CS1100 Introduction to Programming

Introduction to Computing

Madhu Mutyam Department of Computer Science and Engineering Indian Institute of Technology Madras

Course Material - SD, SB, PSK, NSN, DK, TAG - CS&E, IIT M

Course Outline

- Introduction to Computing
- Programming (in C)
- Exercises and examples from the mathematical area of Numerical Methods
- Problem solving using computers

SD, PSK, NSN, DK, TAG - CS&E, IIT M

Evaluation

- Two Quizzes 30
- Programming Assignments 25
- End of Semester Exam 45
- Attendance taken in the lab and in lectures

SD, PSK, NSN, DK, TAG – CS&E, IIT M

Class Hours

- Theory class meets 3 times a week (F1 slot)
 Wednesday 11:00 11:50 AM
 - Thursday 9:00 9:50 AM
 - Friday 8:00 8.50 AM
- Venue: CS36
- venue. CS50
- Lab class meets once a week
 B.Tech: Friday 2:00 4:50 PM (T1 slot)
 - DD: Wednesday 2:00 4:50 PM (11 slot)
- Attendance sheet will be circulated for signature

SD, PSK, NSN, DK, TAG – CS&E, IIT M

Policies

- · Strictly no cell phone usage in class
 - Keep your cell phone turned off
 Not even in silent mode
 - No SMS, chat etc.
- Cell phones will be confiscated if there are violations
 - Returned only after 2 weeks
- Repeat violations
 - Students will be sent to the Dean (Acad)

SD, PSK, NSN, DK, TAG – CS&E, IIT M

What is CS1101 About?

- Computer and its components
- Computing
- Programming Languages
- Problem Solving and Limitations of a Computer

```
SD, PSK, NSN, DK, TAG – CS&E, IIT M
```


What is a Computer?

- A computer is a programmable machine
- Its behavior is controlled by a program
- Programs reside in the *memory* of the machine *"The stored program concept"*

	The First Programmer Augusta Ada King, Countess of Lovelace (December 10, 1815 – November 27, 1852) is mainly known for having written a description of Charles Babbage's early mechanical general-purpose computer, the analytical engine.																				
Number of Opension. Name of Opension	TI Variable setol upon.	veritäher	ogran	Diagram for the o	ag	tation	AI		is ngine	of the	Num	d a		vali.	See Note G. (P Somo	P Contraction of Contraction	Z detail 0 2 detail 0	
	$T_{1} \times T_{1}$ $T_{1} \times T_{1}$ $T_{1} + T_{1}$ $T_{1} + T_{1}$ $T_{1} + T_{1}$ $T_{10} + T_{1}$ $T_{10} - T_{1}$ $T_{10} - T_{1}$	We We We We We We We	$\begin{cases} w_1 = w_2 \\ w_3 = v_1 \\ w_4 = v_1 \\ w_5 = v_1 \\ w_5 = v_1 \\ w_5 = v_1 \\ w_6 = v_1 \\ w_$	$\begin{array}{l} = 2 \ s \\ = 2 \ s - 1 \\ = 2 \ s - 1 \\ = \frac{2 \ s - 1}{2 \ s - 1} \\ = \frac{2 \ s - 1}{2 \ s - 1} \\ = \frac{2 \ s - 1}{2 \ s - 1} \\ = \frac{1}{2 \ s - 1}$	1	2		2n 2n-1 0 	2 m 2 m + 1 0 	2.	1 1 1		1 1 1	 a -1	2n = 1 2n + 1 1 $3n - 12$ $2n + 12$ $2n + 10$		$-\frac{1}{2} \cdot \frac{2n-1}{2n+1} - A_{i}$				
8 + 9 - 90 × 11 + 22 -	$v_1 + v_1$ $v_4 + v_1$ $v_{11} \times v_{12}$ $v_{11} + v_{12}$ $v_{12} + v_{13}$	iv ₂	$\begin{cases} \mathbf{i}_{i_1}^{i_2} = \mathbf{i}_{i_2}^{i_3} \\ \mathbf{i}_{i_2}^{i_3} = \mathbf{i}_{i_3}^{i_3} \\ \mathbf{i}_{i_4}^{i_4} = \mathbf{i}_{i_4}^{i_3} \\ \mathbf{i}_{i_2}^{i_3} = \mathbf{i}_{i_3}^{i_3} \\ \mathbf{i}_{i_2}^{i_3} = \mathbf{i}_{i_3}^{i_3} \\ \mathbf{i}_{i_2}^{i_3} = \mathbf{i}_{i_3}^{i_3} \\ \mathbf{i}_{i_2}^{i_3} = \mathbf{i}_{i_3}^{i_3} \\ \mathbf{i}_{i_3}^{i_3} = \mathbf{i}_{i_3}^{i_3} \\ \mathbf{i}_{i_1}^{i_3} = \mathbf{i}_{i_1}^{i_3} \end{cases}$	$\begin{array}{l} =2+0=2\\ =\frac{2}{3}=\lambda_{1}\\ =b_{1},\ \frac{2}{3}=b_{1}\lambda_{1}\\ =b_{1},\ \frac{2}{3}=b_{1}\lambda_{1}\\ =-\frac{1}{2},\ \frac{2}{3}=-1\\ \frac{2}{3}=+1\\ +b_{1},\ \frac{2}{3}\\ =s-2\left(=2\right)\end{array}$		2					•				$\frac{\frac{T}{T}}{\frac{T}{T}} = \Lambda_1$ $\frac{\frac{T}{T}}{\frac{T}{T}} = \Lambda_2$	01. 25 9	$\left\{-\frac{1}{2},\frac{2n-1}{2n+1}+3,\frac{2n}{2}\right\}$	в,			

Variables

- Data is represented as binary strings

 It is a sequence of 0's and 1's (bits), of a
 predetermined size "word". A *byte* is made of 8 *bits*.
- Each memory location is given a name
- The name is the *variable* that refers to the data stored in that location
 - e.g. rollNo, classSize
- Variables have *types* that define the interpretation of data
 - e.g. integers (1, 14, 25649), or characters (a, f, G, H)

SD, PSK, NSN, DK, TAG – CS&E, IIT M

Instructions

- Instructions take data stored in variables as arguments
- Some instructions do some operation on the data and store it back in some variable
 - e.g. The instruction "X ← X+1" on integer type says that "Take the integer stored in X, add 1 to it, and store it back in (location) X"
- Other instructions tell the processor to do something
 - e.g. "jump" to a particular instruction next, or to exit

SD, PSK, NSN, DK, TAG - CS&E, IIT M

Programs

- A program is a sequence of instructions
- Normally the processor works as follows,
 - Step A: pick next instruction in the sequence
 - Step B: get data for the instruction to operate upon
 - Step C: execute instruction on data (or "jump")
 - Step D: store results in designated location (variable)
 - Step E: go to Step A
- Such programs are known as *imperative programs*

SD, PSK, NSN, DK, TAG – CS&E, IIT M

17

18

Programming Paradigms

- *Imperative programs* are sequences of instructions. They are abstractions of how the *von Neumann machine* operates
 - Pascal, C, Fortran
- Object Oriented Programming Systems (OOPS) model the domain into objects and interactions between them
 Simula, CLOS, C++, Java
- *Logic programs* use logical inference as the basis of computation
 - Prolog
- *Functional programs* take a mathematical approach of functions
- LISP, ML, Haskell SD, PSK, NSN, DK, TAG CS&E, IIT M

A Limitation - Computer Arithmetic Number of digits that can be stored is limited Causes serious problems Consider a computer that can store: *Sign, 3 digits and a decimal point* Sign and decimal point are optional example : 212, -212, -21.2, -2.12, -.212

More Examples

- 113. + -111. = 2.00
- 2.00 + 7.51 = 9.51
- -111. + 7.51 = -103.49 (exact arithmetic)

But our computer can store only 3 digits. So it rounds -103.49 to -103

This is a very important thing to know as a system designer. Why?

SD, PSK, NSN, DK, TAG – CS&E, IIT M

Why?

19

21

Consider 113. + -111. + 7.51

To us addition is associative (a+b)+c = a+(b+c)

(113. + -111.) + 7.51 = 2.00 + 7.51 = 9.51113. + (-111. + 7.51) = 113. - 103. = 10.0

SD, PSK, NSN, DK, TAG – CS&E, IIT M

SD, PSK, NSN, DK, TAG - CS&E, IIT M

Conclusion

- Computer is fast but restricted
- · So we must learn to use its speed
- And manage its restrictions

SD, PSK, NSN, DK, TAG – CS&E, IIT M

23

Books

- P. Deitel and H. Deitel. C: How to Program.
- V. Rajaraman. Computer Programming in C.
- R. G. Dromey. How to Solve It By Computer.
- Kernighan and Ritchie. The C Programming Language.
- Kernighan and Pike. The Unix Programming Environment.

22

26

28

The Blocks, Their Functions

- Input Unit
 - Takes inputs from the external world via variety of input devices – keyboard, mouse, etc.
- Output Unit
 - Sends information (after retrieving, processing) to output devices – monitors/displays, projectors, audio devices, etc.

SD, PSK, NSN, DK, TAG – CS&E, IIT M

Finally (check man cp, man mv, man ls, man -k search string)

• Control Unit

- Controls the interaction among other units
- Knows each unit by its name, responds to requests fairly, reacts quickly on certain critical events
- Gives up control periodically in the interest of the system

$$CPU = Control Unit + ALU$$

29

The CPU (editors vi, emacs used to create text)

- Can *fetch* an instruction from memory
- Execute the instruction
- *Store* the result in memory
- A program a set of instructions
- An instruction has the following structure *Operation operands destination*
- A simple operation **add** *a*, *b* Adds the contents of memory locations *a* and *b* and stores the result in location *a*

```
SD, PSK, NSN, DK, TAG – CS&E, IIT M
```


Sign-Magnitude Notation							
Common cell lengths for integers : $k = 16$ or 32 or 64 bits							
First bit is used for a sign	000: 0 001: +1						
0 - positive number	010 : +2 011 : +3 100 : -0						
The remaining bits are used to store the binary magnitude of the number.	100 : -0 101 : -1 110 : -2 111 : -3						
Limit of 16 bit cell : $(32,767)_{10} = (2^{15} - 1)_{10} Z_{rep}^{Z}$ Limit of 32 bit cell : $(2,147,483,647)_{10} = (2^{31} - 1)_{10}^{Z}$	ero has two resentations!						
SD, PSK, NSN, DK, TAG – CS&E, IIT M	37						

One's Complement Notation						
In the one's complement method, the negative of integer n is represented as the bit complement of binary n						
E.g. : One's Complement of $(3)_{10}$ in a 3-bit cell	$\begin{array}{ccc} 000: & 0\\ 001: & +1 \end{array}$					
complement of 011 : 100	$010: +2 \\ 011: +3$					
-3 is represented as = $(100)_2$	100 : -3 101 : -2					
Arithmetic requires care: 2 + (-3) = 010 + 100 = 110 - 0k	110 : -1 111 : -0					
But, 3 + (-2) = 011 + 101 = 000 and carry of 1	Zero has two representations!					
need to add back the carry to get 001!	·r ··· · · · · ·					
NOT WIDELY USED SD, PSK, NSN, DK, TAG-CS&E, IIT M	38					

In the two's complement method, the negative in a <i>k</i> -bit cell is represented as $2^k - n$	of integer n
Two's Complement of $n = (2^k - n)$	
E.g. : Two's Complement of $(3)_{10}$ in a 3-bit cell	
-3 is represented as $(2^3 - 3)_{10} = (5)_{10} = (101)_{20}$	1
Arithmetic requires no special care:	000: 0 001: +1
2 + (-3) = 010 + 101 = 111 - ok	010: +2
3 + (-2) = 011 + 110 = 001 and carry of 1	011 : +3 100 : -4 (8 - 4
we can ignore the carry!	101 : -3 (8 - 3 110 : -2 (8 - 2
WIDELY USED METHOD for -ve numbers	111 : -1 (8 - 1 39

Two's Complement Notation							
The two's complement notation admits one more negative number than the sign - magnitude and one's complement notations.							
To get back <i>n</i> , read off the sign from the MSB	000: 0						
If -ve, to get magnitude, complement the cell and add 1 to it!	$\begin{array}{c} 001: +1 \\ 010: +2 \\ 011: +3 \end{array}$						
E.g.: $101 \rightarrow 010 \rightarrow 011 = (-3)_{10}$	100 : -4 101 : -3 110 : -2 111 : -1						
SD, PSK, NSN, DK, TAG – CS&E, IIT M	40						

Numbers with Fractions
Integer Part + Fractional Part
Decimal System - base 10 235 . 7846
Binary System - base 2
$(10011 . 11101)_2 = (19.90625)_{10}$
Fractional Part $(0.7846)_{10} = \frac{7}{10} + \frac{8}{10^2} + \frac{4}{10^3} + \frac{6}{10^4}$
Fractional Part $(0.11101)_2 = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \frac{0}{2^4} + \frac{1}{2^5} = 0.90625$
SD, PSK, NSN, DK, TAG – CS&E, IIT M 41

Fixed Versus Floating Point Numbers						
Fixed Point: position of the radix point fixed and is same for all numbers						
E.g.: With 3 digits after decimal point: 0.120 * 0.120 = 0.014 A digit is lost!!						
Floating point numbers: radix point can float $1.20 \times 10^{-1} * 1.20 \times 10^{-1} = 1.44 \times 10^{-2}$						
Floating point system allows a much wider range of values to be represented						
SD, PSK, NSN, DK, TAG – CS&E, IIT M	4					

 $(0.110)_2 = (1.10)_2 \times 2^{-1}$

46

SD, PSK, NSN, DK, TAG – CS&E, IIT M

