = {*A’,'B’,°C’, ‘D’, ‘E’, ‘F’, ‘G’, ‘H’, ‘I, ‘J’}
multi[3] = {9, 8>, ‘7°, ‘6°, °5°, ‘4>, 3>, 2°, “1°, ‘0’}
» multi is the address of location with ‘0’

* multi+1 is the address of ‘a’

— It adds 10, the number of columns, to get this location. If we
were dealing with integers and an array with the same
dimension the compiler would add 10*sizeof(int)

¢ To get to the content of the 2™ element in the 4% row we
need to use *(*(multi +3) + 1)

SD, PSK, NSN, DK, TAG — CS&E, ITM 4

Address Computation

+ With a little thought we can see that:
*(*(multi + row) + col) and
multi[row][col]
yield the same results

+ Because of the double de-referencing required in
the pointer version, the name of a 2-dimensional
array is often said to be equivalent to a pointer to
a pointer

SD, PSK, NSN, DK, TAG — CS&E, IIT M s

multi[row][col] = *(*(multi + row) + col)

 To understand more fully what is going on, let us
replace

*(multi + row) with X

i.e., *(*(multi+row)+col) = *(X)+ col)

« X is like a pointer since the expression is de-
referenced and col is an integer

* Here “pointer arithmetic” is used

* That is, the address pointed to (i.e., value of)
X + col =X+ col * sizeof(int)

SD, PSK, NSN, DK, TAG — CS&E, IIT M




30/10/17

multi[row][col] = *(*(multi + row) + col)

» Since we know the memory layout for 2 dimensional
arrays, we can determine that in the expression (multi +
row) as used above, (multi + row + 1) must increase by
an amount equal to that needed to "point to" the next
row, which for integers would be an amount equal to

COLS * sizeof(int)

 That says that if the expression *(*(multi + row) + col)
is to be evaluated correctly at run time, the compiler
must generate code which takes into consideration the
value of COLS, i.e., the 2nd dimension

{remember passing arrays as parameters? }

SD, PSK, NSN, DK, TAG - CS&E, ITM

multi[row][col] = *(*(multi + row) + col)

+ Thus, to evaluate either expression, a total of 5
values must be known:

— Address of the first element of the array, which is
returned by the expression multi, i.e., name of the array

— The size of the type of the elements of the array, in this
case, sizeof{int)

— The 2" dimension of the array

— The specific index value for the first dimension, row in
this case

— The specific index value for the second dimension, co/
in this case

SD, PSK, NSN, DK, TAG - CS&E, IIT M Ted Jenson’s tutorial on pointers )
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

multi[row][col] = *(*(multi + row) + col)

* Question:

— When we say value = *pzr; the pointer ptr is de-
referenced to get the data stored

— What happens in *(*(array + row) + column)?
— Why is *(array + row) not de-referenced to give, say,
an integer?
* Answer:
— It is de-referenced
— Remember a 2-D array is a pointer to a pointer
— *(array + row) de-references to a pointer to a 1-D array

—(array + row) + 1 would do a pointer increment

SD, PSK, NSN, DK, TAG — CS&E, IIT

Array multi[4][10]

...0123456789abcdefghijABCDEFGHI1J9876543210...

multi multi +1 multi +2 multi +3

Address(multi+1) = address(multi) + 10
Because the character array has 10 columns
Each of these is a pointer to a pointer (or pointer to a 1-D array)

SD, PSK, NSN, DK, TAG - CS&E, IIT M 10

Revisiting Functions on Arrays

* Initializing a 2-dimensional array

void set_value(int m_array[][COLS])
{
l int row, col;
Sfor (row = 0; row < ROWS; row++)
{ for (col = 0; col < COLS; col++)
{ m_array[row][col] = 1;

}

}

SD, PSK, NSN, DK, TAG — CS&E, IIT M

Recap

* Arrays
 Functions
 Sorting

+ Pointers
+ Strings

SD, PSK, NSN, DK, TAG — CS&E, IIT M




Arrays

* A data structure containing items of same data type

* Declaration: array name, storage reservation
— int marks[7] = {22,15,75,56,10,33,45}; » 0
* a contiguous group of memory locations

15 1

» named “marks” for holding 7 integer items
— elements/components - variables P :
« marks[0], marks[1], ... , marks[6] 6|3
» marks[i], where i is a position/subscript (0<i<6) 10 4
— the value of marks[2] is 75

— new values can be assigned to elements
» marks[3] = 36;

SD, PSK, NSN, DK, TAG — CS&E, IITM 13

33 5

45 6

30/10/17

Multi-Dimensional Arrays

* Arrays with two or more dimensions can be
defined

Two Dimensional Arrays

* Declaration: int A[4][3] : 4 rows and
3 columns, 4x3 array

» Elements: A[7][/] - element in row i A4II3]
and column j of array A 0o 1 2

* Rows/columns numbered from 0

* Storage: row-major ordering

— elements of row 0, elements of row 1,
etc 2

* Initialization:
int B[2][3]={{4.,5,6},{0,3,5} };

SD, PSK, NSN, DK, TAG - CS&E, IIT M 15

Passing Arguments to Functions

* In C, function arguments are passed “by value”

— values of the arguments given to the called function
in temporary variables rather than the originals

— the modifications to the parameter variables do not
affect the variables in the calling function

 “Call by reference”

— variables are passed by reference
* subject to modification by the function

— achieved by passing the “address of” variables

SD, PSK, NSN, DK, TAG - CS&E, IT M 17

AHIB) BI2][4]3]
0 1 2 0 1 2 0 1 2

0 0

1 1

2 2

3 3

0 1

SD, PSK, NSN, DK, TAG — CS&E, IITM 14
Functions

* Break large computing tasks into small ones
* Transfer of control is affected by calling a function
— With a function call, we pass some parameters
— These parameters are used within the function
— A value is computed
— The value is returned to the function which initiated the
call
— A function could call itself, these are called recursive
function calls

+ Function prototype, function definition, and
function call

SD, PSK; NSN. DK, TAG ~ CS&E, 11T M 16

Selection Vs Insertion Sort

* Scanning from left to right

DT TTTTITTITTTT]

— Swaps the i" element with the largest unsorted element

 Selection sort

* Insertion sort

DT TTTTTTITTTT]

— Inserts the ith element into its proper place

SD, PSK, NSN, DK, TAG - CS&E, IT M 18




30/10/17

What is a Pointer?

* Recap: a variable int k Addr

— Names a memory location that can ¢ 38 100
hold one value at a time

— Memory is allocated statically at
compile time
— One name < one value
+ A pointer variable int *p p | 250 200

— Contains the address of a memory
. . *;
location that contains the actual value &
— Memory can be allocated at runtime

— One name <> many values
SD, PSK, NSN, DK, TAG — CS&E, IITM

l-value and r-value

* Given a variable k
— Its l-value refers to the address of the memory location
— [-value is used on the left side of an assignment

* Ex. k= expression
— Its r-value refers to the value stored in the memory
location
— r-value is used in the right hand side of an assignment
* Ex. var=k+...

* Pointers allow one to manipulate the /-value!

SD, PSK, NSN, DK, TAG — CS&E, IITM 20

Accessing Arrays Using Pointers

* The name of the array is the address of the first
element in the array

* In C, we can replace
ptr = &myArray[0];
with
ptr = myArray;
to achieve the same result

SD, PSK, NSN, DK, TAG — CS&E, ITM

Strings

* A string is a array of characters terminated by the
null character, “\0’

* A string is written in double quotes
— Example: “This is a string”

« “” _ empty string

 Anything within single quotes gets a number
associated with it

+ ‘This is rejected by the C Compiler’

* Character arrays can also be accessed by pointers

SD, PSK, NSN, DK, TAG ~ CS&E, IIT M 2

Strcpy Using Pointers

char *myStrcpy(char *destination, char *source)
{
char *p = destination;
while (*source !="0")

*pt++ = *source++;
1
s
*p ="0';
return destination;

!
s

Ted Jenson’s tutorial on pointers
http://pweb.netcom. j int.htm

SD, PSK, NSN, DK, TAG — CS&E, IIT M




