
03/11/17

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

Madhu Mutyam
Department of Computer Science and Engineering

Indian Institute of Technology Madras

CS1100
Introduction to Programming

Structures

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Structures
•  Collection of one or more variables, possibly of

different types, grouped together under a single
name for easy handling.

•  For example - a structure which represents a
point in a two dimensional plane

 struct point{
 int x;
 int y;
 };

A mechanism for defining
compound data types

By itself it reserves
no storage

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Point in 2D à 2 Integers
•  Different ways of declaring structure variables

 struct point{
 int x;
 int y;
 } point1, point2;

 struct point point1, point2;
 struct point point1 = {3, 2};

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Marks and Names
 struct student{

 char *name;
 int mark;
 }s1, s2;

 struct student s1, s2;
 struct student s1 = { “Ramesh” , 79 };

name could itself be a struct made up of
first name, middle name and last name…
Nested structures are allowed

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

A Rectangle
 struct rectangle{
 struct point pt1;
 struct point pt2;
 }rect1;
•  Accessing points in the rectangle
 rect1.pt1.x = 4;
 rect1.pt1.y = 5;
 Or
 rect1.pt1 = { 4, 5 };

•

•

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Defining New Types
•  ‘typedef’ keyword is used for creating new data

types
•  For example:

 typedef int Age;
 Age myAge = 99;

•  typedef and Structures:
 typedef struct point pointType;
 pointType point1, point2;

•  This is equivalent to: struct point point1, point2;

03/11/17

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Operations on Structures
•  Structures may be copied by assignment statement
•  The address of the structure (use &) can be passed

to functions and can be returned by functions
–  one can pass an entire structure
–  one can pass some components of a structure
–  one can pass a pointer to a structure

•  Structures may not be compared

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Functions and Structures
•  Structure as function argument

 int isOrigin(pointType pt){
 if (pt.x == 0 && pt.y == 0)
 return 1;
 else
 return 0;
 }

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

Structures and Functions
•  Structure as return type

 pointType makePoint(int x, int y){
 pointType temp;
 temp.x = x;
 temp.y = y;
 return temp;
 }

Observe there is no confusion
between the two occurrences
of x and y

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

A Screen and its Centre Point
struct rectangle screen;
struct point middle;
struct point makePoint(int, int);

screen.pt1 = makePoint(0, 0);
screen.pt2 = makePoint(XMAX, YMAX);
middle =
 makePoint((screen.pt1.x+screen.pt2.x)/2,

 (screen.pt1.y+screen.pt2.y)/2);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

Adding Two Points
/* addPoints: add two points */
struct point addPoints(struct point p1, struct point p2)
{ p1.x += p2.x;

 p1.y += p2.y;
 return p1;}

•

•

•
Note that the local changes
to p1 would not affect the
point p1; pass by value

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Point Inside a Rectangle?
•  /* isPtInRect: return 1 if point p is in rectangle r,

 else return 0 */

int isPtInRect(struct point p, struct rectangle r){

 return (p.x >= r.pt1.x) && (p.x < r.pt2.x) &&
 (p.y >= r.pt1.y) && (p.y < r.pt2.y);
}

•

•

pt1

pt2

03/11/17

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

A Canonical Rectangle
#define min(a, b) ((a<b)?a:b) /*Macro definitions*/
#define max(a, b) ((a>b)?a:b)
struct rectangle canonRect(struct rect r){

 /*canonicalize coordinates of rectangle*/
 struct rectangle temp;
 temp.pt1.x = min(r.pt1.x, r.pt2.x);
 temp.pt1.y = min(r.pt1.y, r.pt2.y);
 temp.pt2.x = max(r.pt1.x, r.pt2.x);
 temp.pt2.y = max(r.pt1.y, r.pt2.y);
 return temp;

}
SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Arrays of Structures

 struct point {
 int x;
 int y;
 }pointArray[] = {
 {1, 2},
 {2, 3},
 {3, 4}
 };

struct point{
 int x;
 int y;
 }pointArray[10];

pointType pointArray[10];

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Accessing Member Values
•  Assigning values to structure elements

 pointArray[0].x = 1;
 pointArray[0].y = 2;

 OR
 pointArray[i].x = 5;
 pointArray[i].y = 5;

•  Printing elements of Structures
 printf(“(%d,%d)”, pointArray[0].x,
 pointArray[0].y);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Structure1 = Structure2
•  Structures can be assigned using the assignment

operator

 struct point newPoint;
 newPoint = makePoint(4,4);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Example Structure Definition
typedef struct student{

 char name[30];
 int rollNo;
 char gender;
 char hostel[8];
 int roomNo;
 }StudentType;
 Creates - a new data type called StudentType
 a composite type with 5 components
 Can be used in type declarations of variables
 StudentType jayanthi, vikas, mahesh;

Components can be of
any type - even struct

Observe the semi-colons

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

Another Definition

typedef struct book{
 char title[20];
 char authors[30];
 int accNo;
 char subject[25];

 }BookType;
BookType cText; // a C textbook
BookType shelf[100]; // a shelf holds 100 books

03/11/17

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Using Structures
•  Let us create a type for complex numbers and a

few operations on complex numbers

typedef struct {
 float real;

 float imag;
}Complex;
Complex sum (Complex m, Complex n);
Complex product (Complex m, Complex n);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

Using Complex Type
Dot (.) Notation:
Accessing components
of a structure

main(){
 Complex a,b,c,d;
 scanf(“%f %f”, &a.real, &a.imag);
 scanf(“%f %f”, &b.real, &b.imag);
 c = sum(a,b);

 d = product(a,b);
 printf(“Sum of a and b is %f +i%f\n”, c.real,
 c.imag);
 printf(“Product of a and b is %f+i%f\n”,
 d.real, d.imag);

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

Sum and Product
Complex Sum(Complex m, Complex n){

 Complex p;
 p.real = m.real + n.real; p.imag = m.imag + n.imag;
 return (p);

}

Complex Product(Complex m, Complex n){

 Complex p;
 p.real = (m.real * n.real) − (m.imag * n.imag);
 p.imag = (m.real * n.imag) + (m.imag * n.real);
 return (p);

}
SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

Pointers to Structures
 pointType point1, *ptr;

 point1 = makePoint(3,4);
 ptr = &point1;
 printf(“(%d,%d)”, (*ptr).x, (*ptr).y);
 OR

 printf(“(%d,%d)”, ptr->x, ptr->y);

•  The operator ‘->’(minus sign followed by greater than
symbol) is used to access members of structures when
pointers are used.

The brackets are necessary.
Otherwise it is taken as *(ptr.x)

equivalent short form

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Precedence and Association
•  Both . and -> associate left to right

– They are at top of precedence hierarchy

•  If we have
–  struct rectangle r, *rp = r;
– The following forms are equivalent

 r.pt1.x (r.pt1).x
 rp -> pt1.x (rp -> pt1).x
 (*rp).pt1.x

SD, PSK, NSN, DK, TAG – CS&E, IIT M 24

Recall: Precedence & Associativity of Operators

Bitwise
operators

Table from
K & R book
2nd edn. page

53

03/11/17

5

SD, PSK, NSN, DK, TAG – CS&E, IIT M 25

More Examples
•  Given the declaration struct{int len;char *str;} *p;
•  ++p-> len // increments len not p; same as ++(p-> len)

•  (++p)-> len // increments p before accessing len

•  p++-> len // increments p after accessing len
•  *p->str // fetches whatever str points to

•  *p->str++ // increments str after accessing
 // whatever it points to

•  (*p->str)++ // increments whatever str points to

•  *p++-> str // increments p after accessing whatever str
 // points to

SD, PSK, NSN, DK, TAG – CS&E, IIT M 26

Dynamic Data Structures
•  How does one cater to an uncertain and changing

amount of memory requirements?
–  for example if the number of students writing an

online surprise exam is unknown

•  One way is to use dynamic tables/arrays
–  declare an array of some size N
–  if it seems to be getting full declare an array of twice

the size and copy all elements into it

•  The other is to ask for memory for a structure one
at a time and link them together

SD, PSK, NSN, DK, TAG – CS&E, IIT M 27

Self Referential Structures
•  The structure contains a pointer to a structure of

the same type
–  this is in addition to the other data it stores
–  let student contain name and marks

name: Ramesh
marks: 76
nextStudent:

name: Rakesh
marks: 77
nextStudent:

name: Rajesh
marks: 74
nextStudent:

A linked list
SD, PSK, NSN, DK, TAG – CS&E, IIT M 28

Creating a List of Words and Frequencies (1/2)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef struct node

 {char word[20]; int freq; struct node *nextWord;} wordNode;
void main() {
 wordNode *firstNode, *temp, *lastNode;
 firstNode = NULL;
 for (int i = 0; i < 10; i++) { /* create a 10 word list with freq = 1 */

 char word[20];
 printf (“Input a word of max length 20 and press enter: ”);
 scanf (“%s”, word);

We create a linked list of 10 words, read
from input and set their frequencies as 1.
We go down the list to also print the words.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 29

Creating a List of Words and Frequencies (2/2)
 temp = (wordNode *) malloc (sizeof(wordNode));
 strcpy(temp->word, word); temp->freq = 1;

 if (firstNode == NULL) firstNode = temp; /* add the new node*/
 else lastNode -> nextWord = temp;

 lastNode = temp; } /* end of for loop */
Temp = firstNode;
Printf (“The words you gave are: \n”);
While (temp != NULL) do {
Printf (“%s \n”, temp->word);
Temp = temp->nextWord; }
} /* end of main */

SD, PSK, NSN, DK, TAG – CS&E, IIT M 30

Exercise
•  Suppose we have a travel agency which stores

information about each flight:
–  Flight Number
–  Originating airport code (3 letters)
–  Destination airport code (3 letters)
–  Departure Time
–  Arrival Time

•  Define a structure(s) for the flight information
•  Write a function to read in the flight info for all flights
•  Write a function to find the info for a given origin and

destination

03/11/17

6

SD, PSK, NSN, DK, TAG – CS&E, IIT M 31

Solution: FlightInfo Structure
•  We will start with a structure which represents

flight information

struct FlightInfo{
 String flightNo;
 String origin;
 String destination;
 Time depTime;
 Time arrTime;
};

SD, PSK, NSN, DK, TAG – CS&E, IIT M 32

String and Time Types
•  But ‘C’ does not have any ‘String’ or ‘Time’ data

types.
– We can define them!

struct TimeData
{
 int hour;
 int minute;
};
typedef struct TimeData Time;

typedef char[10] String;

typedef char* String; //Don’t forget to allocate memory using malloc!!!

//But this will allocate more memory than
actually required

OR

SD, PSK, NSN, DK, TAG – CS&E, IIT M 33

Reading In the Data
struct FlightInfo agency1[MAX_FLIGHTS];
void ReadInfo(int numFlights, struct FlightInfo flightList[]){

 for (i=1; i< numFlights; i++){
 printf(“Enter Flight Number %d”, i);
 scanf(“ %s”, flightList[i].flightNo);
 printf(“Enter Origin (3 letter code): ”);
 scanf(“ %s”, flightList[i].origin);
 printf(“Enter Destination(3 letter code): ”);
 scanf(“ %s”, flightList[i].destination);
 printf(“Enter Departure Time (hh:mm): ”);
 scanf(“ %d%d”, &flightList[i].depTime.hour,
 &flightList[i].depTime.minute);
 printf(“Enter Arrival Time (hh:mm): ”);
 scanf(“ %d%d”, &flightList[i].arrTime.hour,
 &flightList[i].arrTime.minute);

 }} SD, PSK, NSN, DK, TAG – CS&E, IIT M 34

void RetrieveFlight(struct FlightInfo flightList[], int numFlights){
 String userOrigin, userDest;
 printf (“\nEnter the origin and destination airport codes: ”);
 scanf (“ %s, %s”, userOrigin, userDest);

 for (int i=0; i < numFlights; i++) {

 if ((strcmp(flightList[i].origin, userOrigin) == 0) &&
 (strcmp(flightList[i].destination, userDest) == 0)) {

 printf(“\nFlight Number: %s \n”, flightList[i].flightNo);
 printf(“Departure Time: %d: %d\n”,

 flightList[i].depTime.hour, flightList[i].depTime.minute);
 printf(“Arrival Time: %d: %d \n”,

 flightList[i]. arrTime.hour, flightList[i].arrTime.minute);
 }

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 35

Storing and Accessing Elements
•  Linked list are accessed by following the pointers

–  linear time complexity

•  Search trees are traversed by comparing values at nodes
–  logarithmic time complexity for balanced trees

•  Array elements are accessed by using the index
–  constant time complexity
–  index value should be known (else search)

•  Can we store names/strings in arrays?
–  and find them in constant time
–  Yes, in Hash tables (average complexity)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 36

Computer Solutions
•  Problem Solving

– main purpose of using computers

•  Steps
–  clear specification, understanding of the problem
–  remove unnecessary details and retain only the

required parameters, constraints of the problem
•  “abstraction” - better insight, helps in thinking

–  find the method of solving the problem
•  “algorithm design” - “efficiency”

–  express the solution in a programming language

03/11/17

7

SD, PSK, NSN, DK, TAG – CS&E, IIT M 37

References
•  Peter Grogono and Sharon Nelson, Problem

Solving and Computer Programming, Narosa,
1987.

•  R G Dromey, How to Solve it by Computer,
Prentice-Hall India, 1996.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 38

Homework Exercise
•  Write a program to take a filename as a command

line argument, open the file and count the
frequencies of the different words in the file.

•  Given a “-n” option it should print the words
preceded by their counts in an increasing order of
frequency, one word per line.

•  Otherwise it should print the words in alphabetic
order

