
14/10/17

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

Madhu Mutyam
Department of Computer Science and Engineering

Indian Institute of Technology Madras

CS1100
Introduction to Programming

Matrix Operations

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Multi-Dimensional Arrays
•  Arrays with two or more dimensions can be

defined

0

1

2

3

0 1 2

A[4][3]

0 1 2 0 1 2

0

1

2

3

0 1

B[2][4][3]

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Two Dimensional Arrays
•  Declaration: int A[4][3] : 4 rows and

3 columns, 4×3 array
•  Elements: A[i][j] - element in row i

and column j of array A
•  Rows/columns numbered from 0
•  Storage: row-major ordering

–  elements of row 0, elements of row 1,
etc

•  Initialization:
 int B[2][3]={{4,5,6},{0,3,5}};

0

1

2

3

0 1 2

A[4][3]

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Matrix Operations
•  An m-by-n matrix M: m rows and n columns
•  Rows: 1, 2, … , m and Columns: 1, 2, … , n
•  M(i, j): element in ith row, jth col., 1≤i≤m, 1≤j≤n
•  Array indexes in C language start with 0
•  Use (m+1)×(n+1) array and ignore cells (0,i), (j,0)
•  Programs can use natural convention – easier to

understand
•  Functions: matRead(a,int,int), matWrite(a,int,int),

matAdd(a,b,c,int,int), matMult(a,b,c,int,int,int);

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Using Matrix Operations
main(){

 int a[11][11], b[11][11], c[11][11]; /*max size: 10 by 10 */
 int aRows, aCols, bRows, bCols, cRows, cCols;
 scanf("%d%d", &aRows, &aCols);
 matRead(a, aRows, aCols);
 scanf("%d%d", &bRows, &bCols);
 matRead(b, bRows, bCols);
 matMult(a, b, c, aRows, aCols, bCols);
 cRows = aRows; cCols = bCols;
 matWrite(c, cRows, cCols);

}

Remember
bRows=aCols

Address of the (0,0)
element of the array

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Reading and Writing a Matrix
void matRead(int mat[][11], int rows, int cols){
 for (int i = 1; i <= rows; i++)
 for (int j = 1; j <= cols; j++)
 scanf("%d", &mat[i][j]);
}

void matWrite(int mat[][11], int rows, int cols){
 for (int i = 1; i <= rows; i++){
 for (int j = 1; j <= cols; j++) /* print a row */
 printf ("%d ", mat[i][j]); /* notice missing \n */

 printf ("\n"); /* print a newline at the end a row */
 }

}

For the compiler to figure
out the address of mat[i][j],
the first dimension value is
not necessary. (Why?)

14/10/17

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Matrix Multiplication

Multiply two numbers

Sum of N products

N

N

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

Matrix Multiplication

void matMult(int mat1[][11], int mat2[][11],

 int mat3[][11], int m, int n, int p){
for (int i =1; i <= m; i++)
 for (int j = 1; j <= p; j++)
 for (int k = 1; k <= n; k++)
 mat3[i][j] += mat1[i][k]*mat2[k][j];
} Remember it was initialized to zero in the main

program. It could have been done in this
function as well – probably a better idea.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

scanf and getchar
•  getchar() reads and returns one character
•  scanf – formatted input, stores in variable

–  scanf returns an integer = number of inputs it
managed to convert successfully

printf ("Input 2 numbers: ");
if (scanf ("%d%d", &i, &j) == 2)

 printf ("You entered %d and %d\n", i, j);
else printf ("You failed to enter two numbers\n");

from <http://cprogramming.com>
SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Input Buffer
•  Your input line is first stored in a buffer
•  If you are reading a number with scanf (%d) and

enter 1235ZZZ, scanf will read 1235 into the
variable and leave ZZZ in the buffer

•  The next read statement will get ZZZ and may
ignore the actual input!

•  One may need to write a statement to clear the
buffer…
 while (getchar() != '\n');

 This reads and ignores input till the end of line

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

Program to Insist on One Number Only
#include <stdio.h>
int main(void){
 int temp;
 printf ("Input your number: ");
 while (scanf("%d", &temp) != 1)

 {
 while (getchar() != '\n');

 printf ("Try again: ");
 }

 printf ("You entered %d\n", temp);
 return(0);
}

exit if one number

clear buffer before
reading again

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Experiments with Numbers
•  The Collatz problem asks if iterating

 always returns to 1 for positive α. The members
of the sequence produced by the Collatz problem
are sometimes known as hailstone numbers.

From Wolfram Mathworld
http://mathworld.wolfram.com/CollatzProblem.html

3αn-1 + 1 for αn-1 odd
½ αn-1 for αn-1 even

αn =

14/10/17

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

Hailstone Numbers
•  A Hailstone Sequence is generated by a simple

algorithm:

 Start with an integer N. If N is even, the next
number in the sequence is N/2. If N is odd, the
next number in the sequence is (3*N)+1

•  7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2,
1, 4, 2, 1, ... repeats

•  12, 6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1 ….
•  909, 2726, 1364, 682, 341, 1024, 512, 256, 128, 64,

32, 16, 8, 4, 2, 1, 4, 2, 1… 210
SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Mathematical Recreations
http://users.swing.be/TGMSoft/hailstone.htm

Exercise : Write a program to accept an input and count the number of
iterations needed to get to 1, and the highest number reached. Generate a table
of results…

