
04/10/17

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

Madhu Mutyam
Department of Computer Science and Engineering

Indian Institute of Technology Madras

CS1100
Introduction to Programming

Functions

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Functions = Outsourcing
•  Break large computing tasks into small ones
•  Helps you to build on what others have done

– You and others write functions
– When you want to build a program, find out how to

use the function and use it
•  Using standard functions provided by the library

– You are hidden from the implementation
– Example – you don’t have to worry about how

pow(m, n) is implemented
•  As engineers from different disciplines you will

use and develop different set of functions

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Modular Programming
•  Subprograms

–  functions in C, C++, procedures and functions in Pascal
–  facilitate modular programming

•  Overall task is divided into modules
•  Each module - a collection of subprograms

–  a subprogram may be invoked at several points
•  A commonly used computation

–  hiding the implementation
–  changes can be incorporated easily

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Example of Function Sets
•  String manipulation
•  Mathematical
•  Finite Element Method

– Used in structural analysis by Mechanical, Civil,
Aero, etc. for stress calculations etc.

•  Most function libraries cost a lot
– Business opportunity – identify functions that are

useful to your area of study, create libraries

•  Functions for use in different software
– Say, functions for web services

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Power Function
#include <stdio.h>
int power (int, int);
main() {
for (int i = 0; i < 20; i ++)

 printf(“%d %d %d\n”, i, power(3,i), power(-4,i));
}
int power (int base, int n) {

 int i, p = 1;
 for (i = 1; i <= n ; i ++)
 p = p * base;
 return p;

}

Computes the nth power of
base (1st parameter)

function prototype

Invocation with
arguments A block

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Calling Power Function with i=3
 printf(“%d %d %d\n”, i, power(3,i), power(-4,i));

int power (int base, int n){
int i, p = 1;
for (i = 1; i <= n ; i ++)

 p = p * base;
return p;
}

int power (int base, int n){
int i, p = 1;
for (i = 1; i <= n ; i ++)

 p = p * base;
return p;
}

27
-64

04/10/17

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Recursive Function Example

int power (int num, int exp) {
 int p;
 if (exp = = 1) return num;
 p = power(num, exp/2);
 if (exp % 2 = = 0) return p*p;
 else return p*p*num;}

The base case exp = 1
Guarantees termination

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Recursive Function Example
power(3, 13)

return power(3, 6)*power(3,6)*3

return power(3, 1)*power(3,1)*3

return 3

return 3*3*3

return 27*27

return 729*729*3

return 1594323

return power(3, 3)*power(3,3)

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

Factorial (n)
n! = 1 * 2 * 3 * * (n-2) * (n-1) * n
Iterative version

int fact(int n){

 int i;
 int result;
 result = 1;
 for (i = 1; i <= n; i++)
 result = result * i;
 return result;

}

In practice int may
not be enough!

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Factorial (n) – Recursive Program

 n! = n * (n-1)!

 int fact(int n)
 {
 if (n == 0) return(1);
 return (n*fact(n - 1));
 }

•  Shorter, simpler to understand
•  Uses fewer variables
•  Machine has to do more work running this one!

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

Basics
•  Function is a part of your program

–  It cannot be a part of any other function
– main() is a function: it is the main function

•  Execution starts there or the control flow starts there

– From there it can flow from one function to another,
return after a computation with some values, probably,
and then flow on

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Basics
•  Transfer of control is affected by calling a

function
– With a function call, we pass some parameters
– These parameters are used within the function
– A value is computed
– The value is returned to the function which initiated

the call
– The calling function can ignore the value returned
–  It could use it in some other computation
– A function could call itself, these are called recursive

function calls

04/10/17

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

Add Functions to Your Program
•  A program is a set of variables, and assignments

to variables
•  Now we add functions to it

– Set of variables
– Some functions including main()
– Communicating values to each other
– Computing and returning values for each other

•  Instead of one long program, we now write a
structured program composed of functions

SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Features
•  C program -- a collection of functions

–  function main () - mandatory - program starts here.

•  C is not a block structured language
–  a function cannot be defined inside another function
–  only variables can be defined in functions / blocks

•  Variables can be defined outside of all functions
–  global variables - accessible to all functions
–  a means of sharing data between functions - caution

•  Recursion is possible
–  a function can call itself - directly or indirectly

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Function – General Form

return-type function-name (argument declarations)

 {
 declaration and statements
 return expression;
 }

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Function Definition in C
•  return-type function-name (argument declarations)

 {variable/constant declarations and statements}
•  Arguments or parameters:

–  the means of giving input to the function
–  type and name of arguments are declared

•  names are formal - local to the function

•  Return value: for giving the output value
–  return (expression); -- optional

•  To invoke a function
 function-name(exp1,exp2,…,expn);

Matching the
number and type

of arguments

No function
declarations here!

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

Function Prototype
•  Used by the compiler to check the usage

–  prevents execution-time errors

•  Defines
–  the number of parameters, type of each parameter,
–  type of the return value of a function

•  Ex: function prototype of power function:
 int power (int, int);

–  no need for naming the parameters

•  Function prototypes are given in the beginning

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

More on Functions
•  To write a program

– You could create one file with all the functions
– You could/are encouraged to identify different modules

and write functions for each module in a different file
– Each module will have a separate associated header file

with the variable declaration global to that module
– You could compile each module separately and a .o file

will be created
– You can then cc the different .o files and get an a.out

file
– This helps you to debug each module separately

04/10/17

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

Running with Less Memory
•  Functions

– Provided to break up our problem into more basic
units

– Control flow – flows from function to function,
saving the current context, changing contexts, then
returning…..

– Helps the program to run with lesser memory, but
slightly slower than a monolithic program without
functions

•  Typically functions communicate using the
arguments and return values

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

Call by Value
•  In C, function arguments are passed “by value”

–  values of the arguments given to the called function
in temporary variables rather than the originals

–  the modifications to the parameter variables do not
affect the variables in the calling function

•  “Call by reference”
–  variables are passed by reference

•  subject to modification by the function

–  achieved by passing the “address of” variables

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

Call by Value – An Example
main() {
int p = 1, q = 2, r = 3, s;
int test(int, int, int);
…;
s = test (p, q, r); … /* s is assigned 9 */
} /* p,q,r don’t change, only their copies do */

int test(int a, int b, int c){
 a ++; b ++; c ++;

 return (a + b + c);
}

Function prototype

Function call

Function definition

SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

Call by Reference
#include <stdio.h>
void quoRem(int, int, int*, int*); /*addresses or pointers*/
main(){

 int x, y, quo, rem;
 scanf(“%d%d”, &x, &y);
 quoRem(x, y, &quo, &rem);
 printf(“%d %d”, quo , rem);

}

void quoRem(int num, int den, int* quoAdr, int* remAdr){

 *quoAdr = num / den; *remAdr = num % den;
}

Does not return
anything

Passing
addresses

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Pending Computations
•  In this recursive version the calling

 version still has pending work after
 it gets the return value.

(fact 4)
 4 * (fact 3)
 3 * (fact 2)
 2 * (fact 1)
 1
 2*1 =2
 3*2 = 6
 4*6 = 24

int fact(int n)
{
 if (n == 1) return 1;
 return n * fact(n - 1);
}

It needs to save
some values for

future use

SD, PSK, NSN, DK, TAG – CS&E, IIT M 24

Tail Recursion

int fact(n)
{ return fact_aux(n, 1); }

int fact_aux(int n, int result)
{
if (n == 1) return result;
return fact_aux(n - 1, n * result)
}

The recursive call is
in the return

statement. The
function simply

returns what it gets
from the call it

makes. The calling
version does not
have to save any

values!

Auxiliary variable

