
14/10/17

1

Course Material – SD, SB, PSK, NSN, DK, TAG – CS&E, IIT M 1

Madhu Mutyam
Department of Computer Science and Engineering

Indian Institute of Technology Madras

CS1100
Introduction to Programming

Sorting Strings and Pointers

SD, PSK, NSN, DK, TAG – CS&E, IIT M 2

Lexicographic (Dictionary) Ordering
•  Badri < Devendra
•  Janak < Janaki
•  Shiva < Shivendra
•  Seeta < Sita

•  Based on the ordering of characters
•  A < B … < Y < Z < a < b < c < . . . < y < z

upper case before lower case

SD, PSK, NSN, DK, TAG – CS&E, IIT M 3

Lexicographic Ordering
•  What about blanks?

–  “Bill Clinton” < “Bill Gates”
–  “Ram Subramanian” < “Ram Subramanium”
–  “Ram Subramanian” < “Rama Awasthi”

•  In ASCII the blank (code = 32) comes before all
other characters. The above cases are taken care
of automatically.

•  Exercise: Look up ASCII codes on the web.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 4

Lexicographic Ordering
•  What if two names are identical?
•  There is a danger that the character arrays may

contain some unknown values beyond ‘\0’
•  Solutions

– One could begin by initializing the arrays to blanks
before we begin.

– One could explicitly look for the null character ‘\0’
– When the two names are equal it may not matter if

either one is reported before the other. Though in
stable sorting there is a requirement that equal
elements should remain in the original order.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 5

Comparing Strings (char Arrays)
•  Given two strings A[i][] and A[j][] of length n,

return the index of the string that comes earlier in
the lexicographic order

Skip common characters if any

If one string is prefix
of the other return that

int strCompare(char A[][MAX_SIZE], int i, int j, int
MAX_SIZE){

 int k=0;
 while ((A[i][k] == A[j][k]) && k<MAX_SIZE) k++;
 if (A[i][k] == ‘\0’) return i;
 if (A[j][k] == ‘\0’) return j;
 if (A[i][k] < A[j][k]) return i;
 else return j;

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 6

Built-in String Comparison
•  #include <string.h>
•  int strcmp(const char *s1, const char *s2);
•  int strncmp(const char *s1, const char *s2, size_t n);
•  int strcmp(char*, char*) – compares two strings (char

arrays)
•  The return values are:
•  0 – If both strings are equal
•  1 – If first string is lexicographically greater than second
•  -1 – If second string is lexicographically greater than first

Pointers - address of char array
– we will look at them later

14/10/17

2

SD, PSK, NSN, DK, TAG – CS&E, IIT M 7

Other Built-in String Functions
•  char* strcat(char* dest, char* src)

–  Strcat combines two strings and returns a pointer to
the destination string. In order for this function to
work (and not seg fault), you must have enough room
in the destination for both strings.

•  char* strcpy(char* dest, char* src)
–  Strcpy copies one string to another. The destination

must be large enough to accept the contents of the
source string.

•  int strlen(const char* s)
–  Strlen returns the length of a string, excluding ‘\0’

SD, PSK, NSN, DK, TAG – CS&E, IIT M 8

ArrayCopy

array[i][……]

array[j][……]

Copies content of ith row of array into the jth row

void arrayCopy (char array[][MAX_SIZE], int i, int j,
int MAX_SIZE) {

 int k;
 for (k =0; k < MAX_SIZE; k++)
 array[j][k] = array[i][k];

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 9

ArraySwap

void arraySwap (char array[][MAX_SIZE], int i, int j,
int MAX_SIZE){

 for (k =0; k < MAX_SIZE; k++)
 swap(array, i, j, k);

}

array[i][……]

array[j][……]

Note: We exchange the entire arrays. If we knew the length of
the longer string, we could have a different end condition.

SD, PSK, NSN, DK, TAG – CS&E, IIT M 10

Sorting String Arrays
•  Modify InsertionSort to sort array names[] of

names
•  Use strCompare to compare names
•  Use arrayCopy to move names
•  In the exercise where names[] and marks[] have

to be sorted in concert, modify the sorting
algorithm to
–  compare in one array

•  names[] for alphabetic order
•  marks[] for decreasing marks order

– move elements of both

Compact structures to hold
both to be explored later

SD, PSK, NSN, DK, TAG – CS&E, IIT M 11

main() {
int i = 4;
char c;
do{

 c = "hello"[i];
 printf("%c",c);
 i --;

 }while(i >= 0);
printf("\n");
}

Printing a Reversed String

SD, PSK, NSN, DK, TAG – CS&E, IIT M 12

Palindromes
•  Strings/sequences that read the same left to right

or right to left
•  string == reversed string

– malayalam
–  god live evil dog
–  able was I ere I saw elba
–  don’t nod
–  never odd or even

•  notice that we ignore blanks (4, 5) and other
characters (4)
–  preprocess the string to remove them

14/10/17

3

SD, PSK, NSN, DK, TAG – CS&E, IIT M 13

Reversing an Array
•  Swap the first element with last

–  a(0) with a(n – 1)

•  second with second last
–  a(1) with a(n – 2)

•  … a(i) with a((n – 1) – i)
•  How about the following code?

for (i=0; i<n; i++)
 swap (a, i, n-1-i);

void swap (char a[], int i, int j){
 char c;
 c = a[i];
 a[i]=a[j];
 a[j]=c;

} SD, PSK, NSN, DK, TAG – CS&E, IIT M 14

Limits for Iteration

S N A K E reverse

E N A K S i=0

E K A N S i=1

E K A N S i=2

E N A K S i=3

S N A K E i=4

Job done!
Stop at halfway mark!
for(i=0; i<n/2; i++)

for (i=0; i<n; i++)
 swap (a, int i, int n–1–i);

void swap (char a[], int i, int j){
 char c;
 c = a[i];
 a[i]=a[j];
 a[j]=c;

}

SD, PSK, NSN, DK, TAG – CS&E, IIT M 15

Exercise
•  Compute the transpose of a matrix
•  Compute in place transpose of a square matrix

T A S

A C T

B E E

L D E

E O P

T A B L E
A C E D O
S T E E P

SD, PSK, NSN, DK, TAG – CS&E, IIT M 16

Palindrome Squares
•  Write a program to check if a square matrix

contains a palindrome table.
•  Two examples are given below

from http://www.fun-with-words.com/palin_example.html

S T E P

T I M E

E M I T

P E T S

R A T S

A B U T

T U B A

S T A R

SD, PSK, NSN, DK, TAG – CS&E, IIT M 17

/* Arrays of strings */
#include <stdio.h>
void main() {
 char str[][40] = {"String in C”, "Another string in C”};

 int count1 = 0; /* Length of first string */
 int count2 = 0; /* Length of second string */
 /* find the length of the strings */
 while (str[0][count1] != '\0') count1++; /* 11 */
 while (str[1][count2] != '\0') count2++; /* 19 */

Concatenating Two Strings
S t r i n g i n C \0 . . .

A n o t h e r s t r i n g i n C \0 . . .

SD, PSK, NSN, DK, TAG – CS&E, IIT M 18

/* Check that we have enough space for both strings */
 if (sizeof str[0] < count1 + count2 + 1)
 printf("\n Not enough space for both strings.");
 else { /* Copy 2nd string to first */
 int i = count1, j = 0;
 while((str[0][i++] = str[1][j++]) != '\0');
 printf("\n%s", str[0]); /* Output combined string */
 }
}

Concatenating Two Strings
S t r i n g i n C \0 . . .

A n o t h e r s t r i n g i n C \0 . . .

14/10/17

4

SD, PSK, NSN, DK, TAG – CS&E, IIT M 19

*p

100 250

What is a Pointer?
•  Recap: a variable int k

– Names a memory location that can
hold one value at a time

– Memory is allocated statically at
compile time

– One name ⇔ one value

•  A pointer variable int *p
– Contains the address of a memory

location that contains the actual value
– Memory can be allocated at runtime
– One name ⇔ many values

p 200

k 38 100

Addr

*p

250 84 m

SD, PSK, NSN, DK, TAG – CS&E, IIT M 20

l-value and r-value
•  Given a variable k

–  Its l-value refers to the address of the memory location
–  l-value is used on the left side of an assignment

•  Ex. k = expression

–  Its r-value refers to the value stored in the memory
location

–  r-value is used in the right hand side of an assignment
•  Ex. var = k + …

•  Pointers allow one to manipulate the l-value!

SD, PSK, NSN, DK, TAG – CS&E, IIT M 21

Pointer Variables
•  Pointer variables are variables that store the

address of a memory location
•  Memory required by a pointer variable depends

upon the size of the memory in the machine
–  one byte could address a memory of 256 locations
–  two bytes can address a memory of 64K locations
–  four bytes can address a memory of 4G locations
– modern machines have RAM of 1GB or more…

•  The task of allocating this memory is best left to
the system

SD, PSK, NSN, DK, TAG – CS&E, IIT M 22

Declaring Pointers
•  Pointer variable – precede its name with an

asterisk
•  Pointer type - the type of data stored at the

address
– For example, int *p;
–  p is the name of the variable. The ‘*’ informs the

compiler that p is a pointer variable
– The int says that p is used to point to an integer

value
Ted Jenson’s tutorial on pointers
http://pweb.netcom.com/~tjensen/ptr/cpoint.htm

SD, PSK, NSN, DK, TAG – CS&E, IIT M 23

Contents of Pointer Variables
•  In ANSI C, if a pointer is declared outside any

function, it is initialized to a null pointer
– For example,

 int k;
 int *p;
 p = &k; //assigns the address of int k to p

 if (p == NULL) //tests for a null pointer
 p = malloc(sizeof(int)); //dynamic allocation,
 //creates an anonymous int
 // in memory at runtime

SD, PSK, NSN, DK, TAG – CS&E, IIT M 24

Dereferencing Operator
•  The asterisk symbol is the "dereferencing

operator" and it is used as follows
 *ptr = 7;

– Will copy 7 to the address pointed to by ptr
– Thus if ptr "points to" (contains the address of) k, the

above statement will set the value of k to 7

•  Using '*' is a way of referring to the value in
the location which ptr is pointing to, but not the
value of the pointer itself
–  printf("%d\n",*ptr); --- prints the number 7

14/10/17

5

SD, PSK, NSN, DK, TAG – CS&E, IIT M 25

short int Pointer
•  short *ptr;

–  says that ptr is the address of a short integer type

•  short – allocates two bytes of memory

–  *ptr = 20; //store the value 20 in the above two bytes

•  if we had said “int *ptr”
–  it would have allocated 4 bytes of memory

ptr

100 101 102 103 104 105 …

SD, PSK, NSN, DK, TAG – CS&E, IIT M 26

Pointer Arithmetic

•  ptr = ptr +1;
–  says to point to the next data item after this one

ptr

ptr

Makes sense only for same type data – eg. an array of integers

SD, PSK, NSN, DK, TAG – CS&E, IIT M 27

Memory Needed for a Pointer
•  A pointer requires two chunks of memory to be

allocated:
– Memory to hold the pointer (address)

•  Allocated statically by the pointer declaration

– Memory to hold the value pointed to
•  Allocated statically by a variable declaration
•  OR allocated dynamically by malloc()

•  One variable or pointer declaration à allocation
of one chunk of memory

