Advanced Counting Techniques

CS1200, CSE IIT Madras

Meghana Nasre

April 10, 2020

Advanced Counting Techniques

- Principle of Inclusion-Exclusion \checkmark
- Recurrences and its applications \checkmark
- Solving Recurrences

Repeated Substitution Method: Learnings

- An elementary method to solve recurrences. elementary does not mean simple, but a something that does not need background
- Need to observe a pattern. Do not oversimplify.
- Creativity and experience with summation of series help.
- However, the pattern has to be observed for each recurrence and there is no generic rule. Are there some recurrences that can be solved by a formula?

Ex: Solve by repeated substitution

$$
\begin{aligned}
T(n) & =2 & \text { if } n=0 \\
& =2 \sqrt{T(n-1)} & \text { otherwise }
\end{aligned}
$$

Sol: $T(n)=2^{2-\frac{1}{2^{n}}}$

$$
\begin{aligned}
T(n) & =12 & & \text { if } n=0 \\
& =20 & & \text { if } n=1 \\
& =2 T(n-1)-T(n-2) & & \text { otherwise }
\end{aligned}
$$

Sol: $T(n)=8 n+12$

Linear recurrences

Linear Homogeneous Recurrences with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}
$$

$1 \leq i \leq k, c_{i}$ is a real number and $c_{k} \neq 0$

- Linear because $a_{n-1}, a_{n-2} \ldots$ appear in separate terms and to the first power.
- Homogeneous because degree of every term is the same. There is no constant term.
- Constant coefficients because $c_{1}, c_{2} \ldots$ are reals which do not depend on n.

Examples:

- $T(n)=2 T(n-1)$ and $T(0)=1$.
- $T(n)=T(n-1)+T(n-2)$ and $T(0)=0, T(1)=1$.

Non Examples:

- $T(n)=n T(n-1)$ and $T(0)=1$ does not have constant coefficients
- $T(n)=T(n-1) \cdot T(n-2)$ and $T(0)=0, T(1)=1$. not linear

Example 1

$$
\begin{aligned}
a_{n}= & a_{n-1}+2 a_{n-2} \\
& \text { if base cases were } a_{0}=1, a_{1}=8
\end{aligned}
$$

- Is this a well defined recurrence? No! base cases are missing.
- $1,2,2^{2}, 2^{3}, \ldots$ is a possible solution; closed form 2^{n}.
- $1,-1,1,-1, \ldots$ is another possible solution; closed form $(-1)^{n}$.
- None of the above are solutions.

Qn: Is it possible to make use of "some" solutions (not necessarily satisfying base cases) to get a valid solution?

Ans: Yes it is possible.

Linear Homogeneous Recurrences of degree two with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

- Degree two (or second order) says that a_{n} depends on two previous terms.
- We will deal with degree two recurrences initially.

Claim: If $r_{0}, r_{1}, r_{2}, \ldots$, and $s_{0}, s_{1}, s_{2}, \ldots$ satisfy the same second order linear homogeneous recurrence with constant coefficients, then for any constants α_{1} and α_{2}, and for all $n \geq 0$, we have $a_{n}=\alpha_{1} r_{n}+\alpha_{2} s_{n}$, also satisfies the same recurrence.

What does it mean for our example earlier?

$$
a_{n}=a_{n-1}+2 a_{n-2}
$$

we do have base cases yet!

- 2^{n} and $(-1)^{n}$ are solutions we have seen this earlier.
- $4 \cdot 2^{n}+5 \cdot(-1)^{n}$ is also a solution! So is $2^{n}+(-3) \cdot(-1)^{n}$.
- In fact, for any constants α_{1} and α_{2}, $\alpha_{1} \cdot 2^{n}+\alpha_{2} \cdot(-1)^{n}$ is a solution.

Linear Homogeneous Recurrences of degree two with constant coefficients

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

Claim: If $r_{0}, r_{1}, r_{2}, \ldots$, and $s_{0}, s_{1}, s_{2}, \ldots$ satisfy the same second order linear homogeneous recurrence with constant coefficients, then for any constants α_{1} and α_{2}, and for all $n \geq 0$, we have $a_{n}=\alpha_{1} r_{n}+\alpha_{2} s_{n}$, also satisfies the same recurrence.

Proof:

- Since $r_{0}, r_{1}, r_{2} \ldots$ satisfies the recurrence, we know $r_{n}=c_{1} r_{n-1}+c_{2} r_{n-2}$
- Since $s_{0}, s_{1}, s_{2} \ldots$ satisfies the recurrence, we know $s_{n}=c_{1} s_{n-1}+c_{2} s_{n-2}$

Let $a_{0}, a_{1}, a_{2}, \ldots$ be the sequence defined by $\alpha_{1} r_{n}+\alpha_{2} s_{n}$. Then,

$$
\begin{aligned}
c_{1} \cdot a_{n-1}+c_{2} \cdot a_{n-2} & =c_{1}\left(\alpha_{1} r_{n-1}+\alpha_{2} s_{n-1}\right)+c_{2}\left(\alpha_{1} r_{n-2}+\alpha_{2} s_{n-2}\right) \\
& =\alpha_{1}\left(c_{1} \cdot r_{n-1}+c_{2} \cdot r_{n-2}\right)+\alpha_{2}\left(c_{1} \cdot s_{n-1}+c_{2} \cdot s_{n-2}\right) \\
& =\alpha_{1} r_{n}+\alpha_{2} s_{n}=a_{n}
\end{aligned}
$$

This completes the proof.

Back to Example 1

$$
\begin{aligned}
& a_{n}=a_{n-1}+2 a_{n-2} \\
& a_{0}=1, \quad a_{1}=8
\end{aligned}
$$

- 2^{n} and $(-1)^{n}$ are solutions (not satisfying base cases).
- Goal: Obtain a closed form for the recurrence including base cases.

We know that $\alpha_{1} \cdot 2^{n}+\alpha_{2} \cdot(-1)^{n}$ is a solution, for any constants α_{1}, α_{2}.
We use base cases to get values of α_{1} and α_{2}.

$$
\begin{aligned}
& a_{0}=1=\alpha_{1} \cdot 2^{0}+\alpha_{2} \cdot(-1)^{0}=\alpha_{1}+\alpha_{2} \\
& a_{1}=8=\alpha_{1} \cdot 2^{1}+\alpha_{2} \cdot(-1)^{1}=2 \cdot \alpha_{1}-\alpha_{2}
\end{aligned}
$$

Solving this for α_{1}, α_{2} gives us : $\alpha_{1}=3$ and $\alpha_{2}=-2$.

Verify that $3 \cdot 2^{n}+(-2) \cdot(-1)^{n}$ is a solution to the recurrence.

Characteristic equation

Let the recurrence be as follows where c_{1} and c_{2} are constants and $c_{2} \neq 0$.

$$
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}
$$

Claim: The above recurrence is satisfied by the sequence

$$
1, t, t^{2}, t^{3}, \ldots, t^{n}, \ldots
$$

where t is a non-zero real number iff t satisfies

$$
t^{2}-c_{1} t-c_{2}=0
$$

Ex: Write down the proof for the above. Note that the proof has two parts.

$$
t^{2}-c_{1} t-c_{2}=0
$$

is called as the characteristic equation of the recurrence relation.

- The characteristic equation for Example 1 is $t^{2}-t-2=0$.
- 2 and (-1) are indeed solutions of the above equation.

Linear Homogeneous Recurrences of degree two with constant coefficients

Input:

$$
\begin{aligned}
& a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2} \\
& a_{0}=x \quad a_{1}=y
\end{aligned}
$$

Goal: To obtain a closed form satisfying base cases.

- Write down characteristic equation $t^{2}-c_{1} t-c_{2}=0$.
- Solve the characteristic equation to get roots. two possibilities - two distinct roots or a single root with multiplicity two

Distinct Roots case: If two distinct roots, r_{1} and r_{2}, then by previous claim, we know that following sequence also satisfies the recurrence

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}
$$

Use base cases $a_{0}=x$ and $a_{1}=y$ to compute values for α_{1} and α_{2}.
Single Roots case: Coming up.

Example 2: Distinct roots case

Fibonacci Sequence

$$
\begin{aligned}
& f_{n}=f_{n-1}+f_{n-2} \\
& f_{0}=1 \quad f_{1}=1
\end{aligned}
$$

We can obtain a closed form using the above technique.

- Characteristic equation: $t^{2}-t-1=0$.
- Roots of the characteristic equation are:

$$
r_{1}=\frac{1+\sqrt{5}}{2} \quad r_{2}=\frac{1-\sqrt{5}}{2}
$$

- Solve $\alpha_{1} r_{1}^{0}+\alpha_{2} r_{2}^{0}=1$ and $\alpha_{1} r_{1}^{1}+\alpha_{2} r_{2}^{1}=1$ to obtain α_{1} and α_{2}.
- Final solution is

$$
f_{n}=\alpha_{1} \cdot\left(\frac{1+\sqrt{5}}{2}\right)^{n}+\alpha_{2} \cdot\left(\frac{1-\sqrt{5}}{2}\right)^{n}
$$

Ex:

- Find values of α_{1} and α_{2}.
- Change the base cases to say $f_{0}=2$ and $f_{1}=3$ and observe how the solution changes. Check for another choice of base cases.

Summary

- Special types of recurrences: Linear homogeneous recurrence relations of degree two with constant coefficients.
- Characteristic equation.
- Closed form when the characteristic equation has distinct roots.
- Upcoming: Single roots case and the non-homogeneous case.
- References: Section 8.2 [KR]

